Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
cca383cf
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2305
Star
20932
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
cca383cf
编写于
10月 27, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
follow comments.
上级
3afb9dc8
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
295 addition
and
326 deletion
+295
-326
paddle/operators/linear_chain_crf_op.cc
paddle/operators/linear_chain_crf_op.cc
+8
-316
paddle/operators/linear_chain_crf_op.h
paddle/operators/linear_chain_crf_op.h
+287
-10
未找到文件。
paddle/operators/linear_chain_crf_op.cc
浏览文件 @
cca383cf
...
...
@@ -17,26 +17,6 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
namespace
{
template
<
typename
T
>
T
NormalizeL1
(
T
*
x
,
size_t
len
)
{
T
sum
=
0.
;
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
sum
+=
x
[
i
];
// (This comment is from the old LinearChainCRFLayer.)
// Right now, we just bet that sum won't be zero. If this really happens, we
// will figure out what should be done then.
PADDLE_ENFORCE
(
sum
,
"The unnormalized probabilities of all possible unfinished "
"sequences must be greater than 0."
);
T
s
=
1.
/
sum
;
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
x
[
i
]
*=
s
;
return
sum
;
}
}
// namespace
using
framework
::
LoDTensor
;
using
framework
::
LoD
;
class
LinearChainCRFOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
LinearChainCRFOpMaker
(
framework
::
OpProto
*
proto
,
...
...
@@ -206,145 +186,6 @@ class LinearChainCRFOp : public framework::OperatorWithKernel {
}
};
template
<
typename
T
>
class
LinearChainCRFOpKernel
<
platform
::
CPUPlace
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
GetPlace
()),
"This kernel only runs on CPU."
);
auto
*
emission_weights
=
ctx
.
Input
<
LoDTensor
>
(
"Emission"
);
auto
*
transition_weights
=
ctx
.
Input
<
Tensor
>
(
"Transition"
);
auto
*
emission_exps
=
ctx
.
Output
<
LoDTensor
>
(
"EmissionExps"
);
emission_exps
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
auto
*
transition_exps
=
ctx
.
Output
<
Tensor
>
(
"TransitionExps"
);
transition_exps
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
auto
*
label
=
ctx
.
Input
<
LoDTensor
>
(
"Label"
);
auto
in_lod
=
emission_weights
->
lod
();
PADDLE_ENFORCE
(
in_lod
.
size
(),
"Input(Emission) is not a sequence."
);
// TODO(caoying) The checks related to LoD information should be
// moved into InferShape once after the InferShape is refactored.
PADDLE_ENFORCE_EQ
(
emission_weights
->
NumLevels
(),
1UL
,
"The Input(Emission) should be a sequence."
);
PADDLE_ENFORCE_EQ
(
label
->
NumLevels
(),
1UL
,
"The Input(Label) should be a sequence."
);
const
size_t
level
=
0
;
auto
emission_dims
=
emission_weights
->
dims
();
const
size_t
batch_size
=
emission_dims
[
0
];
const
size_t
tag_num
=
emission_dims
[
1
];
const
size_t
seq_num
=
in_lod
[
level
].
size
()
-
1
;
Tensor
emission_row_max
;
emission_row_max
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
static_cast
<
int
>
(
batch_size
),
1
}),
platform
::
CPUPlace
());
auto
place
=
ctx
.
GetEigenDevice
<
platform
::
CPUPlace
>
();
auto
x
=
EigenMatrix
<
T
>::
From
(
*
emission_weights
);
auto
x_row_max
=
EigenMatrix
<
T
>::
From
(
emission_row_max
);
x_row_max
.
device
(
place
)
=
x
.
maximum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
int
(
batch_size
),
1
));
auto
x_exps
=
EigenMatrix
<
T
>::
From
(
*
emission_exps
);
x_exps
.
device
(
place
)
=
(
x
-
x_row_max
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
tag_num
))).
exp
();
auto
w
=
EigenMatrix
<
T
>::
From
(
*
transition_weights
);
auto
w_exps
=
EigenMatrix
<
T
>::
From
(
*
transition_exps
);
w_exps
.
device
(
place
)
=
w
.
exp
();
auto
*
alpha
=
ctx
.
Output
<
LoDTensor
>
(
"Alpha"
);
alpha
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
auto
*
ll
=
ctx
.
Output
<
LoDTensor
>
(
"LogLikelihood"
);
// resize the output tensor to the correct dimension.
ll
->
Resize
({
static_cast
<
int
>
(
seq_num
),
1
});
T
*
log_likelihood
=
ll
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
for
(
size_t
i
=
0
;
i
<
seq_num
;
++
i
)
{
int
start_pos
=
static_cast
<
int
>
(
in_lod
[
level
][
i
]);
int
end_pos
=
static_cast
<
int
>
(
in_lod
[
level
][
i
+
1
]);
if
(
end_pos
==
start_pos
)
{
// If an empty input sequence is given, pad 0 for its cost.
log_likelihood
[
i
]
=
0.
;
continue
;
}
const
Tensor
one_seq
=
emission_weights
->
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_row_max
=
emission_row_max
.
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_exps
=
emission_exps
->
Slice
(
start_pos
,
end_pos
);
const
Tensor
one_seq_label
=
label
->
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_alpha
=
alpha
->
Slice
(
start_pos
,
end_pos
);
log_likelihood
[
i
]
=
ForwardOneSequence
(
&
one_seq
,
&
one_seq_row_max
,
&
one_seq_exps
,
transition_weights
,
transition_exps
,
&
one_seq_label
,
&
one_seq_alpha
);
}
}
protected:
T
ForwardOneSequence
(
const
Tensor
*
emission
,
const
Tensor
*
emission_row_max
,
const
Tensor
*
emission_exps
,
const
Tensor
*
trans_weights
,
const
Tensor
*
trans_weight_exps
,
const
Tensor
*
label
,
Tensor
*
alpha
)
const
{
const
T
*
x
=
emission
->
data
<
T
>
();
const
T
*
x_row_max
=
emission_row_max
->
data
<
T
>
();
const
T
*
x_exps
=
emission_exps
->
data
<
T
>
();
const
T
*
w
=
trans_weights
->
data
<
T
>
();
const
T
*
w_exps
=
trans_weight_exps
->
data
<
T
>
();
T
*
alpha_value
=
alpha
->
data
<
T
>
();
auto
x_dims
=
emission
->
dims
();
const
size_t
seq_length
=
x_dims
[
0
];
const
size_t
tag_num
=
x_dims
[
1
];
// The 1st row of w are transition weights for start mask.
// The 2nd row of w are transition weights for end mask.
// Transition weights among other tags begin from the 3rd row of w.
const
size_t
state_trans_base_idx
=
2
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
alpha_value
[
i
]
=
w_exps
[
i
]
*
x_exps
[
i
];
}
T
ll
=
-
x_row_max
[
0
]
-
std
::
log
(
NormalizeL1
<
T
>
(
alpha_value
,
tag_num
));
for
(
size_t
k
=
1
;
k
<
seq_length
;
++
k
)
{
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
T
sum
=
0.
;
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
sum
+=
alpha_value
[(
k
-
1
)
*
tag_num
+
j
]
*
w_exps
[(
j
+
state_trans_base_idx
)
*
tag_num
+
i
];
}
alpha_value
[
k
*
tag_num
+
i
]
=
x_exps
[
k
*
tag_num
+
i
]
*
sum
;
}
// NormalizeL1 is to avoid underflow or overflow at (*).
ll
-=
x_row_max
[
k
]
+
std
::
log
(
NormalizeL1
<
T
>
(
alpha_value
+
k
*
tag_num
,
tag_num
));
}
T
sum
=
0.
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
sum
+=
alpha_value
[(
seq_length
-
1
)
*
tag_num
+
i
]
*
w_exps
[
tag_num
+
i
];
}
ll
-=
std
::
log
(
sum
);
// Now ll is equal to -log(Z).
const
int
*
lbl
=
label
->
data
<
int
>
();
PADDLE_ENFORCE_LT
(
*
std
::
max_element
(
lbl
,
lbl
+
seq_length
),
tag_num
,
"An invalid tag label that execesses the largest tag number."
);
// Calculate the nominator part, which depends on the label sequence.
ll
+=
w
[
lbl
[
0
]]
/*start transition*/
+
x
[
lbl
[
0
]]
+
w
[
tag_num
+
lbl
[
seq_length
-
1
]]
/*end transition*/
;
for
(
size_t
k
=
1
;
k
<
seq_length
;
++
k
)
{
ll
+=
x
[
k
*
tag_num
+
lbl
[
k
]]
+
w
[(
lbl
[
k
-
1
]
+
state_trans_base_idx
)
*
tag_num
+
lbl
[
k
]];
}
return
-
ll
;
}
};
class
LinearChainCRFGradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -357,11 +198,6 @@ class LinearChainCRFGradOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"LogLikelihood"
)),
"Input(LogLikelihood@GRAD) shoudl be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Emission"
)),
"Output(Emission@GRAD) should be not null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Transition"
)),
"Output(Transition@GRAD) should be not null."
);
auto
emission_exps_dims
=
ctx
->
GetInputDim
(
"EmissionExps"
);
PADDLE_ENFORCE_EQ
(
emission_exps_dims
.
size
(),
2UL
,
"The Input(EmissionExps) should be a 2-D tensor."
);
...
...
@@ -390,168 +226,24 @@ class LinearChainCRFGradOp : public framework::OperatorWithKernel {
"The height of Input(EmissionExps) and the height of Input(Label) "
"should be the same."
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Emission"
),
emission_exps_dims
);
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Transition"
),
transition_exps_dims
);
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Emission"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Emission"
),
emission_exps_dims
);
}
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"Transition"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"Transition"
),
transition_exps_dims
);
}
}
protected:
// Explicitly set that the data type of output of the linear_chain_crf_grad
// operator is determined by its input
"EmissionExps"
.
// operator is determined by its input
: graidents of LogLikelihood
.
framework
::
DataType
IndicateDataType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
ToDataType
(
ctx
.
Input
<
LoDTensor
>
(
"LogLikelihood"
)
->
type
());
}
};
template
<
typename
T
>
class
LinearChainCRFGradOpKernel
<
platform
::
CPUPlace
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
platform
::
CPUPlace
()),
"This kernel only runs on CPU."
);
auto
*
label
=
ctx
.
Input
<
LoDTensor
>
(
"Label"
);
auto
*
emission_exps
=
ctx
.
Input
<
LoDTensor
>
(
"EmissionExps"
);
auto
*
transition_exps
=
ctx
.
Input
<
Tensor
>
(
"TransitionExps"
);
auto
*
alpha
=
ctx
.
Input
<
LoDTensor
>
(
"Alpha"
);
const
T
*
ll_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"LogLikelihood"
))
->
data
<
T
>
();
auto
*
emission_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Emission"
));
emission_grad
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
auto
*
trans_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Transition"
));
if
(
trans_grad
)
trans_grad
->
mutable_data
<
T
>
(
platform
::
CPUPlace
());
auto
emission_dims
=
emission_exps
->
dims
();
// Beta is the memo table used in dynamic programming to calculate the
// backwark vectors. For a backward vector i (the i-th row of beta), it
// captures the unnormalized probabilities of partial sequences starting at
// position i.
Tensor
beta
;
beta
.
mutable_data
<
T
>
(
emission_dims
,
platform
::
CPUPlace
());
const
size_t
level
=
0
;
// currently, only support sequence.
auto
lod
=
label
->
lod
();
PADDLE_ENFORCE
(
lod
.
size
(),
"Input(Label) is not a sequence."
);
for
(
size_t
i
=
0
;
i
<
lod
[
level
].
size
()
-
1
;
++
i
)
{
int
start_pos
=
static_cast
<
int
>
(
lod
[
level
][
i
]);
int
end_pos
=
static_cast
<
int
>
(
lod
[
level
][
i
+
1
]);
if
(
end_pos
==
start_pos
)
continue
;
const
Tensor
one_seq_emission_exps
=
emission_exps
->
Slice
(
start_pos
,
end_pos
);
const
Tensor
one_seq_label
=
label
->
Slice
(
start_pos
,
end_pos
);
const
Tensor
one_seq_alpha
=
alpha
->
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_beta
=
beta
.
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_emission_grad
=
emission_grad
->
Slice
(
start_pos
,
end_pos
);
BackwardOneSequence
(
ctx
.
device_context
(),
ll_grad
[
i
],
&
one_seq_emission_exps
,
transition_exps
,
&
one_seq_alpha
,
&
one_seq_label
,
&
one_seq_beta
,
trans_grad
,
&
one_seq_emission_grad
);
}
}
protected:
void
BackwardOneSequence
(
const
platform
::
DeviceContext
&
ctx
,
const
T
ll_grad
,
const
Tensor
*
emission_exps
,
const
Tensor
*
transition_exps
,
const
Tensor
*
alpha
,
const
Tensor
*
label
,
Tensor
*
beta
,
Tensor
*
transition_grad
,
Tensor
*
emission_grad
)
const
{
const
T
*
w_exps
=
transition_exps
->
data
<
T
>
();
const
T
*
x_exps
=
emission_exps
->
data
<
T
>
();
const
int
*
label_value
=
label
->
data
<
int
>
();
T
*
beta_value
=
beta
->
data
<
T
>
();
auto
x_dims
=
emission_exps
->
dims
();
const
size_t
seq_length
=
x_dims
[
0
];
const
size_t
tag_num
=
x_dims
[
1
];
const
size_t
state_trans_base_idx
=
2
;
// Calculate the backward vectors: beta.
// First, calculate the initialition state.
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
beta_value
[(
seq_length
-
1
)
*
tag_num
+
i
]
=
w_exps
[
tag_num
+
i
];
}
NormalizeL1
<
T
>
(
beta_value
+
(
seq_length
-
1
)
*
tag_num
,
tag_num
);
for
(
int
k
=
static_cast
<
int
>
(
seq_length
)
-
2
;
k
>=
0
;
--
k
)
{
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
T
sum
=
0.
;
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
sum
+=
w_exps
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
*
x_exps
[(
k
+
1
)
*
tag_num
+
j
]
*
beta_value
[(
k
+
1
)
*
tag_num
+
j
];
}
beta_value
[
k
*
tag_num
+
i
]
=
sum
;
}
// NormalizeL1 is to avoid underflow or overflow at (**).
NormalizeL1
<
T
>
(
beta_value
+
k
*
tag_num
,
tag_num
);
}
auto
alpha_mat
=
EigenMatrix
<
T
>::
From
(
*
alpha
);
auto
beta_mat
=
EigenMatrix
<
T
>::
From
(
*
beta
);
auto
x_grad_mat
=
EigenMatrix
<
T
>::
From
(
*
emission_grad
);
auto
*
place
=
ctx
.
GetEigenDevice
<
platform
::
CPUPlace
>
();
auto
prob
=
alpha_mat
*
beta_mat
;
auto
row_sum
=
prob
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
seq_length
,
1
))
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
tag_num
));
x_grad_mat
.
device
(
*
place
)
=
prob
/
row_sum
;
for
(
size_t
k
=
0
;
k
<
seq_length
;
++
k
)
{
x_grad_mat
(
k
,
label_value
[
k
])
-=
static_cast
<
T
>
(
1.
);
}
if
(
transition_grad
)
{
T
*
trans_grad
=
transition_grad
->
data
<
T
>
();
for
(
size_t
k
=
0
;
k
<
tag_num
;
++
k
)
{
trans_grad
[
k
]
+=
x_grad_mat
(
/*from start state*/
0
,
k
);
trans_grad
[
tag_num
+
k
]
+=
x_grad_mat
(
/*to end state*/
seq_length
-
1
,
k
);
}
auto
x_exps_mat
=
EigenMatrix
<
T
>::
From
(
*
emission_exps
);
// TODO(caoying): Fix this to avoid using this local variable.
Tensor
tmp
;
tmp
.
mutable_data
<
T
>
(
beta
->
dims
(),
platform
::
CPUPlace
());
auto
tmp_mat
=
EigenMatrix
<
T
>::
From
(
tmp
);
auto
prob
=
beta_mat
*
x_exps_mat
;
auto
row_sum
=
prob
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
seq_length
,
1
))
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
tag_num
));
tmp_mat
.
device
(
*
place
)
=
prob
/
row_sum
;
for
(
size_t
k
=
1
;
k
<
seq_length
;
++
k
)
{
T
sum
=
0.
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
sum
+=
w_exps
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
*
// (**)
alpha_mat
(
k
-
1
,
i
)
*
tmp_mat
(
k
,
j
);
}
}
sum
=
1.
/
sum
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
trans_grad
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
+=
sum
*
w_exps
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
*
alpha_mat
(
k
-
1
,
i
)
*
tmp_mat
(
k
,
j
);
}
}
trans_grad
[(
label_value
[
k
-
1
]
+
state_trans_base_idx
)
*
tag_num
+
label_value
[
k
]]
-=
static_cast
<
T
>
(
1.
);
}
}
}
};
}
// namespace operators
}
// namespace paddle
...
...
paddle/operators/linear_chain_crf_op.h
浏览文件 @
cca383cf
...
...
@@ -19,6 +19,25 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
namespace
{
template
<
typename
T
>
T
NormalizeL1
(
T
*
x
,
size_t
len
)
{
T
sum
=
0.
;
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
sum
+=
x
[
i
];
// (This comment is from the old LinearChainCRFLayer.)
// Right now, we just bet that sum won't be zero. If this really happens, we
// will figure out what should be done then.
PADDLE_ENFORCE
(
sum
,
"The unnormalized probabilities of all possible unfinished "
"sequences must be greater than 0."
);
T
s
=
1.
/
sum
;
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
x
[
i
]
*=
s
;
return
sum
;
}
}
// namespace
using
framework
::
LoDTensor
;
using
framework
::
LoD
;
using
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
...
...
@@ -27,27 +46,285 @@ using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
template
<
typename
Place
,
typename
T
>
class
LinearChainCRFOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
emission_weights
=
ctx
.
Input
<
LoDTensor
>
(
"Emission"
);
auto
*
transition_weights
=
ctx
.
Input
<
Tensor
>
(
"Transition"
);
auto
*
emission_exps
=
ctx
.
Output
<
LoDTensor
>
(
"EmissionExps"
);
emission_exps
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
transition_exps
=
ctx
.
Output
<
Tensor
>
(
"TransitionExps"
);
transition_exps
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
label
=
ctx
.
Input
<
LoDTensor
>
(
"Label"
);
auto
in_lod
=
emission_weights
->
lod
();
PADDLE_ENFORCE
(
in_lod
.
size
(),
"Input(Emission) is not a sequence."
);
// TODO(caoying) The checks related to LoD information should be
// moved into InferShape once after the InferShape is refactored.
PADDLE_ENFORCE_EQ
(
emission_weights
->
NumLevels
(),
1UL
,
"The Input(Emission) should be a sequence."
);
PADDLE_ENFORCE_EQ
(
label
->
NumLevels
(),
1UL
,
"The Input(Label) should be a sequence."
);
const
size_t
level
=
0
;
auto
emission_dims
=
emission_weights
->
dims
();
const
size_t
batch_size
=
emission_dims
[
0
];
const
size_t
tag_num
=
emission_dims
[
1
];
const
size_t
seq_num
=
in_lod
[
level
].
size
()
-
1
;
Tensor
emission_row_max
;
emission_row_max
.
mutable_data
<
T
>
(
framework
::
make_ddim
({
static_cast
<
int
>
(
batch_size
),
1
}),
ctx
.
GetPlace
());
auto
place
=
ctx
.
GetEigenDevice
<
Place
>
();
auto
x
=
EigenMatrix
<
T
>::
From
(
*
emission_weights
);
auto
x_row_max
=
EigenMatrix
<
T
>::
From
(
emission_row_max
);
x_row_max
.
device
(
place
)
=
x
.
maximum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
int
(
batch_size
),
1
));
auto
x_exps
=
EigenMatrix
<
T
>::
From
(
*
emission_exps
);
x_exps
.
device
(
place
)
=
(
x
-
x_row_max
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
tag_num
))).
exp
();
auto
w
=
EigenMatrix
<
T
>::
From
(
*
transition_weights
);
auto
w_exps
=
EigenMatrix
<
T
>::
From
(
*
transition_exps
);
w_exps
.
device
(
place
)
=
w
.
exp
();
auto
*
alpha
=
ctx
.
Output
<
LoDTensor
>
(
"Alpha"
);
alpha
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
*
ll
=
ctx
.
Output
<
LoDTensor
>
(
"LogLikelihood"
);
// resize the output tensor to the correct dimension.
ll
->
Resize
({
static_cast
<
int
>
(
seq_num
),
1
});
T
*
log_likelihood
=
ll
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
for
(
size_t
i
=
0
;
i
<
seq_num
;
++
i
)
{
int
start_pos
=
static_cast
<
int
>
(
in_lod
[
level
][
i
]);
int
end_pos
=
static_cast
<
int
>
(
in_lod
[
level
][
i
+
1
]);
if
(
end_pos
==
start_pos
)
{
// If an empty input sequence is given, pad 0 for its cost.
log_likelihood
[
i
]
=
0.
;
continue
;
}
const
Tensor
one_seq
=
emission_weights
->
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_row_max
=
emission_row_max
.
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_exps
=
emission_exps
->
Slice
(
start_pos
,
end_pos
);
const
Tensor
one_seq_label
=
label
->
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_alpha
=
alpha
->
Slice
(
start_pos
,
end_pos
);
log_likelihood
[
i
]
=
ForwardOneSequence
(
one_seq
,
one_seq_row_max
,
one_seq_exps
,
*
transition_weights
,
*
transition_exps
,
one_seq_label
,
&
one_seq_alpha
);
}
};
protected:
T
ForwardOneSequence
(
const
Tensor
*
emission
,
const
Tensor
*
emission_row_max
,
const
Tensor
*
emission_exps
,
const
Tensor
*
trans_weights
,
const
Tensor
*
trans_weight_exps
,
const
Tensor
*
label
,
Tensor
*
alpha
)
const
;
T
ForwardOneSequence
(
const
Tensor
&
emission
,
const
Tensor
&
emission_row_max
,
const
Tensor
&
emission_exps
,
const
Tensor
&
trans_weights
,
const
Tensor
&
trans_weight_exps
,
const
Tensor
&
label
,
Tensor
*
alpha
)
const
{
const
T
*
x
=
emission
.
data
<
T
>
();
const
T
*
x_row_max
=
emission_row_max
.
data
<
T
>
();
const
T
*
x_exps
=
emission_exps
.
data
<
T
>
();
const
T
*
w
=
trans_weights
.
data
<
T
>
();
const
T
*
w_exps
=
trans_weight_exps
.
data
<
T
>
();
T
*
alpha_value
=
alpha
->
data
<
T
>
();
auto
x_dims
=
emission
.
dims
();
const
size_t
seq_length
=
x_dims
[
0
];
const
size_t
tag_num
=
x_dims
[
1
];
// The 1st row of w are transition weights for start mask.
// The 2nd row of w are transition weights for end mask.
// Transition weights between other tags begin from the 3rd row of w.
const
size_t
state_trans_base_idx
=
2
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
alpha_value
[
i
]
=
w_exps
[
i
]
*
x_exps
[
i
];
}
T
ll
=
-
x_row_max
[
0
]
-
std
::
log
(
NormalizeL1
<
T
>
(
alpha_value
,
tag_num
));
for
(
size_t
k
=
1
;
k
<
seq_length
;
++
k
)
{
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
T
sum
=
0.
;
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
sum
+=
alpha_value
[(
k
-
1
)
*
tag_num
+
j
]
*
w_exps
[(
j
+
state_trans_base_idx
)
*
tag_num
+
i
];
}
alpha_value
[
k
*
tag_num
+
i
]
=
x_exps
[
k
*
tag_num
+
i
]
*
sum
;
}
// NormalizeL1 is to avoid underflow or overflow at (*).
ll
-=
x_row_max
[
k
]
+
std
::
log
(
NormalizeL1
<
T
>
(
alpha_value
+
k
*
tag_num
,
tag_num
));
}
T
sum
=
0.
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
sum
+=
alpha_value
[(
seq_length
-
1
)
*
tag_num
+
i
]
*
w_exps
[
tag_num
+
i
];
}
ll
-=
std
::
log
(
sum
);
// Now ll is equal to -log(Z).
const
int
*
lbl
=
label
.
data
<
int
>
();
PADDLE_ENFORCE_LT
(
*
std
::
max_element
(
lbl
,
lbl
+
seq_length
),
tag_num
,
"An invalid tag label that execesses the largest tag number."
);
// Calculate the nominator part, which depends on the label sequence.
ll
+=
w
[
lbl
[
0
]]
/*start transition*/
+
x
[
lbl
[
0
]]
+
w
[
tag_num
+
lbl
[
seq_length
-
1
]]
/*end transition*/
;
for
(
size_t
k
=
1
;
k
<
seq_length
;
++
k
)
{
ll
+=
x
[
k
*
tag_num
+
lbl
[
k
]]
+
w
[(
lbl
[
k
-
1
]
+
state_trans_base_idx
)
*
tag_num
+
lbl
[
k
]];
}
return
-
ll
;
};
};
template
<
typename
Place
,
typename
T
>
class
LinearChainCRFGradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
label
=
ctx
.
Input
<
LoDTensor
>
(
"Label"
);
auto
*
emission_exps
=
ctx
.
Input
<
LoDTensor
>
(
"EmissionExps"
);
auto
*
transition_exps
=
ctx
.
Input
<
Tensor
>
(
"TransitionExps"
);
auto
*
alpha
=
ctx
.
Input
<
LoDTensor
>
(
"Alpha"
);
const
T
*
ll_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"LogLikelihood"
))
->
data
<
T
>
();
auto
place
=
ctx
.
GetPlace
();
auto
*
emission_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Emission"
));
emission_grad
->
mutable_data
<
T
>
(
place
);
auto
*
trans_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Transition"
));
if
(
trans_grad
)
{
trans_grad
->
mutable_data
<
T
>
(
place
);
}
auto
emission_dims
=
emission_exps
->
dims
();
// Beta is the memo table used in dynamic programming to calculate the
// backwark vectors. For a backward vector i (the i-th row of beta), it
// captures the unnormalized probabilities of partial sequences starting at
// position i.
Tensor
beta
;
beta
.
mutable_data
<
T
>
(
emission_dims
,
place
);
const
size_t
level
=
0
;
// currently, only support sequence.
auto
lod
=
label
->
lod
();
PADDLE_ENFORCE
(
lod
.
size
(),
"Input(Label) is not a sequence."
);
for
(
size_t
i
=
0
;
i
<
lod
[
level
].
size
()
-
1
;
++
i
)
{
int
start_pos
=
static_cast
<
int
>
(
lod
[
level
][
i
]);
int
end_pos
=
static_cast
<
int
>
(
lod
[
level
][
i
+
1
]);
if
(
end_pos
==
start_pos
)
continue
;
const
Tensor
one_seq_emission_exps
=
emission_exps
->
Slice
(
start_pos
,
end_pos
);
const
Tensor
one_seq_label
=
label
->
Slice
(
start_pos
,
end_pos
);
const
Tensor
one_seq_alpha
=
alpha
->
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_beta
=
beta
.
Slice
(
start_pos
,
end_pos
);
Tensor
one_seq_emission_grad
=
emission_grad
->
Slice
(
start_pos
,
end_pos
);
BackwardOneSequence
(
ctx
.
device_context
(),
ll_grad
[
i
],
one_seq_emission_exps
,
*
transition_exps
,
one_seq_alpha
,
one_seq_label
,
&
one_seq_beta
,
trans_grad
,
&
one_seq_emission_grad
);
}
};
protected:
void
BackwardOneSequence
(
const
platform
::
DeviceContext
&
ctx
,
const
T
ll_grad
,
const
Tensor
*
emission_exps
,
const
Tensor
*
transition_exps
,
const
Tensor
*
alpha
,
const
Tensor
*
label
,
Tensor
*
beta
,
const
Tensor
&
emission_exps
,
const
Tensor
&
transition_exps
,
const
Tensor
&
alpha
,
const
Tensor
&
label
,
Tensor
*
beta
,
Tensor
*
transition_grad
,
Tensor
*
emission_grad
)
const
;
Tensor
*
emission_grad
)
const
{
const
T
*
w_exps
=
transition_exps
.
data
<
T
>
();
const
T
*
x_exps
=
emission_exps
.
data
<
T
>
();
const
int
*
label_value
=
label
.
data
<
int
>
();
T
*
beta_value
=
beta
->
data
<
T
>
();
auto
x_dims
=
emission_exps
.
dims
();
const
size_t
seq_length
=
x_dims
[
0
];
const
size_t
tag_num
=
x_dims
[
1
];
const
size_t
state_trans_base_idx
=
2
;
// Calculate the backward vectors: beta.
// First, calculate the initialition state.
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
beta_value
[(
seq_length
-
1
)
*
tag_num
+
i
]
=
w_exps
[
tag_num
+
i
];
}
NormalizeL1
<
T
>
(
beta_value
+
(
seq_length
-
1
)
*
tag_num
,
tag_num
);
for
(
int
k
=
static_cast
<
int
>
(
seq_length
)
-
2
;
k
>=
0
;
--
k
)
{
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
T
sum
=
0.
;
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
sum
+=
w_exps
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
*
x_exps
[(
k
+
1
)
*
tag_num
+
j
]
*
beta_value
[(
k
+
1
)
*
tag_num
+
j
];
}
beta_value
[
k
*
tag_num
+
i
]
=
sum
;
}
// NormalizeL1 is to avoid underflow or overflow at (**).
NormalizeL1
<
T
>
(
beta_value
+
k
*
tag_num
,
tag_num
);
}
auto
alpha_mat
=
EigenMatrix
<
T
>::
From
(
alpha
);
auto
beta_mat
=
EigenMatrix
<
T
>::
From
(
*
beta
);
auto
x_grad_mat
=
EigenMatrix
<
T
>::
From
(
*
emission_grad
);
auto
*
place
=
ctx
.
GetEigenDevice
<
Place
>
();
auto
prob
=
alpha_mat
*
beta_mat
;
auto
row_sum
=
prob
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
seq_length
,
1
))
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
tag_num
));
x_grad_mat
.
device
(
*
place
)
=
prob
/
row_sum
;
for
(
size_t
k
=
0
;
k
<
seq_length
;
++
k
)
{
x_grad_mat
(
k
,
label_value
[
k
])
-=
static_cast
<
T
>
(
1.
);
}
if
(
transition_grad
)
{
T
*
trans_grad
=
transition_grad
->
data
<
T
>
();
for
(
size_t
k
=
0
;
k
<
tag_num
;
++
k
)
{
trans_grad
[
k
]
+=
x_grad_mat
(
/*from start state*/
0
,
k
);
trans_grad
[
tag_num
+
k
]
+=
x_grad_mat
(
/*to end state*/
seq_length
-
1
,
k
);
}
auto
x_exps_mat
=
EigenMatrix
<
T
>::
From
(
emission_exps
);
// TODO(caoying): Fix this to avoid using this local variable.
Tensor
tmp
;
tmp
.
mutable_data
<
T
>
(
beta
->
dims
(),
ctx
.
GetPlace
());
auto
tmp_mat
=
EigenMatrix
<
T
>::
From
(
tmp
);
auto
prob
=
beta_mat
*
x_exps_mat
;
auto
row_sum
=
prob
.
sum
(
Eigen
::
DSizes
<
int
,
1
>
(
1
))
.
reshape
(
Eigen
::
DSizes
<
int
,
2
>
(
seq_length
,
1
))
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
1
,
tag_num
));
tmp_mat
.
device
(
*
place
)
=
prob
/
row_sum
;
for
(
size_t
k
=
1
;
k
<
seq_length
;
++
k
)
{
T
sum
=
0.
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
sum
+=
w_exps
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
*
// (**)
alpha_mat
(
k
-
1
,
i
)
*
tmp_mat
(
k
,
j
);
}
}
sum
=
1.
/
sum
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
trans_grad
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
+=
sum
*
w_exps
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
*
alpha_mat
(
k
-
1
,
i
)
*
tmp_mat
(
k
,
j
);
}
}
trans_grad
[(
label_value
[
k
-
1
]
+
state_trans_base_idx
)
*
tag_num
+
label_value
[
k
]]
-=
static_cast
<
T
>
(
1.
);
}
}
};
};
}
// namespace operators
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录