Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
bce4f7d6
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
bce4f7d6
编写于
10月 26, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
follow comments.
上级
4c630869
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
34 addition
and
32 deletion
+34
-32
paddle/framework/tensor_impl.h
paddle/framework/tensor_impl.h
+3
-2
paddle/operators/linear_chain_crf_op.cc
paddle/operators/linear_chain_crf_op.cc
+29
-28
paddle/operators/linear_chain_crf_op.h
paddle/operators/linear_chain_crf_op.h
+2
-2
未找到文件。
paddle/framework/tensor_impl.h
浏览文件 @
bce4f7d6
...
...
@@ -228,8 +228,9 @@ inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const {
PADDLE_ENFORCE_GE
(
begin_idx
,
0
,
"The start row index must be greater than 0."
);
PADDLE_ENFORCE_LE
(
end_idx
,
dims_
[
0
],
"The end row index is out of bound."
);
PADDLE_ENFORCE_LT
(
begin_idx
,
end_idx
,
"The start row index must be less than the end row index."
);
PADDLE_ENFORCE_LT
(
begin_idx
,
end_idx
,
"The start row index must be smaller than the end row index."
);
if
(
dims_
[
0
]
==
1
)
{
return
*
this
;
...
...
paddle/operators/linear_chain_crf_op.cc
浏览文件 @
bce4f7d6
...
...
@@ -26,9 +26,10 @@ T NormalizeL1(T* x, size_t len) {
// Right now, we just bet that sum won't be zero. If this really happens, we
// will figure out what should be done then.
PADDLE_ENFORCE
(
sum
,
"The unnormalized probabilites of all possible unfinished "
"The unnormalized probabilit
i
es of all possible unfinished "
"sequences must be greater than 0."
);
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
x
[
i
]
/=
sum
;
T
s
=
1.
/
sum
;
for
(
size_t
i
=
0
;
i
<
len
;
++
i
)
x
[
i
]
*=
s
;
return
sum
;
}
}
// namespace
...
...
@@ -36,9 +37,9 @@ T NormalizeL1(T* x, size_t len) {
using
framework
::
LoDTensor
;
using
framework
::
LoD
;
class
LinearChainC
rf
OpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
class
LinearChainC
RF
OpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
LinearChainC
rf
OpMaker
(
framework
::
OpProto
*
proto
,
LinearChainC
RF
OpMaker
(
framework
::
OpProto
*
proto
,
framework
::
OpAttrChecker
*
op_checker
)
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
...
...
@@ -51,11 +52,11 @@ class LinearChainCrfOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Transition"
,
"(Tensor, default: Tensor<float>). A Tensor with shape [(D + 2) x D]. "
"The learnable parameter for linear_chain_crf operator. "
"The learnable parameter for
the
linear_chain_crf operator. "
"See more details in the operator's comments."
);
AddInput
(
"Label"
,
"(LoDTensor, default: LoDTensor<int>). The ground
truth which is a 2-D "
"(LoDTensor, default: LoDTensor<int>). The groundtruth which is a 2-D "
"LoDTensor with shape [N x 1], where N is the total element number in "
"a mini-batch."
);
AddOutput
(
...
...
@@ -82,14 +83,11 @@ class LinearChainCrfOpMaker : public framework::OpProtoAndCheckerMaker {
.
AsIntermediate
();
AddOutput
(
"LogLikelihood"
,
"(Tensor, default: Tensor<float>). The logarithm of the "
"conditional "
"(Tensor, default: Tensor<float>). The logarithm of the conditional "
"likelihood of each training sample in a mini-batch. This is a 2-D "
"tensor with shape [S x 1], where S is the sequence number in a "
"mini-batch. "
"Note: S is equal to the sequence number in a mini-batch. The "
"output "
"is no longer a LoDTensor."
);
"mini-batch. Note: S is equal to the sequence number in a mini-batch. "
"The output is no longer a LoDTensor."
);
AddComment
(
R"DOC(
Conditional Random Field defines an undirected probabilistic graph with nodes
denoting random variables and edges denoting dependencies between these
...
...
@@ -100,11 +98,11 @@ variables. CRF learns the conditional probability \f$P(Y|X)\f$, where
Linear chain CRF is a special case of CRF that is useful for sequence labeling
task. Sequence labeling tasks do not assume a lot of conditional
independences among inputs. They only concern about the input and the output
being linear sequences. Thus, the graph model of
CRF is a simple chain or
a line, which results in a
linear chain CRF.
being linear sequences. Thus, the graph model of
such a CRF is a simple chain
or a line, which results in the
linear chain CRF.
This operator implements the Forward-Backward algorithm for
linear chain CRF.
Please see http://www.cs.columbia.edu/~mcollins/fb.pdf for reference.
This operator implements the Forward-Backward algorithm for
the linear chain
CRF.
Please see http://www.cs.columbia.edu/~mcollins/fb.pdf for reference.
Equation:
...
...
@@ -144,7 +142,7 @@ nonlinear activation.
}
};
class
LinearChainC
rf
Op
:
public
framework
::
OperatorWithKernel
{
class
LinearChainC
RF
Op
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -211,7 +209,7 @@ class LinearChainCrfOp : public framework::OperatorWithKernel {
};
template
<
typename
T
>
class
LinearChainC
rf
OpKernel
<
platform
::
CPUPlace
,
T
>
class
LinearChainC
RF
OpKernel
<
platform
::
CPUPlace
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
...
@@ -262,11 +260,11 @@ class LinearChainCrfOpKernel<platform::CPUPlace, T>
w_exps
.
device
(
place
)
=
w
.
exp
();
auto
*
alpha
=
ctx
.
Output
<
LoDTensor
>
(
"Alpha"
);
alpha
->
mutable_data
<
T
>
(
ctx
.
Get
Place
());
alpha
->
mutable_data
<
T
>
(
platform
::
CPU
Place
());
auto
*
ll
=
ctx
.
Output
<
LoDTensor
>
(
"LogLikelihood"
);
// resize the output tensor to the correct dimension.
ll
->
Resize
({
static_cast
<
int
>
(
seq_num
),
1
});
T
*
log_likelihood
=
ll
->
mutable_data
<
T
>
(
ctx
.
Get
Place
());
T
*
log_likelihood
=
ll
->
mutable_data
<
T
>
(
platform
::
CPU
Place
());
for
(
size_t
i
=
0
;
i
<
seq_num
;
++
i
)
{
int
start_pos
=
static_cast
<
int
>
(
in_lod
[
level
][
i
]);
int
end_pos
=
static_cast
<
int
>
(
in_lod
[
level
][
i
+
1
]);
...
...
@@ -322,6 +320,7 @@ class LinearChainCrfOpKernel<platform::CPUPlace, T>
}
alpha_value
[
k
*
tag_num
+
i
]
=
x_exps
[
k
*
tag_num
+
i
]
*
sum
;
}
// NormalizeL1 is to avoid underflow or overflow at (*).
ll
-=
x_row_max
[
k
]
+
std
::
log
(
NormalizeL1
<
T
>
(
alpha_value
+
k
*
tag_num
,
tag_num
));
}
...
...
@@ -330,6 +329,7 @@ class LinearChainCrfOpKernel<platform::CPUPlace, T>
sum
+=
alpha_value
[(
seq_length
-
1
)
*
tag_num
+
i
]
*
w_exps
[
tag_num
+
i
];
}
ll
-=
std
::
log
(
sum
);
// Now ll is equal to -log(Z).
const
int
*
lbl
=
label
->
data
<
int
>
();
PADDLE_ENFORCE_LT
(
...
...
@@ -347,7 +347,7 @@ class LinearChainCrfOpKernel<platform::CPUPlace, T>
}
};
class
LinearChainC
rf
GradOp
:
public
framework
::
OperatorWithKernel
{
class
LinearChainC
RF
GradOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -407,11 +407,11 @@ class LinearChainCrfGradOp : public framework::OperatorWithKernel {
};
template
<
typename
T
>
class
LinearChainC
rf
GradOpKernel
<
platform
::
CPUPlace
,
T
>
class
LinearChainC
RF
GradOpKernel
<
platform
::
CPUPlace
,
T
>
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
ctx
.
Get
Place
()),
PADDLE_ENFORCE
(
platform
::
is_cpu_place
(
platform
::
CPU
Place
()),
"This kernel only runs on CPU."
);
auto
*
label
=
ctx
.
Input
<
LoDTensor
>
(
"Label"
);
auto
*
emission_exps
=
ctx
.
Input
<
LoDTensor
>
(
"EmissionExps"
);
...
...
@@ -493,6 +493,7 @@ class LinearChainCrfGradOpKernel<platform::CPUPlace, T>
}
beta_value
[
k
*
tag_num
+
i
]
=
sum
;
}
// NormalizeL1 is to avoid underflow or overflow at (**).
NormalizeL1
<
T
>
(
beta_value
+
k
*
tag_num
,
tag_num
);
}
...
...
@@ -534,7 +535,7 @@ class LinearChainCrfGradOpKernel<platform::CPUPlace, T>
T
sum
=
0.
;
for
(
size_t
i
=
0
;
i
<
tag_num
;
++
i
)
{
for
(
size_t
j
=
0
;
j
<
tag_num
;
++
j
)
{
sum
+=
w_exps
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
*
sum
+=
w_exps
[(
i
+
state_trans_base_idx
)
*
tag_num
+
j
]
*
// (**)
alpha_mat
(
k
-
1
,
i
)
*
tmp_mat
(
k
,
j
);
}
}
...
...
@@ -557,11 +558,11 @@ class LinearChainCrfGradOpKernel<platform::CPUPlace, T>
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
linear_chain_crf
,
ops
::
LinearChainC
rfOp
,
ops
::
LinearChainCrf
OpMaker
,
linear_chain_crf_grad
,
ops
::
LinearChainC
rf
GradOp
);
REGISTER_OP
(
linear_chain_crf
,
ops
::
LinearChainC
RFOp
,
ops
::
LinearChainCRF
OpMaker
,
linear_chain_crf_grad
,
ops
::
LinearChainC
RF
GradOp
);
REGISTER_OP_CPU_KERNEL
(
linear_chain_crf
,
ops
::
LinearChainC
rf
OpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
ops
::
LinearChainC
RF
OpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
linear_chain_crf_grad
,
ops
::
LinearChainC
rf
GradOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
ops
::
LinearChainC
RF
GradOpKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/linear_chain_crf_op.h
浏览文件 @
bce4f7d6
...
...
@@ -25,7 +25,7 @@ template <typename T, int MajorType = Eigen::RowMajor,
using
EigenMatrix
=
framework
::
EigenMatrix
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
Place
,
typename
T
>
class
LinearChainC
rf
OpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
LinearChainC
RF
OpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
...
...
@@ -37,7 +37,7 @@ class LinearChainCrfOpKernel : public framework::OpKernel<T> {
};
template
<
typename
Place
,
typename
T
>
class
LinearChainC
rf
GradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
class
LinearChainC
RF
GradOpKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录