Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
427644b2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
427644b2
编写于
10月 23, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix the computation kernels.
上级
c8d0d37c
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
84 addition
and
57 deletion
+84
-57
paddle/framework/operator.h
paddle/framework/operator.h
+1
-1
paddle/operators/linear_chain_crf_op.cc
paddle/operators/linear_chain_crf_op.cc
+75
-47
paddle/operators/linear_chain_crf_op.h
paddle/operators/linear_chain_crf_op.h
+1
-1
python/paddle/v2/framework/tests/test_linear_chain_crf_op.py
python/paddle/v2/framework/tests/test_linear_chain_crf_op.py
+7
-8
未找到文件。
paddle/framework/operator.h
浏览文件 @
427644b2
...
...
@@ -659,7 +659,7 @@ class OperatorWithKernel : public OperatorBase {
if
(
t
!=
nullptr
)
{
int
tmp
=
static_cast
<
int
>
(
ToDataType
(
t
->
type
()));
PADDLE_ENFORCE
(
tmp
==
data_type
||
data_type
==
-
1
,
"DataType of Paddle Op must be same."
);
"DataType of Paddle Op must be
the
same."
);
data_type
=
tmp
;
}
}
...
...
paddle/operators/linear_chain_crf_op.cc
浏览文件 @
427644b2
...
...
@@ -165,11 +165,11 @@ class LinearChainCrfOp : public framework::OperatorWithKernel {
"Output(LogLikelihood) should be not null."
);
auto
emission_dims
=
ctx
->
GetInputDim
(
"Emission"
);
auto
transition_dims
=
ctx
->
GetInputDim
(
"Transition"
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
PADDLE_ENFORCE_EQ
(
emission_dims
.
size
(),
2UL
,
"The Input(Emission) should be a 2-D tensor."
);
PADDLE_ENFORCE
(
emission_dims
[
0
],
"An empty mini-batch is not allowed."
);
auto
transition_dims
=
ctx
->
GetInputDim
(
"Transition"
);
PADDLE_ENFORCE_EQ
(
transition_dims
.
size
(),
2UL
,
"The Input(Transition) should be a 2-D tensor."
);
PADDLE_ENFORCE_EQ
(
...
...
@@ -180,6 +180,8 @@ class LinearChainCrfOp : public framework::OperatorWithKernel {
emission_dims
[
1
],
transition_dims
[
1
],
"The 2nd dimension of the Input(Emission) and the Input(Transition) "
"should be equal to the tag number."
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
PADDLE_ENFORCE
(
label_dims
.
size
()
==
2UL
&&
label_dims
[
1
]
==
1UL
,
"The Input(Label) should be a 2-D tensor with the 2nd "
"dimensions fixed to 1."
);
...
...
@@ -204,7 +206,7 @@ class LinearChainCrfOp : public framework::OperatorWithKernel {
// operator is determined by its input "Emission".
framework
::
DataType
IndicateDataType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"Emission"
)
->
type
());
return
framework
::
ToDataType
(
ctx
.
Input
<
LoD
Tensor
>
(
"Emission"
)
->
type
());
}
};
...
...
@@ -224,6 +226,8 @@ class LinearChainCrfOpKernel<platform::CPUPlace, T>
auto
*
label
=
ctx
.
Input
<
LoDTensor
>
(
"Label"
);
auto
in_lod
=
emission_weights
->
lod
();
PADDLE_ENFORCE
(
in_lod
.
size
(),
"Input(Emission) is not a sequence."
);
// TODO(caoying) The checks related to LoD information should be
// moved into InferShape once after the InferShape is refactored.
PADDLE_ENFORCE_EQ
(
emission_weights
->
NumLevels
(),
1UL
,
...
...
@@ -266,12 +270,17 @@ class LinearChainCrfOpKernel<platform::CPUPlace, T>
for
(
size_t
i
=
0
;
i
<
seq_num
;
++
i
)
{
int
start_pos
=
static_cast
<
int
>
(
in_lod
[
level
][
i
]);
int
end_pos
=
static_cast
<
int
>
(
in_lod
[
level
][
i
+
1
]);
if
(
end_pos
==
start_pos
)
{
// If an empty input sequence is given, pad 0 for its cost.
log_likelihood
[
i
]
=
static_cast
<
T
>
(
0.
);
continue
;
}
const
Tensor
one_seq
=
emission_weights
->
Slice
<
T
>
(
start_pos
,
end_pos
);
Tensor
one_seq_row_max
=
emission_row_max
.
Slice
<
T
>
(
start_pos
,
end_pos
);
Tensor
one_seq_exps
=
emission_exps
->
Slice
<
T
>
(
start_pos
,
end_pos
);
const
Tensor
one_seq_label
=
label
->
Slice
<
T
>
(
start_pos
,
end_pos
);
Tensor
one_seq_alpha
=
alpha
->
Slice
<
T
>
(
start_pos
,
end_pos
);
const
Tensor
one_seq
=
emission_weights
->
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_row_max
=
emission_row_max
.
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_exps
=
emission_exps
->
Slice
(
start_pos
,
end_pos
);
const
Tensor
one_seq_label
=
label
->
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_alpha
=
alpha
->
Slice
(
start_pos
,
end_pos
);
log_likelihood
[
i
]
=
ForwardOneSequence
(
&
one_seq
,
&
one_seq_row_max
,
&
one_seq_exps
,
transition_weights
,
...
...
@@ -306,7 +315,7 @@ class LinearChainCrfOpKernel<platform::CPUPlace, T>
for
(
size_t
k
=
1
;
k
<
seq_length
;
++
k
)
{
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
T
sum
=
0.
;
T
sum
=
static_cast
<
T
>
(
0.
)
;
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
sum
+=
alpha_value
[(
k
-
1
)
*
tag_num
+
j
]
*
w_exps
[(
j
+
state_trans_base_idx
)
*
tag_num
+
i
];
...
...
@@ -326,11 +335,14 @@ class LinearChainCrfOpKernel<platform::CPUPlace, T>
PADDLE_ENFORCE_LT
(
*
std
::
max_element
(
lbl
,
lbl
+
seq_length
),
tag_num
,
"An invalid tag label that execesses the largest tag number."
);
// Calculate the nominator part, which depends on the label sequence.
ll
+=
w
[
lbl
[
0
]]
/*start transition*/
+
x
[
lbl
[
0
]]
+
w
[
tag_num
+
lbl
[
seq_length
-
1
]]
/*end transition*/
;
for
(
size_t
k
=
1
;
k
<
seq_length
;
++
k
)
ll
+=
x
[
k
*
tag_num
+
lbl
[
k
]]
+
w
[
lbl
[
k
-
1
]
*
tag_num
+
lbl
[
k
]];
for
(
size_t
k
=
1
;
k
<
seq_length
;
++
k
)
{
ll
+=
x
[
k
*
tag_num
+
lbl
[
k
]]
+
w
[(
lbl
[
k
-
1
]
+
state_trans_base_idx
)
*
tag_num
+
lbl
[
k
]];
}
return
-
ll
;
}
};
...
...
@@ -353,12 +365,13 @@ class LinearChainCrfGradOp : public framework::OperatorWithKernel {
"Output(Transition@GRAD) should be not null."
);
auto
emission_exps_dims
=
ctx
->
GetInputDim
(
"EmissionExps"
);
auto
transition_exps_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"TransitionExps"
));
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
PADDLE_ENFORCE_EQ
(
emission_exps_dims
.
size
(),
2UL
,
"The Input(EmissionExps) should be a 2-D tensor."
);
PADDLE_ENFORCE
(
emission_exps_dims
[
0
],
"An empty mini-batch is not allowed."
);
auto
transition_exps_dims
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"TransitionExps"
));
PADDLE_ENFORCE_EQ
(
transition_exps_dims
.
size
(),
2UL
,
"The Input(TransitionExps) should be a 2-D tensor."
);
PADDLE_ENFORCE_EQ
(
...
...
@@ -369,6 +382,8 @@ class LinearChainCrfGradOp : public framework::OperatorWithKernel {
emission_exps_dims
[
1
],
transition_exps_dims
[
1
],
"The 2nd dimension of the Input(EmissionExps) and the "
"Input(TransitionExps) should be equal to the tag number."
);
auto
label_dims
=
ctx
->
GetInputDim
(
"Label"
);
PADDLE_ENFORCE
(
label_dims
.
size
()
==
2UL
&&
label_dims
[
1
]
==
1UL
,
"The Input(Label) should be a 2-D tensor with the 2nd "
"dimensions fixed to 1."
);
...
...
@@ -381,6 +396,14 @@ class LinearChainCrfGradOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Transition"
),
transition_exps_dims
);
}
protected:
// Explicitly set that the data type of output of the linear_chain_crf_grad
// operator is determined by its input "EmissionExps".
framework
::
DataType
IndicateDataType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
ToDataType
(
ctx
.
Input
<
LoDTensor
>
(
"EmissionExps"
)
->
type
());
}
};
template
<
typename
T
>
...
...
@@ -390,12 +413,12 @@ class LinearChainCrfGradOpKernel<platform::CPUPlace, T>
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"This kernel only runs on CPU."
);
auto
*
ll_grad
=
ctx
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"LogLikelihood"
));
auto
*
label
=
ctx
.
Input
<
LoDTensor
>
(
"Label"
);
auto
*
emission_exps
=
ctx
.
Input
<
LoDTensor
>
(
"EmissionExps"
);
auto
*
transition_exps
=
ctx
.
Input
<
Tensor
>
(
"TransitionExps"
);
auto
*
alpha
=
ctx
.
Input
<
Tensor
>
(
"Alpha"
);
auto
*
alpha
=
ctx
.
Input
<
LoDTensor
>
(
"Alpha"
);
const
T
*
ll_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"LogLikelihood"
))
->
data
<
T
>
();
auto
*
emission_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Emission"
));
...
...
@@ -413,34 +436,31 @@ class LinearChainCrfGradOpKernel<platform::CPUPlace, T>
Tensor
beta
;
beta
.
mutable_data
<
T
>
(
emission_dims
,
platform
::
CPUPlace
());
auto
place
=
ctx
.
GetEigenDevice
<
platform
::
CPUPlace
>
();
auto
x_grad
=
EigenMatrix
<
T
>::
From
(
*
emission_grad
);
auto
out_grad
=
EigenMatrix
<
T
>::
From
(
*
ll_grad
);
x_grad
.
device
(
place
)
=
x_grad
*
out_grad
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
emission_dims
[
1
]));
const
size_t
level
=
0
;
// currently, only support sequence.
auto
lod
=
emission_exps
->
lod
();
auto
lod
=
label
->
lod
();
PADDLE_ENFORCE
(
lod
.
size
(),
"Input(Label) is not a sequence."
);
for
(
size_t
i
=
0
;
i
<
lod
[
level
].
size
()
-
1
;
++
i
)
{
int
start_pos
=
static_cast
<
int
>
(
lod
[
level
][
i
]);
int
end_pos
=
static_cast
<
int
>
(
lod
[
level
][
i
+
1
]);
if
(
end_pos
==
start_pos
)
continue
;
const
Tensor
one_seq_emission_exps
=
emission_exps
->
Slice
<
T
>
(
start_pos
,
end_pos
);
const
Tensor
one_seq_label
=
label
->
Slice
<
T
>
(
start_pos
,
end_pos
);
const
Tensor
one_seq_alpha
=
alpha
->
Slice
<
T
>
(
start_pos
,
end_pos
);
Tensor
one_seq_beta
=
beta
.
Slice
<
T
>
(
start_pos
,
end_pos
);
Tensor
one_seq_emission_grad
=
emission_grad
->
Slice
<
T
>
(
start_pos
,
end_pos
);
BackwardOneSequence
(
ctx
.
device_context
(),
&
one_seq_emiss
ion_exps
,
transition_exps
,
&
one_seq_alpha
,
&
one_seq_label
,
&
one_seq_beta
,
trans_grad
,
&
one_seq_emission_grad
);
emission_exps
->
Slice
(
start_pos
,
end_pos
);
const
Tensor
one_seq_label
=
label
->
Slice
(
start_pos
,
end_pos
);
const
Tensor
one_seq_alpha
=
alpha
->
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_beta
=
beta
.
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_emission_grad
=
emission_grad
->
Slice
(
start_pos
,
end_pos
);
BackwardOneSequence
(
ctx
.
device_context
(),
ll_grad
[
i
],
&
one_seq_emission_exps
,
transit
ion_exps
,
&
one_seq_alpha
,
&
one_seq_label
,
&
one_seq_beta
,
trans_grad
,
&
one_seq_emission_grad
);
}
}
protected:
void
BackwardOneSequence
(
const
platform
::
DeviceContext
&
ctx
,
void
BackwardOneSequence
(
const
platform
::
DeviceContext
&
ctx
,
const
T
ll_grad
,
const
Tensor
*
emission_exps
,
const
Tensor
*
transition_exps
,
const
Tensor
*
alpha
,
const
Tensor
*
label
,
Tensor
*
beta
,
...
...
@@ -457,12 +477,15 @@ class LinearChainCrfGradOpKernel<platform::CPUPlace, T>
const
size_t
state_trans_base_idx
=
2
;
// Calculate the backwark vectors beta.
for
(
int
i
=
0
;
i
<
tag_num
;
++
i
)
// First, calculate the initialition state.
for
(
int
i
=
0
;
i
<
tag_num
;
++
i
)
{
beta_value
[(
seq_length
-
1
)
*
tag_num
+
i
]
=
w_exps
[
tag_num
+
i
];
}
NormalizeL1
<
T
>
(
beta_value
+
(
seq_length
-
1
)
*
tag_num
,
tag_num
);
for
(
int
k
=
seq_length
-
2
;
k
>=
0
;
--
k
)
{
for
(
int
i
=
0
;
i
<
tag_num
;
++
i
)
{
T
sum
=
0.
;
T
sum
=
static_cast
<
T
>
(
0.
)
;
for
(
int
j
=
0
;
j
<
tag_num
;
++
j
)
{
sum
+=
w_exps
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
*
x_exps
[(
k
+
1
)
*
tag_num
+
j
]
*
...
...
@@ -476,6 +499,7 @@ class LinearChainCrfGradOpKernel<platform::CPUPlace, T>
auto
alpha_mat
=
EigenMatrix
<
T
>::
From
(
*
alpha
);
auto
beta_mat
=
EigenMatrix
<
T
>::
From
(
*
beta
);
auto
x_grad_mat
=
EigenMatrix
<
T
>::
From
(
*
emission_grad
);
x_grad_mat
.
setConstant
(
ll_grad
);
auto
*
place
=
ctx
.
GetEigenDevice
<
platform
::
CPUPlace
>
();
x_grad_mat
.
device
(
*
place
)
=
alpha_mat
*
beta_mat
;
...
...
@@ -483,8 +507,9 @@ class LinearChainCrfGradOpKernel<platform::CPUPlace, T>
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
seq_length
,
1
))
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
tag_num
));
for
(
int
k
=
0
;
k
<
seq_length
;
++
k
)
for
(
int
k
=
0
;
k
<
seq_length
;
++
k
)
{
x_grad_mat
(
k
,
label_value
[
k
])
-=
static_cast
<
T
>
(
1
);
}
if
(
transition_grad
)
{
T
*
trans_grad
=
transition_grad
->
data
<
T
>
();
...
...
@@ -501,20 +526,23 @@ class LinearChainCrfGradOpKernel<platform::CPUPlace, T>
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
tag_num
));
for
(
int
k
=
1
;
k
<
seq_length
;
++
k
)
{
T
sum
=
0.
;
T
sum
=
static_cast
<
T
>
(
0.
)
;
for
(
int
i
=
0
;
i
<
tag_num
;
++
i
)
{
for
(
int
j
=
0
;
j
<
tag_num
;
++
j
)
sum
+=
x_exps_mat
(
i
,
j
)
*
alpha_mat
(
k
-
1
,
i
)
*
beta_mat
(
k
,
j
);
for
(
int
j
=
0
;
j
<
tag_num
;
++
j
)
{
sum
+=
w_exps
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
*
alpha_mat
(
k
-
1
,
i
)
*
beta_mat
(
k
,
j
);
}
}
sum
=
static_cast
<
T
>
(
1
)
/
sum
;
sum
=
static_cast
<
T
>
(
1
.
)
/
sum
;
for
(
int
i
=
0
;
i
<
tag_num
;
++
i
)
{
for
(
int
j
=
0
;
j
<
tag_num
;
++
j
)
{
trans_grad
[(
i
+
2
)
*
tag_num
+
j
]
+=
sum
*
x_exps_mat
(
i
,
j
)
*
alpha_mat
(
k
-
1
,
i
)
*
beta_mat
(
k
,
j
);
trans_grad
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
+=
sum
*
w_exps
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
*
alpha_mat
(
k
-
1
,
i
)
*
beta_mat
(
k
,
j
);
}
}
trans_grad
[
label_value
[
k
-
1
]
*
tag_num
+
label_value
[
k
]]
-=
static_cast
<
T
>
(
1
);
static_cast
<
T
>
(
1
.
);
}
}
}
...
...
paddle/operators/linear_chain_crf_op.h
浏览文件 @
427644b2
...
...
@@ -42,7 +42,7 @@ class LinearChainCrfGradOpKernel : public framework::OpKernel<T> {
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
protected:
void
BackwardOneSequence
(
const
platform
::
DeviceContext
&
ctx
,
void
BackwardOneSequence
(
const
platform
::
DeviceContext
&
ctx
,
const
T
ll_grad
,
const
Tensor
*
emission_exps
,
const
Tensor
*
transition_exps
,
const
Tensor
*
alpha
,
const
Tensor
*
label
,
Tensor
*
beta
,
...
...
python/paddle/v2/framework/tests/test_linear_chain_crf_op.py
浏览文件 @
427644b2
...
...
@@ -4,8 +4,6 @@ import numpy as np
from
op_test
import
OpTest
import
pdb
class
LinearChainCrfForward
(
object
):
def
__init__
(
self
,
seq_start_positions
,
emission_weights
,
emission_row_max
,
...
...
@@ -65,10 +63,10 @@ class LinearChainCrfForward(object):
# calculate the nominator part.
log_likelihood
+=
(
self
.
a
[
label
[
0
]]
+
self
.
x
[
0
,
label
[
0
]]
+
self
.
b
[
label
[
-
1
]])
self
.
a
[
label
[
0
]]
+
x
[
0
,
label
[
0
]]
+
self
.
b
[
label
[
-
1
]])
for
k
in
range
(
1
,
seq_len
):
log_likelihood
+=
(
self
.
x
[
k
,
label
[
k
]]
+
self
.
w
[
label
[
k
-
1
],
label
[
k
]])
log_likelihood
+=
(
x
[
k
,
label
[
k
]]
+
self
.
w
[
label
[
k
-
1
],
label
[
k
]])
return
-
log_likelihood
def
crf_forward_compute
(
self
):
...
...
@@ -77,7 +75,7 @@ class LinearChainCrfForward(object):
end
=
self
.
seq_start_positions
[
i
+
1
]
self
.
log_likelihood
[
i
]
=
self
.
_forward_a_sequence
(
self
.
x
[
start
:
end
],
self
.
x_row_max
[
start
:
end
,
:],
self
.
x
[
start
:
end
,
:
],
self
.
x_row_max
[
start
:
end
,
:],
self
.
x_exps
[
start
:
end
,
:],
self
.
labels
[
start
:
end
,
:],
self
.
alpha
[
start
:
end
,
:])
return
self
.
alpha
,
self
.
log_likelihood
...
...
@@ -85,10 +83,11 @@ class LinearChainCrfForward(object):
class
TestLinearChainCrfOp
(
OpTest
):
def
set_test_data
(
self
):
SEQ_NUM
=
3
SEQ_NUM
=
2
TAG_NUM
=
17
MAX_SEQ_LEN
=
13
MAX_SEQ_LEN
=
5
random
.
seed
(
1
)
# the linear_chain_crf operator only supports sequence (LoD level = 1)
lod
=
[[
0
]]
for
i
in
range
(
SEQ_NUM
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录