linear_chain_crf_op.cc 17.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
caoying03 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/linear_chain_crf_op.h"
C
caoying03 已提交
16

X
xuezhong 已提交
17 18
#include <memory>

C
caoying03 已提交
19 20 21
namespace paddle {
namespace operators {

C
caoying03 已提交
22
class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker {
C
caoying03 已提交
23
 public:
Y
Yu Yang 已提交
24
  void Make() override {
25 26 27 28 29 30 31 32
    AddInput("Emission",
             "(LoDTensor/Tensor<float>). When a LoDTensor input,A 2-D LoDTensor"
             " with shape [N x D], where N is the size of the "
             "mini-batch and D is the total tag number. The unscaled emission "
             "weight matrix for the linear chain CRF. When a Tensor input,"
             "A Tensor with shape [N x S x D], where N is batch number,"
             "S is max length of sequences, D is the total tag number."
             "A LoDTensor or Tensor with type float32, float64.");
C
Cao Ying 已提交
33
    AddInput("Transition",
K
kexinzhao 已提交
34
             "(Tensor, default Tensor<float>) A 2-D Tensor with shape "
C
Cao Ying 已提交
35 36 37
             "[(D + 2) x D]. The learnable parameter for the linear_chain_crf "
             "operator. See more details in the operator's comments.");
    AddInput("Label",
38
             "(LoDTensor/Tensor<int64_t>), when a LoDTensor input,  "
C
Cao Ying 已提交
39
             "[N x 1], where N is the total element number in a mini-batch. "
40
             "when a Tensor input, [N x S], where N is batch number. "
41 42
             "S is max length of sequences. The ground truth."
             "A  LoDTensor or Tensor with int64.");
43
    AddInput("Length",
44
             "(Tensor, default Tensor<int64_t>) A Tensor with shape "
45 46
             "[M x 1], where M is the sequence number in a mini-batch."
             "A Tensor with type int64.")
47
        .AsDispensable();
C
caoying03 已提交
48 49
    AddOutput(
        "Alpha",
50
        "(Tensor, default Tensor<float>), the same shape with Emission. "
51 52 53
        "The forward vectors for the entire batch. Denote it as $\alpha$. "
        "$\alpha$ is a memo table used to calculate the normalization "
        "factor in CRF. $\alpha[k, v]$ stores the unnormalized "
C
Cao Ying 已提交
54
        "probabilites of all possible unfinished sequences of tags that end at "
55 56 57
        "position $k$ with tag $v$. For each $k$, "
        "$\alpha[k, v]$ is a vector of length $D$ with a component for "
        "each tag value $v$. This vector is called a forward vecotr and "
C
caoying03 已提交
58 59
        "will also be used in backward computations.")
        .AsIntermediate();
C
Cao Ying 已提交
60 61
    AddOutput(
        "EmissionExps",
62
        "(Tensor, default Tensor<float>), the same shape with Emission. "
C
Cao Ying 已提交
63 64
        "The exponentials of Input(Emission). This is an intermediate "
        "computational result in forward computation, and will be reused in "
65 66
        "backward computation."
        "A LoDTensor or Tensor with type float32, float64.")
C
caoying03 已提交
67
        .AsIntermediate();
C
Cao Ying 已提交
68 69
    AddOutput(
        "TransitionExps",
K
kexinzhao 已提交
70
        "(Tensor, default Tensor<float>) A 2-D Tensor with shape "
C
Cao Ying 已提交
71 72
        "[(D + 2) x D]. The exponentials of Input(Transition). This is an "
        "intermediate computational result in forward computation, and "
73 74
        "will be reused in backward computation."
        "A LoDTensor or Tensor with type float32, float64.")
C
caoying03 已提交
75
        .AsIntermediate();
C
caoying03 已提交
76 77
    AddOutput(
        "LogLikelihood",
K
kexinzhao 已提交
78
        "(Tensor, default Tensor<float>) The logarithm of the conditional "
C
caoying03 已提交
79 80
        "likelihood of each training sample in a mini-batch. This is a 2-D "
        "tensor with shape [S x 1], where S is the sequence number in a "
C
caoying03 已提交
81
        "mini-batch. Note: S is equal to the sequence number in a mini-batch. "
82
        "A Tensor with type float32, float64.");
C
caoying03 已提交
83 84 85
    AddComment(R"DOC(
Conditional Random Field defines an undirected probabilistic graph with nodes
denoting random variables and edges denoting dependencies between these
86 87 88
variables. CRF learns the conditional probability $P(Y|X)$, where
$X = (x_1, x_2, ... , x_n)$ are structured inputs and
$Y = (y_1, y_2, ... , y_n)$ are labels for the inputs.
C
caoying03 已提交
89 90 91

Linear chain CRF is a special case of CRF that is useful for sequence labeling
task. Sequence labeling tasks do not assume a lot of conditional
C
caoying03 已提交
92 93 94
independences among inputs. The only constraint they impose is that the input
and output must be linear sequences. Thus, the graph of such a CRF is a simple
chain or a line, which results in the linear chain CRF.
C
caoying03 已提交
95

C
caoying03 已提交
96
This operator implements the Forward-Backward algorithm for the linear chain
K
kexinzhao 已提交
97 98
CRF. Please refer to http://www.cs.columbia.edu/~mcollins/fb.pdf and
http://cseweb.ucsd.edu/~elkan/250Bwinter2012/loglinearCRFs.pdf for details.
C
caoying03 已提交
99 100

Equation:
Y
yi.wu 已提交
101

102
1. Denote Input(Emission) to this operator as $x$ here.
K
kexinzhao 已提交
103
2. The first D values of Input(Transition) to this operator are for starting
104
weights, denoted as $a$ here.
K
kexinzhao 已提交
105
3. The next D values of Input(Transition) of this operator are for ending
106
weights, denoted as $b$ here.
K
kexinzhao 已提交
107
4. The remaning values of Input(Transition) are for transition weights,
108 109
denoted as $w$ here.
5. Denote Input(Label) as $s$ here.
C
caoying03 已提交
110

111 112 113 114 115 116 117
The probability of a sequence $s$ of length $L$ is defined as:
$$P(s) = (1/Z) \exp(a_{s_1} + b_{s_L}
                + \sum_{l=1}^L x_{s_l}
                + \sum_{l=2}^L w_{s_{l-1},s_l})$$

where $Z$ is a normalization value so that the sum of $P(s)$ over
all possible sequences is 1, and $x$ is the emission feature weight
C
caoying03 已提交
118 119
to the linear chain CRF.

K
kexinzhao 已提交
120
Finally, the linear chain CRF operator outputs the logarithm of the conditional
C
caoying03 已提交
121 122 123
likelihood of each training sample in a mini-batch.

NOTE:
Y
yi.wu 已提交
124

C
caoying03 已提交
125 126 127 128
1. The feature function for a CRF is made up of the emission features and the
transition features. The emission feature weights are NOT computed in
this operator. They MUST be computed first before this operator is called.

C
caoying03 已提交
129
2. Because this operator performs global normalization over all possible
C
caoying03 已提交
130 131 132 133
sequences internally, it expects UNSCALED emission feature weights.
Please do not call this op with the emission feature being output of any
nonlinear activation.

134
3. The 2nd dimension of Input(Emission) MUST be equal to the tag number.
C
caoying03 已提交
135 136 137 138 139

)DOC");
  }
};

C
caoying03 已提交
140
class LinearChainCRFOp : public framework::OperatorWithKernel {
C
caoying03 已提交
141 142 143
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
144
  void InferShape(framework::InferShapeContext* ctx) const override {
145 146 147 148
    OP_INOUT_CHECK(
        ctx->HasInput("Emission"), "Input", "Emission", "LinearChainCRF");
    OP_INOUT_CHECK(
        ctx->HasInput("Transition"), "Input", "Transition", "LinearChainCRF");
149 150
    OP_INOUT_CHECK(ctx->HasInput("Label"), "Input", "Label", "LinearChainCRF");

151 152 153 154 155
    OP_INOUT_CHECK(
        ctx->HasOutput("Alpha"), "Output", "Alpha", "LinearChainCRF");
    OP_INOUT_CHECK(ctx->HasOutput("EmissionExps"),
                   "Output",
                   "EmissionExps",
156
                   "LinearChainCRF");
157 158 159
    OP_INOUT_CHECK(ctx->HasOutput("TransitionExps"),
                   "Output",
                   "TransitionExps",
160
                   "LinearChainCRF");
161 162 163
    OP_INOUT_CHECK(ctx->HasOutput("LogLikelihood"),
                   "Output",
                   "LogLikelihood",
164
                   "LinearChainCRF");
C
caoying03 已提交
165

C
caoying03 已提交
166
    auto transition_dims = ctx->GetInputDim("Transition");
167 168
    PADDLE_ENFORCE_EQ(transition_dims.size(),
                      2UL,
169 170 171
                      platform::errors::InvalidArgument(
                          "The Input(Transition) should be a 2-D tensor. But "
                          "received: input rank %u, input shape [%s].",
172 173
                          transition_dims.size(),
                          transition_dims));
X
xuezhong 已提交
174 175 176 177 178 179 180
    bool check = true;
    if ((!ctx->IsRuntime()) &&
        (transition_dims[0] <= 0 || transition_dims[1] <= 0)) {
      check = false;
    }
    if (check) {
      PADDLE_ENFORCE_EQ(
181 182
          transition_dims[0] - 2,
          transition_dims[1],
183 184 185 186 187
          platform::errors::InvalidArgument(
              "An invalid dimension for the Input(Transition), which should "
              "be a 2-D tensor with shape [(D + 2) x D]. But received: input "
              "rank %u, "
              "input shape [%s].",
188 189
              transition_dims.size(),
              transition_dims));
X
xuezhong 已提交
190
    }
191
    auto emission_dims = ctx->GetInputDim("Emission");
192
    if (ctx->HasInput("Length")) {
193 194
      PADDLE_ENFORCE_EQ(emission_dims.size(),
                        3,
195 196 197
                        platform::errors::InvalidArgument(
                            "The Input(Emission) should be a 3-D tensor. But "
                            "received: input rank %u, input shape [%s].",
198 199
                            emission_dims.size(),
                            emission_dims));
200
      auto label_dims = ctx->GetInputDim("Label");
201 202 203 204
      PADDLE_ENFORCE_EQ(
          (label_dims.size() == 3UL && label_dims[2] == 1) ||
              (label_dims.size() == 2UL),
          true,
205 206 207 208
          platform::errors::InvalidArgument(
              "The Input(Label) should be a 3-D tensor with last dimension "
              "fixed to 1 or a 2-D tensor in padding mode. But received: input "
              "rank %u, input shape [%s].",
209 210
              label_dims.size(),
              label_dims));
211
      if (ctx->IsRuntime()) {
212 213
        PADDLE_ENFORCE_EQ(emission_dims[0],
                          label_dims[0],
214 215 216 217 218 219
                          platform::errors::InvalidArgument(
                              "The batch size of Input(Emission) "
                              "and Input(Label) should be the same. But "
                              "received Input(Emission): "
                              "rank %u, shape [%s]; received Input(Label): "
                              "rank %u, shape [%s].",
220 221 222 223 224 225
                              emission_dims.size(),
                              emission_dims,
                              label_dims.size(),
                              label_dims));
        PADDLE_ENFORCE_EQ(emission_dims[1],
                          label_dims[1],
226 227 228 229 230 231
                          platform::errors::InvalidArgument(
                              "The max length of Input(Emission) "
                              "and Input(Label) should be the same. But "
                              "received Input(Emission): "
                              "rank %u, shape [%s]; received Input(Label): "
                              "rank %u, shape [%s].",
232 233 234 235
                              emission_dims.size(),
                              emission_dims,
                              label_dims.size(),
                              label_dims));
236
      }
237
    } else {
238
      PADDLE_ENFORCE_EQ(
239 240
          emission_dims.size(),
          2,
241 242 243
          platform::errors::InvalidArgument(
              "The Input(Emission) should be a 2-D tensor. But received: "
              "input rank %u, input shape [%s].",
244 245
              emission_dims.size(),
              emission_dims));
246
      if (ctx->IsRuntime()) {
247 248
        PADDLE_ENFORCE_EQ(emission_dims[1],
                          transition_dims[1],
249 250 251 252 253 254 255
                          platform::errors::InvalidArgument(
                              "The 2nd dimension of the Input(Emission) and "
                              "the Input(Transition) "
                              "should be equal to the tag number. But received "
                              "Input(Emission): rank "
                              "%u, shape [%s]; received Input(Transition): "
                              "rank %u, shape [%s].",
256 257 258 259
                              emission_dims.size(),
                              emission_dims,
                              transition_dims.size(),
                              transition_dims));
260
      }
261 262

      auto label_dims = ctx->GetInputDim("Label");
263
      PADDLE_ENFORCE_EQ(
264 265
          label_dims.size(),
          2,
266 267 268 269
          platform::errors::InvalidArgument(
              "The Input(Label) should be a 2-D tensor with the 2nd "
              "dimensions fixed to 1. But received: input rank %u, "
              "input shape [%s].",
270 271
              label_dims.size(),
              label_dims));
272 273
      if (ctx->IsRuntime()) {
        PADDLE_ENFORCE_EQ(
274 275
            emission_dims[0],
            label_dims[0],
276 277 278 279 280
            platform::errors::InvalidArgument(
                "The first dimension of Input(Emission) and Input(Label) "
                "should be the same. But received Input(Emission): rank %u, "
                "shape "
                "[%s]; received Input(Label): rank %u, shape [%s].",
281 282 283
                emission_dims.size(),
                emission_dims,
                label_dims.size(),
284
                label_dims));
285
      }
286
    }
C
caoying03 已提交
287
    ctx->SetOutputDim("Alpha", emission_dims);
C
caoying03 已提交
288 289
    ctx->SetOutputDim("EmissionExps", emission_dims);
    ctx->SetOutputDim("TransitionExps", transition_dims);
C
caoying03 已提交
290
    // TODO(caoying) This is tricky. The 1st dimension of Output(LogLikelihood)
291
    // is the sequence number in a mini-batch. The dimension set here should be
C
caoying03 已提交
292 293
    // resized to its correct size in the function Compute. Fix this once we can
    // get LoD information in the InferShape interface.
C
caoying03 已提交
294 295 296
    ctx->SetOutputDim("LogLikelihood", {emission_dims[0], 1});
  }

C
caoying03 已提交
297
 protected:
C
Cao Ying 已提交
298 299
  // Explicitly set that the data type of computation kernel of linear_chain_crf
  // is determined by its input "Emission".
300
  framework::OpKernelType GetExpectedKernelType(
C
caoying03 已提交
301
      const framework::ExecutionContext& ctx) const override {
302 303 304
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Emission"),
        platform::CPUPlace());
C
caoying03 已提交
305
  }
C
caoying03 已提交
306 307
};

C
caoying03 已提交
308
class LinearChainCRFGradOp : public framework::OperatorWithKernel {
C
caoying03 已提交
309 310 311
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
312
  void InferShape(framework::InferShapeContext* ctx) const override {
313 314 315
    OP_INOUT_CHECK(ctx->HasInput("EmissionExps"),
                   "Input",
                   "EmissionExps",
316
                   "LinearChainCRFGrad");
317 318 319
    OP_INOUT_CHECK(ctx->HasInput("TransitionExps"),
                   "Input",
                   "TransitionExps",
320 321
                   "LinearChainCRFGrad");
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("LogLikelihood")),
322 323
                   "Input",
                   framework::GradVarName("LogLikelihood"),
324
                   "LinearChainCRFGrad");
C
caoying03 已提交
325

326
    auto transition_exps_dims = ctx->GetInputDim("TransitionExps");
327
    auto emission_exps_dims = ctx->GetInputDim("EmissionExps");
C
caoying03 已提交
328 329
    if (ctx->HasOutput(framework::GradVarName("Emission"))) {
      ctx->SetOutputDim(framework::GradVarName("Emission"), emission_exps_dims);
330
      if (ctx->HasInput("Length") == false) {
331 332
        ctx->ShareLoD("Emission", framework::GradVarName("Emission"));
      }
C
caoying03 已提交
333
    }
334

C
caoying03 已提交
335 336 337
    if (ctx->HasOutput(framework::GradVarName("Transition"))) {
      ctx->SetOutputDim(framework::GradVarName("Transition"),
                        transition_exps_dims);
S
sneaxiy 已提交
338
      ctx->ShareLoD("Transition", framework::GradVarName("Transition"));
C
caoying03 已提交
339
    }
C
caoying03 已提交
340
  }
C
caoying03 已提交
341 342 343

 protected:
  // Explicitly set that the data type of output of the linear_chain_crf_grad
C
caoying03 已提交
344
  // operator is determined by its input: gradients of LogLikelihood.
345
  framework::OpKernelType GetExpectedKernelType(
C
caoying03 已提交
346
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
347
    return framework::OpKernelType(
348 349
        OperatorWithKernel::IndicateVarDataType(
            ctx, framework::GradVarName("LogLikelihood")),
350
        platform::CPUPlace());
C
caoying03 已提交
351
  }
C
caoying03 已提交
352 353
};

H
hong 已提交
354 355
template <typename T>
class LinearChainCRFGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
356
 public:
H
hong 已提交
357
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
358 359

 protected:
360
  void Apply(GradOpPtr<T> op) const override {
S
sneaxiy 已提交
361
    op->SetType("linear_chain_crf_grad");
H
hong 已提交
362 363 364 365 366 367 368 369 370
    op->SetAttrMap(this->Attrs());
    op->SetInput("Emission", this->Input("Emission"));
    op->SetInput("Transition", this->Input("Transition"));
    op->SetInput("Label", this->Input("Label"));
    op->SetInput("Alpha", this->Output("Alpha"));
    op->SetInput("EmissionExps", this->Output("EmissionExps"));
    op->SetInput("TransitionExps", this->Output("TransitionExps"));
    if (this->HasInput("Length")) {
      op->SetInput("Length", this->Input("Length"));
371
    }
S
sneaxiy 已提交
372
    op->SetInput(framework::GradVarName("LogLikelihood"),
H
hong 已提交
373
                 this->OutputGrad("LogLikelihood"));
S
sneaxiy 已提交
374

H
hong 已提交
375 376
    op->SetOutput(framework::GradVarName("Emission"),
                  this->InputGrad("Emission"));
S
sneaxiy 已提交
377
    op->SetOutput(framework::GradVarName("Transition"),
H
hong 已提交
378
                  this->InputGrad("Transition"));
S
sneaxiy 已提交
379 380 381
  }
};

382
DECLARE_NO_NEED_BUFFER_VARS_INFERER(LinearChainCRFGradNoNeedBufferVarsInferer,
383 384
                                    "Transition",
                                    "Emission");
S
sneaxiy 已提交
385

C
caoying03 已提交
386 387 388 389
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
390 391
REGISTER_OPERATOR(linear_chain_crf,
                  ops::LinearChainCRFOp,
H
hong 已提交
392 393 394
                  ops::LinearChainCRFOpMaker,
                  ops::LinearChainCRFGradMaker<paddle::framework::OpDesc>,
                  ops::LinearChainCRFGradMaker<paddle::imperative::OpBase>);
395 396
REGISTER_OPERATOR(linear_chain_crf_grad,
                  ops::LinearChainCRFGradOp,
397
                  ops::LinearChainCRFGradNoNeedBufferVarsInferer);
398 399
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf,
Q
QI JUN 已提交
400 401
    ops::LinearChainCRFOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LinearChainCRFOpKernel<paddle::platform::CPUDeviceContext, double>);
402 403
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf_grad,
Q
QI JUN 已提交
404 405 406
    ops::LinearChainCRFGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LinearChainCRFGradOpKernel<paddle::platform::CPUDeviceContext,
                                    double>);