flatten_op.cc 17.5 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
B
Bai Yifan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/flatten_op.h"
16

17 18 19
#include <memory>
#include <string>
#include <unordered_map>
B
Bai Yifan 已提交
20
#include <vector>
21

22
#include "paddle/fluid/framework/infershape_utils.h"
B
Bai Yifan 已提交
23
#include "paddle/fluid/framework/op_registry.h"
24
#include "paddle/phi/core/infermeta_utils.h"
25
#include "paddle/phi/infermeta/backward.h"
26
#include "paddle/phi/infermeta/unary.h"
B
Bai Yifan 已提交
27 28 29 30 31 32

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

33
class FlattenOp : public framework::OperatorWithKernel {
B
Bai Yifan 已提交
34
 public:
35 36 37
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
38 39
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Flatten");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Flatten");
B
Bai Yifan 已提交
40 41
    const auto &axis = ctx->Attrs().Get<int>("axis");
    const auto &in_dims = ctx->GetInputDim("X");
42 43
    PADDLE_ENFORCE_GE(axis,
                      0,
44 45
                      platform::errors::InvalidArgument(
                          "The axis should be greater than or equal to 0."));
46
    PADDLE_ENFORCE_LE(
47 48
        axis,
        in_dims.size(),
49 50
        platform::errors::InvalidArgument(
            "The axis should be less than or equal to input tensor's rank."));
B
Bai Yifan 已提交
51 52

    const auto &out_dims = GetOutputShape(axis, in_dims);
53
    ctx->SetOutputDim("Out", phi::make_ddim(out_dims));
B
Bai Yifan 已提交
54 55 56 57 58 59 60 61 62 63 64 65
    if (in_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
  }

  static std::vector<int32_t> GetOutputShape(const int axis,
                                             const framework::DDim &in_dims) {
    int64_t outer = 1, inner = 1;
    for (int i = 0; i < in_dims.size(); ++i) {
      if (i < axis) {
D
danleifeng 已提交
66 67 68 69 70
        if (in_dims[i] == -1 || outer == -1) {
          outer = -1;
        } else {
          outer *= in_dims[i];
        }
B
Bai Yifan 已提交
71
      } else {
D
danleifeng 已提交
72 73 74 75 76
        if (in_dims[i] == -1 || inner == -1) {
          inner = -1;
        } else {
          inner *= in_dims[i];
        }
B
Bai Yifan 已提交
77 78 79 80 81 82 83 84
      }
    }
    std::vector<int32_t> out_shape(2);
    out_shape[0] = outer;
    out_shape[1] = inner;
    return out_shape;
  }

85 86 87
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
88 89 90
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
B
Bai Yifan 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
  }
};

class FlattenOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) A tensor of rank >= axis.");
    AddOutput("Out",
              "A 2D tensor is reshaped input tensor. The input dimensions"
              "up to axis are flattened to the outer dimension of the output"
              "and the remaining input dimensions are flattened into the inner"
              "dimension of the output.");
    AddAttr<int>("axis",
                 "(int)"
                 "Indicate up to which input dimensions (exclusive) should be"
                 "flattened to the outer dimension of the output. The value"
                 "for axis must be in the range [0, R], where R is the rank of"
                 "the input tensor. When axis = 0, the shape of the output"
                 "tensor is (1, (d_0 X d_1 ... d_n), where the shape of the"
                 "input tensor is (d_0, d_1, ... d_n).")
        .SetDefault(1);
112 113
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
114 115
        .SetDefault(false)
        .AsExtra();
116 117 118 119
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
120 121
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
B
Bai Yifan 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
    AddComment(R"DOC(
Flatten Operator

Flattens the input tensor into a 2D matrix.

Examples:
Case 1:
  Given
    X.shape = (3, 100, 100, 4)
  and
    axis = 2
  We get:
    Out.shape = (3 * 100, 4 * 100)

Case 2:
  Given
    X.shape = (3, 100, 100, 4)
  and
    axis = 0
  We get:
    Out.shape = (1, 3 * 100 * 100 * 4)
)DOC");
  }
};

147
class FlattenGradOp : public framework::OperatorWithKernel {
B
Bai Yifan 已提交
148
 public:
149 150 151
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
B
Bai Yifan 已提交
152 153 154 155 156
    context->SetOutputDim(framework::GradVarName("X"),
                          context->GetInputDim("X"));
    context->ShareLoD("X", framework::GradVarName("X"));
  }

157 158 159
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
160 161 162
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
163 164 165 166 167 168 169 170
  }
};

template <typename T>
class FlattenGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

171
  void Apply(GradOpPtr<T> grad_op) const override {
172 173 174 175 176
    grad_op->SetType("flatten_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
B
Bai Yifan 已提交
177 178 179
  }
};

180 181 182 183 184
// FIXME(zcd): flatten2 adds an intermediate output(XShape) based on flatten,
// the XShape is used to carry the shape and lod of X which will be used in
// flatten_grad, in this way, the framework can reuse the memory of X
// immediately the flatten2_op is finished.
// Considering compatibility issues, we could not fix flatten2_op
185
class Flatten2Op : public framework::OperatorWithKernel {
186
 public:
187 188 189
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
190 191
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Flatten2");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Flatten2");
192
    const auto &axis = ctx->Attrs().Get<int>("axis");
193
    const auto &in_dims = ctx->GetInputDim("X");
194 195
    PADDLE_ENFORCE_GE(axis,
                      0,
196 197
                      platform::errors::InvalidArgument(
                          "The axis should be greater than or equal to 0."));
198
    PADDLE_ENFORCE_LE(
199 200
        axis,
        in_dims.size(),
201 202
        platform::errors::InvalidArgument(
            "The axis should be less than or equal to input tensor's rank"));
203 204

    const auto &out_dims = FlattenOp::GetOutputShape(axis, in_dims);
205
    ctx->SetOutputDim("Out", phi::make_ddim(out_dims));
206 207 208 209 210
    if (in_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
211 212
    if (!ctx->HasOutput("XShape")) return;
    // OP_INOUT_CHECK(ctx->HasOutput("XShape"), "Output", "XShape", "Flatten2");
213 214 215 216 217
    std::vector<int64_t> xshape_dims(in_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < in_dims.size(); ++i) {
      xshape_dims[i + 1] = in_dims[i];
    }
218
    ctx->SetOutputDim("XShape", phi::make_ddim(xshape_dims));
219 220
    ctx->ShareLoD("X", "XShape");
  }
221 222 223 224 225 226 227

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
228 229 230 231 232 233 234 235 236
};

class Flatten2OpMaker : public FlattenOpMaker {
 public:
  void Make() override {
    FlattenOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
237 238
        .AsIntermediate()
        .AsExtra();
239 240 241
  }
};

H
hong 已提交
242 243
template <typename T>
class Flatten2GradOpMaker : public framework::SingleGradOpMaker<T> {
244
 public:
H
hong 已提交
245
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
246

247
  void Apply(GradOpPtr<T> grad_op) const override {
248
    grad_op->SetType("flatten2_grad");
H
hong 已提交
249 250 251 252
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
253 254 255
  }
};

256
class Flatten2GradOp : public framework::OperatorWithKernel {
257
 public:
258 259 260
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
261 262 263 264 265
    OP_INOUT_CHECK(
        context->HasInput("XShape"), "Input", "XShape", "Flatten2Grad");
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")),
                   "Input",
                   framework::GradVarName("Out"),
266
                   "Flatten2Grad");
267
    auto xshape_dims = context->GetInputDim("XShape");
268
    auto x_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
269 270 271 272
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }

273 274 275
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
276 277 278
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
279 280 281
  }
};

282 283 284 285 286
class FlattenContiguousRangeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FlattenContiguousRange");
287 288
    OP_INOUT_CHECK(
        ctx->HasOutput("Out"), "Output", "Out", "FlattenContiguousRange");
289 290 291
    const auto &start_axis = ctx->Attrs().Get<int>("start_axis");
    const auto &stop_axis = ctx->Attrs().Get<int>("stop_axis");

292 293 294 295 296 297 298 299
    // Construct MetaTensor for InferMeta Func
    using CompatMetaTensor = framework::CompatMetaTensor;
    CompatMetaTensor x(ctx->GetInputVarPtrs("X")[0], ctx->IsRuntime());
    CompatMetaTensor out(ctx->GetOutputVarPtrs("Out")[0], ctx->IsRuntime());
    std::unique_ptr<CompatMetaTensor> xshape(nullptr);
    if (ctx->HasOutput("XShape")) {
      xshape = std::move(std::unique_ptr<CompatMetaTensor>(new CompatMetaTensor(
          ctx->GetOutputVarPtrs("XShape")[0], ctx->IsRuntime())));
300
    }
301 302
    phi::FlattenWithXShapeInferMeta(
        x, start_axis, stop_axis, &out, xshape.get());
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
  }
};

class FlattenContiguousRangeOpMaker : public FlattenOpMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) A tensor of rank >= axis.");
    AddOutput("Out",
              "A 2D tensor is reshaped input tensor. The input dimensions"
              "up to axis are flattened to the outer dimension of the output"
              "and the remaining input dimensions are flattened into the inner"
              "dimension of the output.");
    AddAttr<int>("start_axis",
                 "(int)"
                 "Indicate the input start dimension (exclusive) to flatten")
        .SetDefault(1);
    AddAttr<int>("stop_axis",
                 "(int)"
                 "Indicate the input stop dimension (exclusive) to flatten")
        .SetDefault(1);
    AddComment(R"DOC(
Flatten Operator

Flattens the input tensor into a new matrix according to start_axis and stop_axis.

Examples:
Case 1:
  Given
    X.shape = (3, 100, 100, 4)
  and
    start_axis = 2, stop_axis = -1
  We get:
    Out.shape = (3, 100, 400)

Case 2:
  Given
    X.shape = (3, 100, 100, 4)
  and
    start_axis = 0, stop_axis = -1
  We get:
    Out.shape = (3 * 100 * 100 * 4)
)DOC");
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
348 349
        .AsIntermediate()
        .AsExtra();
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
  }
};

template <typename T>
class FlattenContiguousRangeGradOpMaker
    : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("flatten_contiguous_range_grad");
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

class FlattenContiguousRangeGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
373 374 375 376 377 378 379
    OP_INOUT_CHECK(context->HasInput("XShape"),
                   "Input",
                   "XShape",
                   "FlattenContiguousRangeGrad");
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")),
                   "Input",
                   framework::GradVarName("Out"),
380
                   "FlattenContiguousRangeGrad");
381 382 383 384 385 386 387 388
    // Construct MetaTensor for InferMeta Func
    using CompatMetaTensor = framework::CompatMetaTensor;
    CompatMetaTensor xshape(context->GetInputVarPtrs("XShape")[0],
                            context->IsRuntime());
    CompatMetaTensor dx(
        context->GetOutputVarPtrs(framework::GradVarName("X"))[0],
        context->IsRuntime());
    phi::KernelWithXShapeInferMeta(xshape, &dx);
389 390 391 392 393 394 395 396 397 398
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};
399 400
DECLARE_INPLACE_OP_INFERER(FlattenOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(FlattenGradInplaceInferer,
401 402
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
403
DECLARE_NO_NEED_BUFFER_VARS_INFERER(FlattenGradNoNeedBufferVarsInferer, "X");
D
dzhwinter 已提交
404

B
Bai Yifan 已提交
405 406 407 408
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
409 410 411
REGISTER_OPERATOR(flatten,
                  ops::FlattenOp,
                  ops::FlattenOpMaker,
412 413
                  ops::FlattenGradOpMaker<paddle::framework::OpDesc>,
                  ops::FlattenGradOpMaker<paddle::imperative::OpBase>,
414
                  ops::FlattenOpInplaceInferer);
415 416
REGISTER_OPERATOR(flatten_grad,
                  ops::FlattenGradOp,
417 418
                  ops::FlattenGradInplaceInferer,
                  ops::FlattenGradNoNeedBufferVarsInferer);
419

420 421 422
REGISTER_OPERATOR(flatten2,
                  ops::Flatten2Op,
                  ops::Flatten2OpMaker,
H
hong 已提交
423 424
                  ops::Flatten2GradOpMaker<paddle::framework::OpDesc>,
                  ops::Flatten2GradOpMaker<paddle::imperative::OpBase>,
425
                  ops::FlattenOpInplaceInferer);
426 427
REGISTER_OPERATOR(flatten2_grad,
                  ops::Flatten2GradOp,
428
                  ops::FlattenGradInplaceInferer);
429

430
REGISTER_OPERATOR(
431 432
    flatten_contiguous_range,
    ops::FlattenContiguousRangeOp,
433 434 435 436 437 438 439 440
    ops::FlattenContiguousRangeOpMaker,
    ops::FlattenContiguousRangeGradOpMaker<paddle::framework::OpDesc>,
    ops::FlattenContiguousRangeGradOpMaker<paddle::imperative::OpBase>,
    ops::FlattenOpInplaceInferer);
REGISTER_OPERATOR(flatten_contiguous_range_grad,
                  ops::FlattenContiguousRangeGradOp,
                  ops::FlattenGradInplaceInferer);

441
REGISTER_OP_CPU_KERNEL(
442 443
    flatten,
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, float>,
444
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, double>,
445
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, uint8_t>,
446 447 448 449 450 451 452
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, int>,
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    flatten_grad,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, double>,
453
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
454 455 456 457
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
458 459
    flatten2,
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, float>,
460
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, double>,
461
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, uint8_t>,
462 463 464 465 466 467 468
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, int>,
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    flatten2_grad,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, double>,
469
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
470 471 472
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, int64_t>);