flatten_op.cc 17.2 KB
Newer Older
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
B
Bai Yifan 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16 17 18
#include "paddle/fluid/operators/flatten_op.h"
#include <memory>
#include <string>
#include <unordered_map>
B
Bai Yifan 已提交
19
#include <vector>
20
#include "paddle/fluid/framework/infershape_utils.h"
B
Bai Yifan 已提交
21
#include "paddle/fluid/framework/op_registry.h"
22
#include "paddle/phi/core/infermeta_utils.h"
23
#include "paddle/phi/infermeta/backward.h"
24
#include "paddle/phi/infermeta/unary.h"
B
Bai Yifan 已提交
25 26 27 28 29 30

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

31
class FlattenOp : public framework::OperatorWithKernel {
B
Bai Yifan 已提交
32
 public:
33 34 35
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
36 37
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Flatten");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Flatten");
B
Bai Yifan 已提交
38 39
    const auto &axis = ctx->Attrs().Get<int>("axis");
    const auto &in_dims = ctx->GetInputDim("X");
40
    PADDLE_ENFORCE_GE(axis, 0,
41 42
                      platform::errors::InvalidArgument(
                          "The axis should be greater than or equal to 0."));
43 44
    PADDLE_ENFORCE_LE(
        axis, in_dims.size(),
45 46
        platform::errors::InvalidArgument(
            "The axis should be less than or equal to input tensor's rank."));
B
Bai Yifan 已提交
47 48

    const auto &out_dims = GetOutputShape(axis, in_dims);
49
    ctx->SetOutputDim("Out", phi::make_ddim(out_dims));
B
Bai Yifan 已提交
50 51 52 53 54 55 56 57 58 59 60 61
    if (in_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
  }

  static std::vector<int32_t> GetOutputShape(const int axis,
                                             const framework::DDim &in_dims) {
    int64_t outer = 1, inner = 1;
    for (int i = 0; i < in_dims.size(); ++i) {
      if (i < axis) {
D
danleifeng 已提交
62 63 64 65 66
        if (in_dims[i] == -1 || outer == -1) {
          outer = -1;
        } else {
          outer *= in_dims[i];
        }
B
Bai Yifan 已提交
67
      } else {
D
danleifeng 已提交
68 69 70 71 72
        if (in_dims[i] == -1 || inner == -1) {
          inner = -1;
        } else {
          inner *= in_dims[i];
        }
B
Bai Yifan 已提交
73 74 75 76 77 78 79 80
      }
    }
    std::vector<int32_t> out_shape(2);
    out_shape[0] = outer;
    out_shape[1] = inner;
    return out_shape;
  }

81 82 83
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
84 85 86
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
B
Bai Yifan 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
  }
};

class FlattenOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) A tensor of rank >= axis.");
    AddOutput("Out",
              "A 2D tensor is reshaped input tensor. The input dimensions"
              "up to axis are flattened to the outer dimension of the output"
              "and the remaining input dimensions are flattened into the inner"
              "dimension of the output.");
    AddAttr<int>("axis",
                 "(int)"
                 "Indicate up to which input dimensions (exclusive) should be"
                 "flattened to the outer dimension of the output. The value"
                 "for axis must be in the range [0, R], where R is the rank of"
                 "the input tensor. When axis = 0, the shape of the output"
                 "tensor is (1, (d_0 X d_1 ... d_n), where the shape of the"
                 "input tensor is (d_0, d_1, ... d_n).")
        .SetDefault(1);
108 109
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
110 111
        .SetDefault(false)
        .AsExtra();
112 113 114 115
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
116 117
        .InEnum({"float32", "bfloat16"})
        .AsExtra();
B
Bai Yifan 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    AddComment(R"DOC(
Flatten Operator

Flattens the input tensor into a 2D matrix.

Examples:
Case 1:
  Given
    X.shape = (3, 100, 100, 4)
  and
    axis = 2
  We get:
    Out.shape = (3 * 100, 4 * 100)

Case 2:
  Given
    X.shape = (3, 100, 100, 4)
  and
    axis = 0
  We get:
    Out.shape = (1, 3 * 100 * 100 * 4)
)DOC");
  }
};

143
class FlattenGradOp : public framework::OperatorWithKernel {
B
Bai Yifan 已提交
144
 public:
145 146 147
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
B
Bai Yifan 已提交
148 149 150 151 152
    context->SetOutputDim(framework::GradVarName("X"),
                          context->GetInputDim("X"));
    context->ShareLoD("X", framework::GradVarName("X"));
  }

153 154 155
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
156 157 158
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
159 160 161 162 163 164 165 166
  }
};

template <typename T>
class FlattenGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

167
  void Apply(GradOpPtr<T> grad_op) const override {
168 169 170 171 172
    grad_op->SetType("flatten_grad");
    grad_op->SetInput("X", this->Input("X"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
B
Bai Yifan 已提交
173 174 175
  }
};

176 177 178 179 180
// FIXME(zcd): flatten2 adds an intermediate output(XShape) based on flatten,
// the XShape is used to carry the shape and lod of X which will be used in
// flatten_grad, in this way, the framework can reuse the memory of X
// immediately the flatten2_op is finished.
// Considering compatibility issues, we could not fix flatten2_op
181
class Flatten2Op : public framework::OperatorWithKernel {
182
 public:
183 184 185
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
186 187
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Flatten2");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Flatten2");
188
    const auto &axis = ctx->Attrs().Get<int>("axis");
189
    const auto &in_dims = ctx->GetInputDim("X");
190
    PADDLE_ENFORCE_GE(axis, 0,
191 192
                      platform::errors::InvalidArgument(
                          "The axis should be greater than or equal to 0."));
193 194
    PADDLE_ENFORCE_LE(
        axis, in_dims.size(),
195 196
        platform::errors::InvalidArgument(
            "The axis should be less than or equal to input tensor's rank"));
197 198

    const auto &out_dims = FlattenOp::GetOutputShape(axis, in_dims);
199
    ctx->SetOutputDim("Out", phi::make_ddim(out_dims));
200 201 202 203 204
    if (in_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
205 206
    if (!ctx->HasOutput("XShape")) return;
    // OP_INOUT_CHECK(ctx->HasOutput("XShape"), "Output", "XShape", "Flatten2");
207 208 209 210 211
    std::vector<int64_t> xshape_dims(in_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < in_dims.size(); ++i) {
      xshape_dims[i + 1] = in_dims[i];
    }
212
    ctx->SetOutputDim("XShape", phi::make_ddim(xshape_dims));
213 214
    ctx->ShareLoD("X", "XShape");
  }
215 216 217 218 219 220 221

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type =
        framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
222 223 224 225 226 227 228 229 230
};

class Flatten2OpMaker : public FlattenOpMaker {
 public:
  void Make() override {
    FlattenOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
231 232
        .AsIntermediate()
        .AsExtra();
233 234 235
  }
};

H
hong 已提交
236 237
template <typename T>
class Flatten2GradOpMaker : public framework::SingleGradOpMaker<T> {
238
 public:
H
hong 已提交
239
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
240

241
  void Apply(GradOpPtr<T> grad_op) const override {
242
    grad_op->SetType("flatten2_grad");
H
hong 已提交
243 244 245 246
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
247 248 249
  }
};

250
class Flatten2GradOp : public framework::OperatorWithKernel {
251
 public:
252 253 254
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
255 256 257 258
    OP_INOUT_CHECK(context->HasInput("XShape"), "Input", "XShape",
                   "Flatten2Grad");
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "Flatten2Grad");
259
    auto xshape_dims = context->GetInputDim("XShape");
260
    auto x_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
261 262 263 264
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }

265 266 267
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
268 269 270
    auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
271 272 273
  }
};

274 275 276 277 278 279 280 281 282 283
class FlattenContiguousRangeOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext *ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "FlattenContiguousRange");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out",
                   "FlattenContiguousRange");
    const auto &start_axis = ctx->Attrs().Get<int>("start_axis");
    const auto &stop_axis = ctx->Attrs().Get<int>("stop_axis");

284 285 286 287 288 289 290 291
    // Construct MetaTensor for InferMeta Func
    using CompatMetaTensor = framework::CompatMetaTensor;
    CompatMetaTensor x(ctx->GetInputVarPtrs("X")[0], ctx->IsRuntime());
    CompatMetaTensor out(ctx->GetOutputVarPtrs("Out")[0], ctx->IsRuntime());
    std::unique_ptr<CompatMetaTensor> xshape(nullptr);
    if (ctx->HasOutput("XShape")) {
      xshape = std::move(std::unique_ptr<CompatMetaTensor>(new CompatMetaTensor(
          ctx->GetOutputVarPtrs("XShape")[0], ctx->IsRuntime())));
292
    }
293 294
    phi::FlattenWithXShapeInferMeta(x, start_axis, stop_axis, &out,
                                    xshape.get());
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
  }
};

class FlattenContiguousRangeOpMaker : public FlattenOpMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) A tensor of rank >= axis.");
    AddOutput("Out",
              "A 2D tensor is reshaped input tensor. The input dimensions"
              "up to axis are flattened to the outer dimension of the output"
              "and the remaining input dimensions are flattened into the inner"
              "dimension of the output.");
    AddAttr<int>("start_axis",
                 "(int)"
                 "Indicate the input start dimension (exclusive) to flatten")
        .SetDefault(1);
    AddAttr<int>("stop_axis",
                 "(int)"
                 "Indicate the input stop dimension (exclusive) to flatten")
        .SetDefault(1);
    AddComment(R"DOC(
Flatten Operator

Flattens the input tensor into a new matrix according to start_axis and stop_axis.

Examples:
Case 1:
  Given
    X.shape = (3, 100, 100, 4)
  and
    start_axis = 2, stop_axis = -1
  We get:
    Out.shape = (3, 100, 400)

Case 2:
  Given
    X.shape = (3, 100, 100, 4)
  and
    start_axis = 0, stop_axis = -1
  We get:
    Out.shape = (3 * 100 * 100 * 4)
)DOC");
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
340 341
        .AsIntermediate()
        .AsExtra();
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
  }
};

template <typename T>
class FlattenContiguousRangeGradOpMaker
    : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    grad_op->SetType("flatten_contiguous_range_grad");
    grad_op->SetInput("XShape", this->Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    grad_op->SetAttrMap(this->Attrs());
  }
};

class FlattenContiguousRangeGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *context) const override {
    OP_INOUT_CHECK(context->HasInput("XShape"), "Input", "XShape",
                   "FlattenContiguousRangeGrad");
    OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
                   framework::GradVarName("Out"), "FlattenContiguousRangeGrad");
369 370 371 372 373 374 375 376
    // Construct MetaTensor for InferMeta Func
    using CompatMetaTensor = framework::CompatMetaTensor;
    CompatMetaTensor xshape(context->GetInputVarPtrs("XShape")[0],
                            context->IsRuntime());
    CompatMetaTensor dx(
        context->GetOutputVarPtrs(framework::GradVarName("X"))[0],
        context->IsRuntime());
    phi::KernelWithXShapeInferMeta(xshape, &dx);
377 378 379 380 381 382 383 384 385 386
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
  }
};
387 388
DECLARE_INPLACE_OP_INFERER(FlattenOpInplaceInferer, {"X", "Out"});
DECLARE_INPLACE_OP_INFERER(FlattenGradInplaceInferer,
389 390
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
391
DECLARE_NO_NEED_BUFFER_VARS_INFERER(FlattenGradNoNeedBufferVarsInferer, "X");
D
dzhwinter 已提交
392

B
Bai Yifan 已提交
393 394 395 396
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
397 398 399
REGISTER_OPERATOR(flatten, ops::FlattenOp, ops::FlattenOpMaker,
                  ops::FlattenGradOpMaker<paddle::framework::OpDesc>,
                  ops::FlattenGradOpMaker<paddle::imperative::OpBase>,
400
                  ops::FlattenOpInplaceInferer);
401
REGISTER_OPERATOR(flatten_grad, ops::FlattenGradOp,
402 403
                  ops::FlattenGradInplaceInferer,
                  ops::FlattenGradNoNeedBufferVarsInferer);
404 405

REGISTER_OPERATOR(flatten2, ops::Flatten2Op, ops::Flatten2OpMaker,
H
hong 已提交
406 407
                  ops::Flatten2GradOpMaker<paddle::framework::OpDesc>,
                  ops::Flatten2GradOpMaker<paddle::imperative::OpBase>,
408
                  ops::FlattenOpInplaceInferer);
409
REGISTER_OPERATOR(flatten2_grad, ops::Flatten2GradOp,
410
                  ops::FlattenGradInplaceInferer);
411

412 413 414 415 416 417 418 419 420 421
REGISTER_OPERATOR(
    flatten_contiguous_range, ops::FlattenContiguousRangeOp,
    ops::FlattenContiguousRangeOpMaker,
    ops::FlattenContiguousRangeGradOpMaker<paddle::framework::OpDesc>,
    ops::FlattenContiguousRangeGradOpMaker<paddle::imperative::OpBase>,
    ops::FlattenOpInplaceInferer);
REGISTER_OPERATOR(flatten_contiguous_range_grad,
                  ops::FlattenContiguousRangeGradOp,
                  ops::FlattenGradInplaceInferer);

422 423 424
REGISTER_OP_CPU_KERNEL(
    flatten, ops::FlattenKernel<paddle::platform::CPUDeviceContext, float>,
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, double>,
425
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, uint8_t>,
426 427 428 429 430 431 432
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, int>,
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::FlattenKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    flatten_grad,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, double>,
433
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
434 435 436 437 438 439
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::FlattenGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    flatten2, ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, float>,
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, double>,
440
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, uint8_t>,
441 442 443 444 445 446 447
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, int>,
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Flatten2Kernel<paddle::platform::CPUDeviceContext, int64_t>);
REGISTER_OP_CPU_KERNEL(
    flatten2_grad,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, double>,
448
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, uint8_t>,
449 450 451
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, int>,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, int8_t>,
    ops::Flatten2GradKernel<paddle::platform::CPUDeviceContext, int64_t>);