flatten_op.cc 17.2 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
B
Bai Yifan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/flatten_op.h"
16

17 18 19
#include <memory>
#include <string>
#include <unordered_map>
B
Bai Yifan 已提交
20
#include <vector>
21

22
#include "paddle/fluid/framework/infershape_utils.h"
B
Bai Yifan 已提交
23
#include "paddle/fluid/framework/op_registry.h"
24
#include "paddle/phi/core/infermeta_utils.h"
25
#include "paddle/phi/infermeta/backward.h"
26
#include "paddle/phi/infermeta/unary.h"
B
Bai Yifan 已提交
27 28 29 30 31 32

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

33
class FlattenOp : public framework::OperatorWithKernel {
B
Bai Yifan 已提交
34
 public:
35 36 37
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
38 39
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Flatten");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Flatten");
B
Bai Yifan 已提交
40 41
    const auto &axis = ctx->Attrs().Get<int>("axis");
    const auto &in_dims = ctx->GetInputDim("X");
42
    PADDLE_ENFORCE_GE(axis, 0,
43 44
                      platform::errors::InvalidArgument(
                          "The axis should be greater than or equal to 0."));
45 46
    PADDLE_ENFORCE_LE(
        axis, in_dims.size(),
47 48
        platform::errors::InvalidArgument(
            "The axis should be less than or equal to input tensor's rank."));
B
Bai Yifan 已提交
49 50

    const auto &out_dims = GetOutputShape(axis, in_dims);
51
    ctx->SetOutputDim("Out", phi::make_ddim(out_dims));
B
Bai Yifan 已提交
52 53 54 55 56 57 58 59 60 61 62 63
    if (in_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
  }

  static std::vector<int32_t> GetOutputShape(const int axis,
                                             const framework::DDim &in_dims) {
    int64_t outer = 1, inner = 1;
    for (int i = 0; i < in_dims.size(); ++i) {
      if (i < axis) {
D
danleifeng 已提交
64 65 66 67 68
        if (in_dims[i] == -1 || outer == -1) {
          outer = -1;
        } else {
          outer *= in_dims[i];
        }
B
Bai Yifan 已提交
69
      } else {
D
danleifeng 已提交
70 71 72 73 74
        if (in_dims[i] == -1 || inner == -1) {
          inner = -1;
        } else {
          inner *= in_dims[i];
        }
B
Bai Yifan 已提交
75 76 77 78 79 80 81 82
      }
    }
    std::vector<int32_t> out_shape(2);
    out_shape[0] = outer;
    out_shape[1] = inner;
    return out_shape;
  }

83 84 85
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
86 87 88
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
B
Bai Yifan 已提交
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
  }
};

class FlattenOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) A tensor of rank >= axis.");
    AddOutput("Out",
              "A 2D tensor is reshaped input tensor. The input dimensions"
              "up to axis are flattened to the outer dimension of the output"
              "and the remaining input dimensions are flattened into the inner"
              "dimension of the output.");
    AddAttr<int>("axis",
                 "(int)"
                 "Indicate up to which input dimensions (exclusive) should be"
                 "flattened to the outer dimension of the output. The value"
                 "for axis must be in the range [0, R], where R is the rank of"
                 "the input tensor. When axis = 0, the shape of the output"
                 "tensor is (1, (d_0 X d_1 ... d_n), where the shape of the"
                 "input tensor is (d_0, d_1, ... d_n).")
        .SetDefault(1);
110 111
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
112 113
        .SetDefault(false)
        .AsExtra();
114 115 116 117
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
118 119
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
B
Bai Yifan 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    AddComment(R"DOC(
Flatten Operator

Flattens the input tensor into a 2D matrix.

Examples:
Case 1:
  Given
    X.shape = (3, 100, 100, 4)
  and
    axis = 2
  We get:
    Out.shape = (3 * 100, 4 * 100)

Case 2:
  Given
    X.shape = (3, 100, 100, 4)
  and
    axis = 0
  We get:
    Out.shape = (1, 3 * 100 * 100 * 4)
)DOC");
  }
};

145
class FlattenGradOp : public framework::OperatorWithKernel {
B
Bai Yifan 已提交
146
 public:
147 148 149
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
B
Bai Yifan 已提交
150 151 152 153 154
    context->SetOutputDim(framework::GradVarName("X"),
                          context->GetInputDim("X"));
    context->ShareLoD("X", framework::GradVarName("X"));
  }

155 156 157
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
158 159 160
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
161 162 163 164 165 166 167 168
  }
};

template <typename T>
class FlattenGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

169
  void Apply(GradOpPtr<T> grad_op) const override {
170 171 172 173 174
    grad_op->SetType("flatten_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
B
Bai Yifan 已提交
175 176 177
  }
};

178 179 180 181 182
// FIXME(zcd): flatten2 adds an intermediate output(XShape) based on flatten,
// the XShape is used to carry the shape and lod of X which will be used in
// flatten_grad, in this way, the framework can reuse the memory of X
// immediately the flatten2_op is finished.
// Considering compatibility issues, we could not fix flatten2_op
183
class Flatten2Op : public framework::OperatorWithKernel {
184
 public:
185 186 187
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
188 189
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Flatten2");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Flatten2");
190
    const auto &axis = ctx->Attrs().Get<int>("axis");
191
    const auto &in_dims = ctx->GetInputDim("X");
192
    PADDLE_ENFORCE_GE(axis, 0,
193 194
                      platform::errors::InvalidArgument(
                          "The axis should be greater than or equal to 0."));
195 196
    PADDLE_ENFORCE_LE(
        axis, in_dims.size(),
197 198
        platform::errors::InvalidArgument(
            "The axis should be less than or equal to input tensor's rank"));
199 200

    const auto &out_dims = FlattenOp::GetOutputShape(axis, in_dims);
201
    ctx->SetOutputDim("Out", phi::make_ddim(out_dims));
202 203 204 205 206
    if (in_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
207 208
    if (!ctx->HasOutput("XShape")) return;
    // OP_INOUT_CHECK(ctx->HasOutput("XShape"), "Output", "XShape", "Flatten2");
209 210 211 212 213
    std::vector<int64_t> xshape_dims(in_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < in_dims.size(); ++i) {
      xshape_dims[i + 1] = in_dims[i];
    }
214
    ctx->SetOutputDim("XShape", phi::make_ddim(xshape_dims));
215 216
    ctx->ShareLoD("X", "XShape");
  }
217 218 219 220 221 222 223

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
224 225 226 227 228 229 230 231 232
};

class Flatten2OpMaker : public FlattenOpMaker {
 public:
  void Make() override {
    FlattenOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
233 234
        .AsIntermediate()
        .AsExtra();
235 236 237
  }
};

H
hong 已提交
238 239
template <typename T>
class Flatten2GradOpMaker : public framework::SingleGradOpMaker<T> {
240
 public:
H
hong 已提交
241
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
242

243
  void Apply(GradOpPtr<T> grad_op) const override {
244
    grad_op->SetType("flatten2_grad");
H
hong 已提交
245 246 247 248
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
249 250 251
  }
};

252
class Flatten2GradOp : public framework::OperatorWithKernel {
253
 public:
254 255 256
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
257 258 259 260
    OP_INOUT_CHECK(context->HasInput("XShape"), "Input", "XShape",
                   "Flatten2Grad");
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "Flatten2Grad");
261
    auto xshape_dims = context->GetInputDim("XShape");
262
    auto x_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
263 264 265 266
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }

267 268 269
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
270 271 272
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
273 274 275
  }
};

276 277 278 279 280 281 282 283 284 285
class FlattenContiguousRangeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FlattenContiguousRange");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
                   "FlattenContiguousRange");
    const auto &start_axis = ctx->Attrs().Get<int>("start_axis");
    const auto &stop_axis = ctx->Attrs().Get<int>("stop_axis");

286 287 288 289 290 291 292 293
    // Construct MetaTensor for InferMeta Func
    using CompatMetaTensor = framework::CompatMetaTensor;
    CompatMetaTensor x(ctx->GetInputVarPtrs("X")[0], ctx->IsRuntime());
    CompatMetaTensor out(ctx->GetOutputVarPtrs("Out")[0], ctx->IsRuntime());
    std::unique_ptr<CompatMetaTensor> xshape(nullptr);
    if (ctx->HasOutput("XShape")) {
      xshape = std::move(std::unique_ptr<CompatMetaTensor>(new CompatMetaTensor(
          ctx->GetOutputVarPtrs("XShape")[0], ctx->IsRuntime())));
294
    }
295 296
    phi::FlattenWithXShapeInferMeta(x, start_axis, stop_axis, &out,
                                    xshape.get());
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
  }
};

class FlattenContiguousRangeOpMaker : public FlattenOpMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) A tensor of rank >= axis.");
    AddOutput("Out",
              "A 2D tensor is reshaped input tensor. The input dimensions"
              "up to axis are flattened to the outer dimension of the output"
              "and the remaining input dimensions are flattened into the inner"
              "dimension of the output.");
    AddAttr<int>("start_axis",
                 "(int)"
                 "Indicate the input start dimension (exclusive) to flatten")
        .SetDefault(1);
    AddAttr<int>("stop_axis",
                 "(int)"
                 "Indicate the input stop dimension (exclusive) to flatten")
        .SetDefault(1);
    AddComment(R"DOC(
Flatten Operator

Flattens the input tensor into a new matrix according to start_axis and stop_axis.

Examples:
Case 1:
  Given
    X.shape = (3, 100, 100, 4)
  and
    start_axis = 2, stop_axis = -1
  We get:
    Out.shape = (3, 100, 400)

Case 2:
  Given
    X.shape = (3, 100, 100, 4)
  and
    start_axis = 0, stop_axis = -1
  We get:
    Out.shape = (3 * 100 * 100 * 4)
)DOC");
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
342 343
        .AsIntermediate()
        .AsExtra();
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
  }
};

template <typename T>
class FlattenContiguousRangeGradOpMaker
    : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("flatten_contiguous_range_grad");
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

class FlattenContiguousRangeGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
    OP_INOUT_CHECK(context->HasInput("XShape"), "Input", "XShape",
                   "FlattenContiguousRangeGrad");
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "FlattenContiguousRangeGrad");
371 372 373 374 375 376 377 378
    // Construct MetaTensor for InferMeta Func
    using CompatMetaTensor = framework::CompatMetaTensor;
    CompatMetaTensor xshape(context->GetInputVarPtrs("XShape")[0],
                            context->IsRuntime());
    CompatMetaTensor dx(
        context->GetOutputVarPtrs(framework::GradVarName("X"))[0],
        context->IsRuntime());
    phi::KernelWithXShapeInferMeta(xshape, &dx);
379 380 381 382 383 384 385 386 387 388
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};
389 390
DECLARE_INPLACE_OP_INFERER(FlattenOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(FlattenGradInplaceInferer,
391 392
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
393
DECLARE_NO_NEED_BUFFER_VARS_INFERER(FlattenGradNoNeedBufferVarsInferer, "X");
D
dzhwinter 已提交
394

B
Bai Yifan 已提交
395 396 397 398
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
399 400 401
REGISTER_OPERATOR(flatten, ops::FlattenOp, ops::FlattenOpMaker,
                  ops::FlattenGradOpMaker<paddle::framework::OpDesc>,
                  ops::FlattenGradOpMaker<paddle::imperative::OpBase>,
402
                  ops::FlattenOpInplaceInferer);
403
REGISTER_OPERATOR(flatten_grad, ops::FlattenGradOp,
404 405
                  ops::FlattenGradInplaceInferer,
                  ops::FlattenGradNoNeedBufferVarsInferer);
406 407

REGISTER_OPERATOR(flatten2, ops::Flatten2Op, ops::Flatten2OpMaker,
H
hong 已提交
408 409
                  ops::Flatten2GradOpMaker<paddle::framework::OpDesc>,
                  ops::Flatten2GradOpMaker<paddle::imperative::OpBase>,
410
                  ops::FlattenOpInplaceInferer);
411
REGISTER_OPERATOR(flatten2_grad, ops::Flatten2GradOp,
412
                  ops::FlattenGradInplaceInferer);
413

414 415 416 417 418 419 420 421 422 423
REGISTER_OPERATOR(
    flatten_contiguous_range, ops::FlattenContiguousRangeOp,
    ops::FlattenContiguousRangeOpMaker,
    ops::FlattenContiguousRangeGradOpMaker<paddle::framework::OpDesc>,
    ops::FlattenContiguousRangeGradOpMaker<paddle::imperative::OpBase>,
    ops::FlattenOpInplaceInferer);
REGISTER_OPERATOR(flatten_contiguous_range_grad,
                  ops::FlattenContiguousRangeGradOp,
                  ops::FlattenGradInplaceInferer);

424 425 426
REGISTER_OP_CPU_KERNEL(
    flatten, ops::FlattenKernel<paddle::platform::CPUDeviceContext, float>,
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, double>,
427
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, uint8_t>,
428 429 430 431 432 433 434
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, int>,
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    flatten_grad,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, double>,
435
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
436 437 438 439 440 441
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    flatten2, ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, float>,
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, double>,
442
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, uint8_t>,
443 444 445 446 447 448 449
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, int>,
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    flatten2_grad,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, double>,
450
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
451 452 453
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, int64_t>);