linear_chain_crf_op.cc 15.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
C
caoying03 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/linear_chain_crf_op.h"
C
caoying03 已提交
16

X
xuezhong 已提交
17 18
#include <memory>

C
caoying03 已提交
19 20 21
namespace paddle {
namespace operators {

C
caoying03 已提交
22
class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker {
C
caoying03 已提交
23
 public:
Y
Yu Yang 已提交
24
  void Make() override {
25 26 27 28 29 30 31 32
    AddInput(
        "Emission",
        "(LoDTensor/Tensor<float>). When a LoDTensor input, A 2-D LoDTensor"
        " with shape [N x D], where N is the size of the "
        "mini-batch and D is the total tag number. The unscaled emission "
        "weight matrix for the linear chain CRF. When a Tensor input,"
        "A Tensor with shape [N x S x D], where N is batch size,"
        "S is max length of sequences, D is the total tag number.");
C
Cao Ying 已提交
33
    AddInput("Transition",
K
kexinzhao 已提交
34
             "(Tensor, default Tensor<float>) A 2-D Tensor with shape "
C
Cao Ying 已提交
35 36 37
             "[(D + 2) x D]. The learnable parameter for the linear_chain_crf "
             "operator. See more details in the operator's comments.");
    AddInput("Label",
38
             "(LoDTensor/Tensor<int64_t>), when a LoDTensor input,  "
C
Cao Ying 已提交
39
             "[N x 1], where N is the total element number in a mini-batch. "
40 41
             "when a Tensor input, [N x S], where N is batch number. "
             "S is max length of sequences. The ground truth.");
42
    AddInput("Length",
43 44 45
             "(Tensor, default Tensor<int64_t>) A Tensor with shape "
             "[M x 1], where M is the sequence number in a mini-batch.")
        .AsDispensable();
C
caoying03 已提交
46 47
    AddOutput(
        "Alpha",
48
        "(Tensor, default Tensor<float>), the same shape with Emission. "
49 50 51
        "The forward vectors for the entire batch. Denote it as $\alpha$. "
        "$\alpha$ is a memo table used to calculate the normalization "
        "factor in CRF. $\alpha[k, v]$ stores the unnormalized "
C
Cao Ying 已提交
52
        "probabilites of all possible unfinished sequences of tags that end at "
53 54 55
        "position $k$ with tag $v$. For each $k$, "
        "$\alpha[k, v]$ is a vector of length $D$ with a component for "
        "each tag value $v$. This vector is called a forward vecotr and "
C
caoying03 已提交
56 57
        "will also be used in backward computations.")
        .AsIntermediate();
C
Cao Ying 已提交
58 59
    AddOutput(
        "EmissionExps",
60
        "(Tensor, default Tensor<float>), the same shape with Emission. "
C
Cao Ying 已提交
61 62 63
        "The exponentials of Input(Emission). This is an intermediate "
        "computational result in forward computation, and will be reused in "
        "backward computation.")
C
caoying03 已提交
64
        .AsIntermediate();
C
Cao Ying 已提交
65 66
    AddOutput(
        "TransitionExps",
K
kexinzhao 已提交
67
        "(Tensor, default Tensor<float>) A 2-D Tensor with shape "
C
Cao Ying 已提交
68 69 70
        "[(D + 2) x D]. The exponentials of Input(Transition). This is an "
        "intermediate computational result in forward computation, and "
        "will be reused in backward computation.")
C
caoying03 已提交
71
        .AsIntermediate();
C
caoying03 已提交
72 73
    AddOutput(
        "LogLikelihood",
K
kexinzhao 已提交
74
        "(Tensor, default Tensor<float>) The logarithm of the conditional "
C
caoying03 已提交
75 76
        "likelihood of each training sample in a mini-batch. This is a 2-D "
        "tensor with shape [S x 1], where S is the sequence number in a "
C
caoying03 已提交
77 78
        "mini-batch. Note: S is equal to the sequence number in a mini-batch. "
        "The output is no longer a LoDTensor.");
C
caoying03 已提交
79 80 81
    AddComment(R"DOC(
Conditional Random Field defines an undirected probabilistic graph with nodes
denoting random variables and edges denoting dependencies between these
82 83 84
variables. CRF learns the conditional probability $P(Y|X)$, where
$X = (x_1, x_2, ... , x_n)$ are structured inputs and
$Y = (y_1, y_2, ... , y_n)$ are labels for the inputs.
C
caoying03 已提交
85 86 87

Linear chain CRF is a special case of CRF that is useful for sequence labeling
task. Sequence labeling tasks do not assume a lot of conditional
C
caoying03 已提交
88 89 90
independences among inputs. The only constraint they impose is that the input
and output must be linear sequences. Thus, the graph of such a CRF is a simple
chain or a line, which results in the linear chain CRF.
C
caoying03 已提交
91

C
caoying03 已提交
92
This operator implements the Forward-Backward algorithm for the linear chain
K
kexinzhao 已提交
93 94
CRF. Please refer to http://www.cs.columbia.edu/~mcollins/fb.pdf and
http://cseweb.ucsd.edu/~elkan/250Bwinter2012/loglinearCRFs.pdf for details.
C
caoying03 已提交
95 96

Equation:
Y
yi.wu 已提交
97

98
1. Denote Input(Emission) to this operator as $x$ here.
K
kexinzhao 已提交
99
2. The first D values of Input(Transition) to this operator are for starting
100
weights, denoted as $a$ here.
K
kexinzhao 已提交
101
3. The next D values of Input(Transition) of this operator are for ending
102
weights, denoted as $b$ here.
K
kexinzhao 已提交
103
4. The remaning values of Input(Transition) are for transition weights,
104 105
denoted as $w$ here.
5. Denote Input(Label) as $s$ here.
C
caoying03 已提交
106

107 108 109 110 111 112 113
The probability of a sequence $s$ of length $L$ is defined as:
$$P(s) = (1/Z) \exp(a_{s_1} + b_{s_L}
                + \sum_{l=1}^L x_{s_l}
                + \sum_{l=2}^L w_{s_{l-1},s_l})$$

where $Z$ is a normalization value so that the sum of $P(s)$ over
all possible sequences is 1, and $x$ is the emission feature weight
C
caoying03 已提交
114 115
to the linear chain CRF.

K
kexinzhao 已提交
116
Finally, the linear chain CRF operator outputs the logarithm of the conditional
C
caoying03 已提交
117 118 119
likelihood of each training sample in a mini-batch.

NOTE:
Y
yi.wu 已提交
120

C
caoying03 已提交
121 122 123 124
1. The feature function for a CRF is made up of the emission features and the
transition features. The emission feature weights are NOT computed in
this operator. They MUST be computed first before this operator is called.

C
caoying03 已提交
125
2. Because this operator performs global normalization over all possible
C
caoying03 已提交
126 127 128 129
sequences internally, it expects UNSCALED emission feature weights.
Please do not call this op with the emission feature being output of any
nonlinear activation.

130
3. The 2nd dimension of Input(Emission) MUST be equal to the tag number.
C
caoying03 已提交
131 132 133 134 135

)DOC");
  }
};

C
caoying03 已提交
136
class LinearChainCRFOp : public framework::OperatorWithKernel {
C
caoying03 已提交
137 138 139
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
140 141 142 143 144 145 146 147 148
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Emission"),
                   "Input(Emission) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Transition"),
                   "Input(Transition) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");

    PADDLE_ENFORCE(ctx->HasOutput("Alpha"),
                   "Output(Alpha) should be not null.");
C
caoying03 已提交
149 150 151 152
    PADDLE_ENFORCE(ctx->HasOutput("EmissionExps"),
                   "Output(EmissionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("TransitionExps"),
                   "Output(TransitionExps) should be not null.");
C
caoying03 已提交
153 154 155
    PADDLE_ENFORCE(ctx->HasOutput("LogLikelihood"),
                   "Output(LogLikelihood) should be not null.");

C
caoying03 已提交
156
    auto transition_dims = ctx->GetInputDim("Transition");
T
tensor-tang 已提交
157
    PADDLE_ENFORCE_EQ(transition_dims.size(), 2,
158
                      "The Input(Transition) should be a 2-D tensor.");
X
xuezhong 已提交
159 160 161 162 163 164 165 166 167 168 169
    bool check = true;
    if ((!ctx->IsRuntime()) &&
        (transition_dims[0] <= 0 || transition_dims[1] <= 0)) {
      check = false;
    }
    if (check) {
      PADDLE_ENFORCE_EQ(
          transition_dims[0] - 2, transition_dims[1],
          "An invalid dimension for the Input(Transition), which should "
          "be a 2-D tensor with shape [(D + 2) x D].");
    }
170 171 172
    auto emission_dims = ctx->GetInputDim("Emission");
    PADDLE_ENFORCE_NE(emission_dims[0], 0,
                      "An empty mini-batch is not allowed.");
173
    if (ctx->HasInput("Length")) {
174 175 176
      PADDLE_ENFORCE_EQ(emission_dims.size(), 3,
                        "The Input(Emission) should be a 3-D tensor.");
      auto label_dims = ctx->GetInputDim("Label");
177 178 179 180 181 182
      PADDLE_ENFORCE_EQ(
          (label_dims.size() == 3UL && label_dims[2] == 1) ||
              (label_dims.size() == 2UL),
          true,
          "The Input(Label) should be a 3-D tensor with last "
          "dimension fixed to 1 or a 2-D tensor in padding mode.");
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
      PADDLE_INFERSHAPE_ENFORCE_EQ(
          ctx, emission_dims[0], label_dims[0],
          "The batch size of Input(Emission) and Input(Label) "
          "should be the same.");
      PADDLE_INFERSHAPE_ENFORCE_EQ(
          ctx, emission_dims[1], label_dims[1],
          "The max length of Input(Emission) and Input(Label) "
          "should be the same.");
    } else {
      PADDLE_ENFORCE_EQ(emission_dims.size(), 2,
                        "The Input(Emission) should be a 2-D tensor.");
      PADDLE_INFERSHAPE_ENFORCE_EQ(
          ctx, emission_dims[1], transition_dims[1],
          "The 2nd dimension of the Input(Emission) and the Input(Transition) "
          "should be equal to the tag number.");

      auto label_dims = ctx->GetInputDim("Label");
      PADDLE_ENFORCE_EQ(label_dims.size(), 2,
                        "The Input(Label) should be a 2-D tensor with the 2nd "
                        "dimensions fixed to 1.");
      PADDLE_INFERSHAPE_ENFORCE_EQ(
          ctx, emission_dims[0], label_dims[0],
          "The height of Input(Emission) and the height of Input(Label) "
          "should be the same.");
    }
C
caoying03 已提交
208
    ctx->SetOutputDim("Alpha", emission_dims);
C
caoying03 已提交
209 210
    ctx->SetOutputDim("EmissionExps", emission_dims);
    ctx->SetOutputDim("TransitionExps", transition_dims);
C
caoying03 已提交
211
    // TODO(caoying) This is tricky. The 1st dimension of Output(LogLikelihood)
212
    // is the sequence number in a mini-batch. The dimension set here should be
C
caoying03 已提交
213 214
    // resized to its correct size in the function Compute. Fix this once we can
    // get LoD information in the InferShape interface.
C
caoying03 已提交
215 216 217
    ctx->SetOutputDim("LogLikelihood", {emission_dims[0], 1});
  }

C
caoying03 已提交
218
 protected:
C
Cao Ying 已提交
219 220
  // Explicitly set that the data type of computation kernel of linear_chain_crf
  // is determined by its input "Emission".
221
  framework::OpKernelType GetExpectedKernelType(
C
caoying03 已提交
222
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
223 224
    return framework::OpKernelType(ctx.Input<LoDTensor>("Emission")->type(),
                                   platform::CPUPlace());
C
caoying03 已提交
225
  }
C
caoying03 已提交
226 227
};

C
caoying03 已提交
228
class LinearChainCRFGradOp : public framework::OperatorWithKernel {
C
caoying03 已提交
229 230 231
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

C
caoying03 已提交
232 233 234 235 236 237 238 239
  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("EmissionExps"),
                   "Input(EmissionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("TransitionExps"),
                   "Input(TransitionExps) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("LogLikelihood")),
                   "Input(LogLikelihood@GRAD) shoudl be not null.");

240
    auto transition_exps_dims = ctx->GetInputDim("TransitionExps");
T
tensor-tang 已提交
241
    PADDLE_ENFORCE_EQ(transition_exps_dims.size(), 2,
C
caoying03 已提交
242
                      "The Input(TransitionExps) should be a 2-D tensor.");
X
xuezhong 已提交
243 244 245 246 247 248 249 250 251 252 253
    bool check = true;
    if ((!ctx->IsRuntime()) &&
        (transition_exps_dims[0] <= 0 || transition_exps_dims[1] <= 0)) {
      check = false;
    }
    if (check) {
      PADDLE_ENFORCE_EQ(
          transition_exps_dims[0] - 2, transition_exps_dims[1],
          "An invalid dimension for the Input(TransitionExps), which should "
          "be a 2-D tensor with shape [(D + 2) x D].");
    }
C
caoying03 已提交
254

255
    auto emission_exps_dims = ctx->GetInputDim("EmissionExps");
C
caoying03 已提交
256
    auto label_dims = ctx->GetInputDim("Label");
257
    if (ctx->HasInput("Length")) {
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
      PADDLE_ENFORCE_EQ(emission_exps_dims.size(), 3,
                        "The Input(EmissionExps) should be a 3-D tensor.");
      PADDLE_INFERSHAPE_ENFORCE_EQ(
          ctx, emission_exps_dims[2], transition_exps_dims[1],
          "The 3nd dimension of the Input(EmissionExps) and the "
          "Input(TransitionExps) should be equal to the tag number.");
      PADDLE_ENFORCE_EQ(label_dims.size(), 3,
                        "The Input(Label) should be a 3-D tensor with the 3nd "
                        "dimensions fixed to 1.");
    } else {
      PADDLE_ENFORCE_EQ(emission_exps_dims.size(), 2,
                        "The Input(EmissionExps) should be a 2-D tensor.");
      PADDLE_INFERSHAPE_ENFORCE_EQ(
          ctx, emission_exps_dims[1], transition_exps_dims[1],
          "The 2nd dimension of the Input(EmissionExps) and the "
          "Input(TransitionExps) should be equal to the tag number.");
      PADDLE_ENFORCE_EQ(label_dims.size(), 2,
                        "The Input(Label) should be a 2-D tensor");
      PADDLE_ENFORCE_EQ(label_dims[1], 1,
                        "The Input(Label) 2nd dimensions fixed to 1.");
    }
    PADDLE_ENFORCE_NE(emission_exps_dims[0], 0,
                      "An empty mini-batch is not allowed.");

X
xuezhong 已提交
282 283
    PADDLE_INFERSHAPE_ENFORCE_EQ(
        ctx, emission_exps_dims[0], label_dims[0],
C
caoying03 已提交
284 285 286
        "The height of Input(EmissionExps) and the height of Input(Label) "
        "should be the same.");

C
caoying03 已提交
287 288
    if (ctx->HasOutput(framework::GradVarName("Emission"))) {
      ctx->SetOutputDim(framework::GradVarName("Emission"), emission_exps_dims);
289
      if (ctx->HasInput("Length") == false) {
290 291
        ctx->ShareLoD("Emission", framework::GradVarName("Emission"));
      }
C
caoying03 已提交
292
    }
293 294
    // ctx->SetOutputDim(framework::GradVarName("Emission"),
    // emission_exps_dims);
C
caoying03 已提交
295 296 297
    if (ctx->HasOutput(framework::GradVarName("Transition"))) {
      ctx->SetOutputDim(framework::GradVarName("Transition"),
                        transition_exps_dims);
S
sneaxiy 已提交
298
      ctx->ShareLoD("Transition", framework::GradVarName("Transition"));
C
caoying03 已提交
299
    }
C
caoying03 已提交
300
  }
C
caoying03 已提交
301 302 303

 protected:
  // Explicitly set that the data type of output of the linear_chain_crf_grad
C
caoying03 已提交
304
  // operator is determined by its input: gradients of LogLikelihood.
305
  framework::OpKernelType GetExpectedKernelType(
C
caoying03 已提交
306
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
307
    return framework::OpKernelType(
Y
Yu Yang 已提交
308
        ctx.Input<LoDTensor>(framework::GradVarName("LogLikelihood"))->type(),
309
        platform::CPUPlace());
C
caoying03 已提交
310
  }
C
caoying03 已提交
311 312
};

S
sneaxiy 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
class LinearChainCRFGradDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("linear_chain_crf_grad");
    op->SetAttrMap(Attrs());
    op->SetInput("Emission", Input("Emission"));
    op->SetInput("Transition", Input("Transition"));
    op->SetInput("Label", Input("Label"));
    op->SetInput("Alpha", Output("Alpha"));
    op->SetInput("EmissionExps", Output("EmissionExps"));
    op->SetInput("TransitionExps", Output("TransitionExps"));
328 329
    if (ForwardOp().Inputs().count("Length") > 0) {
      op->SetInput("Length", Input("Length"));
330
    }
S
sneaxiy 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344
    op->SetInput(framework::GradVarName("LogLikelihood"),
                 OutputGrad("LogLikelihood"));

    op->SetOutput(framework::GradVarName("Emission"), InputGrad("Emission"));
    op->SetOutput(framework::GradVarName("Transition"),
                  InputGrad("Transition"));

    return op;
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(
    LinearChainCRFGradNoNeedBufferVarsInference, "Transition", "Emission");

C
caoying03 已提交
345 346 347 348
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
349
REGISTER_OPERATOR(linear_chain_crf, ops::LinearChainCRFOp,
S
sneaxiy 已提交
350 351 352
                  ops::LinearChainCRFOpMaker, ops::LinearChainCRFGradDescMaker);
REGISTER_OPERATOR(linear_chain_crf_grad, ops::LinearChainCRFGradOp,
                  ops::LinearChainCRFGradNoNeedBufferVarsInference);
353 354
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf,
Q
QI JUN 已提交
355 356
    ops::LinearChainCRFOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LinearChainCRFOpKernel<paddle::platform::CPUDeviceContext, double>);
357 358
REGISTER_OP_CPU_KERNEL(
    linear_chain_crf_grad,
Q
QI JUN 已提交
359 360 361
    ops::LinearChainCRFGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LinearChainCRFGradOpKernel<paddle::platform::CPUDeviceContext,
                                    double>);