Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2be20e20
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2be20e20
编写于
2月 08, 2022
作者:
H
huzhiqiang
提交者:
GitHub
2月 09, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
convert paddle model to mlir paddle dialect (#39216)
上级
a7d08db9
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
628 addition
and
17 deletion
+628
-17
.gitignore
.gitignore
+1
-0
paddle/fluid/operators/abs_op.cc
paddle/fluid/operators/abs_op.cc
+4
-2
paddle/fluid/operators/angle_op.cc
paddle/fluid/operators/angle_op.cc
+4
-2
paddle/fluid/operators/clip_op.cc
paddle/fluid/operators/clip_op.cc
+4
-2
paddle/fluid/operators/flatten_op.cc
paddle/fluid/operators/flatten_op.cc
+4
-2
paddle/fluid/operators/mul_op.cc
paddle/fluid/operators/mul_op.cc
+2
-1
paddle/fluid/operators/renorm_op.cc
paddle/fluid/operators/renorm_op.cc
+5
-3
paddle/fluid/operators/reshape_op.cc
paddle/fluid/operators/reshape_op.cc
+2
-1
paddle/fluid/operators/scale_op.cc
paddle/fluid/operators/scale_op.cc
+2
-1
paddle/infrt/host_context/CMakeLists.txt
paddle/infrt/host_context/CMakeLists.txt
+2
-0
paddle/infrt/host_context/paddle_mlir.cc
paddle/infrt/host_context/paddle_mlir.cc
+400
-0
paddle/infrt/host_context/paddle_mlir.h
paddle/infrt/host_context/paddle_mlir.h
+105
-0
paddle/infrt/host_context/paddle_mlir_converter.cc
paddle/infrt/host_context/paddle_mlir_converter.cc
+56
-0
tools/infrt/generate_pd_op_dialect_from_paddle_op_maker.py
tools/infrt/generate_pd_op_dialect_from_paddle_op_maker.py
+37
-3
未找到文件。
.gitignore
浏览文件 @
2be20e20
...
...
@@ -46,6 +46,7 @@ tools/__pycache__
# This file is automatically generated.
# TODO(zhiqiang) Move this file to build directory.
paddle/infrt/dialect/pd_ops.td
paddle/infrt/dialect/pd_ops_info.h
.lit_test_times.txt
paddle/infrt/tests/dialect/Output
paddle/infrt/tests/lit.cfg.py
paddle/fluid/operators/abs_op.cc
浏览文件 @
2be20e20
...
...
@@ -47,11 +47,13 @@ class AbsOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
"(Tensor), The output tensor of abs op."
);
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
.
SetDefault
(
false
)
.
AsExtra
();
AddAttr
<
bool
>
(
"use_cudnn"
,
"(bool, default false) Only used in cudnn kernel, need "
"install cudnn"
)
.
SetDefault
(
false
);
.
SetDefault
(
false
)
.
AsExtra
();
AddComment
(
R"DOC(
Abs Operator.
...
...
paddle/fluid/operators/angle_op.cc
浏览文件 @
2be20e20
...
...
@@ -47,11 +47,13 @@ class AngleOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
"(Tensor), The output tensor of angle op."
);
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
.
SetDefault
(
false
)
.
AsExtra
();
AddAttr
<
bool
>
(
"use_cudnn"
,
"(bool, default false) Only used in cudnn kernel, need "
"install cudnn"
)
.
SetDefault
(
false
);
.
SetDefault
(
false
)
.
AsExtra
();
AddComment
(
R"DOC(
Angle Operator.
...
...
paddle/fluid/operators/clip_op.cc
浏览文件 @
2be20e20
...
...
@@ -71,12 +71,14 @@ class ClipOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
AttrType
>
(
"max"
,
"float number, the maximum value to clip by."
);
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
.
SetDefault
(
false
)
.
AsExtra
();
AddAttr
<
std
::
string
>
(
"mkldnn_data_type"
,
"(string, default
\"
float32
\"
). Data type of mkldnn kernel"
)
.
SetDefault
(
"float32"
)
.
InEnum
({
"float32"
,
"bfloat16"
});
.
InEnum
({
"float32"
,
"bfloat16"
})
.
AsExtra
();
AddComment
(
R"DOC(
Clip Operator.
...
...
paddle/fluid/operators/flatten_op.cc
浏览文件 @
2be20e20
...
...
@@ -103,12 +103,14 @@ class FlattenOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
(
1
);
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
.
SetDefault
(
false
)
.
AsExtra
();
AddAttr
<
std
::
string
>
(
"mkldnn_data_type"
,
"(string, default
\"
float32
\"
). Data type of mkldnn kernel"
)
.
SetDefault
(
"float32"
)
.
InEnum
({
"float32"
,
"bfloat16"
});
.
InEnum
({
"float32"
,
"bfloat16"
})
.
AsExtra
();
AddComment
(
R"DOC(
Flatten Operator
...
...
paddle/fluid/operators/mul_op.cc
浏览文件 @
2be20e20
...
...
@@ -136,7 +136,8 @@ class MulOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
"(Tensor), The output tensor of mul op."
);
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
.
SetDefault
(
false
)
.
AsExtra
();
AddAttr
<
int
>
(
"x_num_col_dims"
,
R"DOC((int, default 1), The mul_op can take tensors with more than two
...
...
paddle/fluid/operators/renorm_op.cc
浏览文件 @
2be20e20
...
...
@@ -52,10 +52,12 @@ class RenormOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
bool
>
(
"use_cudnn"
,
"(bool, default false) Only used in cudnn kernel, need "
"install cudnn"
)
.
SetDefault
(
false
);
.
SetDefault
(
false
)
.
AsExtra
();
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
.
SetDefault
(
false
)
.
AsExtra
();
AddComment
(
R"DOC(
Renorm Operator.
...
...
@@ -114,4 +116,4 @@ REGISTER_OP_CPU_KERNEL(renorm, ops::CPURenormKernel<float>,
ops
::
CPURenormKernel
<
double
>
);
REGISTER_OP_CPU_KERNEL
(
renorm_grad
,
ops
::
CPURenormGradKernel
<
float
>
,
ops
::
CPURenormGradKernel
<
double
>
);
\ No newline at end of file
ops
::
CPURenormGradKernel
<
double
>
);
paddle/fluid/operators/reshape_op.cc
浏览文件 @
2be20e20
...
...
@@ -507,7 +507,8 @@ class Reshape2OpMaker : public ReshapeOpMaker {
"mkldnn_data_type"
,
"(string, default
\"
float32
\"
). Data type of mkldnn kernel"
)
.
SetDefault
(
"float32"
)
.
InEnum
({
"float32"
,
"int8"
,
"bfloat16"
});
.
InEnum
({
"float32"
,
"int8"
,
"bfloat16"
})
.
AsExtra
();
}
};
...
...
paddle/fluid/operators/scale_op.cc
浏览文件 @
2be20e20
...
...
@@ -75,7 +75,8 @@ $$Out = scale*(X + bias)$$
.
SetDefault
(
true
);
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false) Only used in mkldnn kernel"
)
.
SetDefault
(
false
);
.
SetDefault
(
false
)
.
AsExtra
();
}
};
...
...
paddle/infrt/host_context/CMakeLists.txt
浏览文件 @
2be20e20
...
...
@@ -21,5 +21,7 @@ cc_test_tiny(test_infrt_op_executable SRCS op_executable_test.cc DEPS infrt ${ML
cc_test_tiny
(
test_infrt_core_runtime SRCS core_runtime_test.cc DEPS infrt
${
MLIR_IR_LIBS
}
)
cc_test_tiny
(
test_infrt_mlir_to_runtime_translate SRCS mlir_to_runtime_translate_test.cc DEPS infrt
${
MLIR_IR_LIBS
}
)
add_executable
(
paddle-mlir-convert paddle_mlir.cc paddle_mlir_converter.cc
)
target_link_libraries
(
paddle-mlir-convert infrt
${
MLIR_IR_LIBS
}
)
add_executable
(
infrtexec mlir_exec.cc
)
target_link_libraries
(
infrtexec infrt
${
MLIR_IR_LIBS
}
)
paddle/infrt/host_context/paddle_mlir.cc
0 → 100644
浏览文件 @
2be20e20
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/infrt/host_context/paddle_mlir.h"
#include "paddle/infrt/dialect/pd_ops_info.h"
MLIRModelGenImpl
::
MLIRModelGenImpl
()
:
context_
(
infrt
::
Global
::
getMLIRContext
()),
builder_
(
context_
)
{
context_
->
allowUnregisteredDialects
();
context_
->
getOrLoadDialect
<
mlir
::
StandardOpsDialect
>
();
context_
->
getOrLoadDialect
<
infrt
::
dialect
::
INFRTDialect
>
();
context_
->
getOrLoadDialect
<
infrt
::
ts
::
TensorShapeDialect
>
();
context_
->
getOrLoadDialect
<
infrt
::
dt
::
DTDialect
>
();
context_
->
getOrLoadDialect
<
mlir
::
pd
::
PaddleDialect
>
();
module_
=
mlir
::
ModuleOp
::
create
(
mlir
::
UnknownLoc
::
get
(
context_
));
}
infrt
::
paddle
::
framework_proto
::
ProgramDesc
MLIRModelGenImpl
::
ParsePaddleModel
(
const
std
::
string
&
model_file
)
{
infrt
::
paddle
::
framework_proto
::
ProgramDesc
program_proto
=
*
infrt
::
paddle
::
LoadProgram
(
model_file
);
return
program_proto
;
}
mlir
::
ModuleOp
MLIRModelGenImpl
::
ImportPaddleModel
(
const
std
::
string
&
model_dir
)
{
infrt
::
paddle
::
framework_proto
::
ProgramDesc
program_proto
=
ParsePaddleModel
(
model_dir
+
"/__model__"
);
return
ImportPaddleModel
(
program_proto
);
}
mlir
::
ModuleOp
MLIRModelGenImpl
::
ImportPaddleModel
(
const
std
::
string
&
model_file
,
const
std
::
string
&
param_file
)
{
infrt
::
paddle
::
framework_proto
::
ProgramDesc
program_proto
=
ParsePaddleModel
(
model_file
);
return
ImportPaddleModel
(
program_proto
);
}
mlir
::
ModuleOp
MLIRModelGenImpl
::
ImportPaddleModel
(
const
infrt
::
paddle
::
framework_proto
::
ProgramDesc
&
program
)
{
main_block_
=
program
.
blocks
(
0
);
llvm
::
SmallVector
<
mlir
::
Type
,
4
>
operandTypes
=
GetModelInputsType
(
program
);
llvm
::
SmallVector
<
mlir
::
Type
,
4
>
resultTypes
=
GetModelOutputsType
(
program
);
mlir
::
FuncOp
mainFunc
=
UpdateModelModule
(
operandTypes
,
resultTypes
);
UpdateModelParams
(
program
,
&
mainFunc
);
UpdateModelOps
(
program
);
UpdateModelOutputs
(
program
);
return
module_
;
}
mlir
::
FuncOp
MLIRModelGenImpl
::
UpdateModelModule
(
llvm
::
SmallVector
<
mlir
::
Type
,
4
>
operandTypes
,
llvm
::
SmallVector
<
mlir
::
Type
,
4
>
resultTypes
)
{
// create main op
const
std
::
string
&
name
=
"main_graph"
;
auto
mainFunc
=
mlir
::
FuncOp
::
create
(
mlir
::
UnknownLoc
::
get
(
context_
),
name
,
/*type=*/
builder_
.
getFunctionType
({
operandTypes
},
{
resultTypes
}),
/*attrs=*/
{});
module_
.
push_back
(
mainFunc
);
mainFunc
.
addEntryBlock
();
builder_
.
setInsertionPointToStart
(
&
mainFunc
.
body
().
back
());
return
mainFunc
;
}
llvm
::
SmallVector
<
mlir
::
Type
,
4
>
MLIRModelGenImpl
::
GetModelInputsType
(
const
infrt
::
paddle
::
framework_proto
::
ProgramDesc
&
program
)
{
llvm
::
SmallVector
<
mlir
::
Type
,
4
>
operandTypes
;
operandTypes
.
push_back
(
infrt
::
dt
::
TensorMapType
::
get
(
context_
));
for
(
auto
&
op_desc
:
main_block_
.
ops
())
{
if
(
op_desc
.
type
()
!=
"feed"
)
continue
;
for
(
int
var_idx
=
0
;
var_idx
<
op_desc
.
outputs_size
();
++
var_idx
)
{
// update input variables
auto
&
in
=
op_desc
.
outputs
()[
var_idx
];
std
::
string
input_var_name
=
in
.
arguments
(
0
);
for
(
int
i
=
0
;
i
<
main_block_
.
vars_size
();
i
++
)
{
auto
var_desc
=
main_block_
.
vars
(
i
);
if
(
var_desc
.
name
()
==
input_var_name
)
{
std
::
vector
<
int64_t
>
dims
=
RepeatedToVector
<
int64_t
>
(
var_desc
.
type
().
lod_tensor
().
tensor
().
dims
());
mlir
::
Type
precision_
;
ConvertDataType
(
var_desc
.
type
().
lod_tensor
().
tensor
().
data_type
(),
builder_
,
&
precision_
);
mlir
::
Type
type_
=
mlir
::
RankedTensorType
::
get
(
dims
,
precision_
);
operandTypes
.
push_back
(
type_
);
}
}
}
}
return
operandTypes
;
}
llvm
::
SmallVector
<
mlir
::
Type
,
4
>
MLIRModelGenImpl
::
GetModelOutputsType
(
const
infrt
::
paddle
::
framework_proto
::
ProgramDesc
&
program
)
{
llvm
::
SmallVector
<
mlir
::
Type
,
4
>
resultTypes
;
for
(
auto
&
op_desc
:
main_block_
.
ops
())
{
if
(
op_desc
.
type
()
!=
"fetch"
)
continue
;
for
(
int
var_idx
=
0
;
var_idx
<
op_desc
.
inputs_size
();
++
var_idx
)
{
auto
&
in
=
op_desc
.
inputs
()[
var_idx
];
std
::
string
input_var_name
=
in
.
arguments
(
0
);
for
(
int
i
=
0
;
i
<
main_block_
.
vars_size
();
i
++
)
{
auto
var_desc
=
main_block_
.
vars
(
i
);
if
(
var_desc
.
name
()
==
input_var_name
)
{
std
::
vector
<
int64_t
>
dims
=
RepeatedToVector
<
int64_t
>
(
var_desc
.
type
().
lod_tensor
().
tensor
().
dims
());
mlir
::
Type
precision_
;
ConvertDataType
(
var_desc
.
type
().
lod_tensor
().
tensor
().
data_type
(),
builder_
,
&
precision_
);
mlir
::
Type
type_
=
mlir
::
RankedTensorType
::
get
(
dims
,
precision_
);
resultTypes
.
push_back
(
type_
);
}
}
}
}
return
resultTypes
;
}
void
MLIRModelGenImpl
::
UpdateModelOps
(
const
infrt
::
paddle
::
framework_proto
::
ProgramDesc
&
program
)
{
for
(
auto
&
op_desc
:
main_block_
.
ops
())
{
if
(
op_desc
.
type
()
==
"feed"
||
op_desc
.
type
()
==
"fetch"
)
{
continue
;
}
buildOperation
(
op_desc
);
}
}
void
MLIRModelGenImpl
::
UpdateModelParams
(
const
infrt
::
paddle
::
framework_proto
::
ProgramDesc
&
program
,
mlir
::
FuncOp
*
mainFunc
)
{
// update input vars
for
(
auto
&
op_desc
:
main_block_
.
ops
())
{
if
(
op_desc
.
type
()
==
"feed"
)
{
for
(
int
var_idx
=
0
;
var_idx
<
op_desc
.
outputs_size
();
++
var_idx
)
{
// update input variables
auto
&
in
=
op_desc
.
outputs
()[
var_idx
];
std
::
string
input_var_name
=
in
.
arguments
(
0
);
::
mlir
::
Value
input_
=
mainFunc
->
getArgument
(
1
);
params_map_
.
insert
(
std
::
pair
<
std
::
string
,
mlir
::
Value
>
(
input_var_name
,
input_
));
}
}
}
// update persistable tensors
::
mlir
::
Value
map
=
mainFunc
->
getArgument
(
0
);
for
(
int
i
=
0
;
i
<
main_block_
.
vars_size
();
i
++
)
{
auto
var_desc
=
main_block_
.
vars
(
i
);
if
(
params_map_
.
find
(
var_desc
.
name
())
!=
params_map_
.
end
())
continue
;
if
(
var_desc
.
name
()
!=
"feed"
&&
var_desc
.
name
()
!=
"fetch"
&&
var_desc
.
persistable
())
{
auto
name
=
builder_
.
getStringAttr
(
var_desc
.
name
());
std
::
vector
<
int64_t
>
dims
=
RepeatedToVector
<
int64_t
>
(
var_desc
.
type
().
lod_tensor
().
tensor
().
dims
());
mlir
::
Type
precision_
;
ConvertDataType
(
var_desc
.
type
().
lod_tensor
().
tensor
().
data_type
(),
builder_
,
&
precision_
);
mlir
::
Type
type_
=
mlir
::
RankedTensorType
::
get
(
dims
,
precision_
);
auto
op
=
builder_
.
create
<
infrt
::
dt
::
GetParamOp
>
(
mlir
::
UnknownLoc
::
get
(
context_
),
type_
,
map
,
name
);
params_map_
.
insert
(
std
::
pair
<
std
::
string
,
mlir
::
Value
>
(
var_desc
.
name
(),
op
.
getOperation
()
->
getResult
(
0
)));
}
}
}
void
MLIRModelGenImpl
::
UpdateModelOutputs
(
const
infrt
::
paddle
::
framework_proto
::
ProgramDesc
&
program
)
{
// update outputs
for
(
auto
&
op_desc
:
main_block_
.
ops
())
{
if
(
op_desc
.
type
()
==
"fetch"
)
{
for
(
int
var_idx
=
0
;
var_idx
<
op_desc
.
inputs_size
();
++
var_idx
)
{
auto
&
in
=
op_desc
.
inputs
()[
var_idx
];
// varibale name
std
::
string
input_var_name
=
in
.
arguments
(
0
);
// update model outpus
mlir
::
Location
loc
=
mlir
::
UnknownLoc
::
get
(
context_
);
llvm
::
SmallVector
<
mlir
::
Value
,
4
>
operands
;
operands
.
push_back
((
params_map_
[
input_var_name
]));
llvm
::
SmallVector
<
mlir
::
Type
,
4
>
resultTypes
;
llvm
::
SmallVector
<
mlir
::
NamedAttribute
,
4
>
attrs
;
mlir
::
OperationState
state
(
loc
,
mlir
::
ReturnOp
::
getOperationName
(),
operands
,
resultTypes
,
attrs
);
builder_
.
createOperation
(
state
);
}
}
}
}
void
MLIRModelGenImpl
::
buildOperation
(
const
infrt
::
paddle
::
framework_proto
::
OpDesc
&
op_
)
{
const
std
::
string
&
op_name
=
"pd."
+
op_
.
type
();
mlir
::
Location
loc
=
mlir
::
UnknownLoc
::
get
(
context_
);
llvm
::
SmallVector
<
mlir
::
Value
,
4
>
operands
=
GetOpInputValue
(
op_
);
llvm
::
SmallVector
<
mlir
::
Type
,
4
>
resultTypes
=
GetOpOutputType
(
op_
);
llvm
::
SmallVector
<
mlir
::
NamedAttribute
,
4
>
attrs
=
GetOpAttributes
(
op_
);
mlir
::
OperationState
result
(
loc
,
op_name
,
operands
,
resultTypes
,
attrs
);
mlir
::
Operation
*
mlir_op_
=
builder_
.
createOperation
(
result
);
RegisterOpOutputVars
(
op_
,
mlir_op_
);
}
llvm
::
SmallVector
<
mlir
::
Value
,
4
>
MLIRModelGenImpl
::
GetOpInputValue
(
const
infrt
::
paddle
::
framework_proto
::
OpDesc
&
op_
)
{
llvm
::
SmallVector
<
mlir
::
Value
,
4
>
operands
;
std
::
vector
<
std
::
string
>
inputs_info
=
{};
if
(
pd_dialect_inputs_info_map_
.
count
(
op_
.
type
()))
inputs_info
=
pd_dialect_inputs_info_map_
.
at
(
op_
.
type
());
for
(
int
var_idx
=
0
;
var_idx
<
op_
.
inputs_size
();
++
var_idx
)
{
auto
&
var
=
op_
.
inputs
(
var_idx
);
if
(
!
var
.
arguments
().
empty
())
{
if
(
!
std
::
count
(
inputs_info
.
begin
(),
inputs_info
.
end
(),
var
.
parameter
()))
continue
;
operands
.
push_back
((
params_map_
[
var
.
arguments
()[
0
]]));
}
}
return
operands
;
}
llvm
::
SmallVector
<
mlir
::
Type
,
4
>
MLIRModelGenImpl
::
GetOpOutputType
(
const
infrt
::
paddle
::
framework_proto
::
OpDesc
&
op_
)
{
llvm
::
SmallVector
<
mlir
::
Type
,
4
>
resultTypes
;
std
::
vector
<
std
::
string
>
pd_dialect_outputs_info
=
{};
if
(
pd_dialect_outputs_info_map_
.
count
(
op_
.
type
()))
pd_dialect_outputs_info
=
pd_dialect_outputs_info_map_
.
at
(
op_
.
type
());
// update op outputs info
for
(
int
var_idx
=
0
;
var_idx
<
op_
.
outputs_size
();
++
var_idx
)
{
auto
&
var_name
=
op_
.
outputs
(
var_idx
).
arguments
()[
0
];
if
(
!
std
::
count
(
pd_dialect_outputs_info
.
begin
(),
pd_dialect_outputs_info
.
end
(),
op_
.
outputs
(
var_idx
).
parameter
()))
continue
;
// update persistable tensors
for
(
int
i
=
0
;
i
<
main_block_
.
vars_size
();
i
++
)
{
auto
var_desc
=
main_block_
.
vars
(
i
);
if
(
var_desc
.
name
()
==
var_name
)
{
std
::
vector
<
int64_t
>
dims
=
RepeatedToVector
<
int64_t
>
(
var_desc
.
type
().
lod_tensor
().
tensor
().
dims
());
mlir
::
Type
precision_
;
ConvertDataType
(
var_desc
.
type
().
lod_tensor
().
tensor
().
data_type
(),
builder_
,
&
precision_
);
mlir
::
Type
type_
=
mlir
::
RankedTensorType
::
get
(
dims
,
precision_
);
resultTypes
.
push_back
(
type_
);
}
}
}
return
resultTypes
;
}
llvm
::
SmallVector
<
mlir
::
NamedAttribute
,
4
>
MLIRModelGenImpl
::
GetOpAttributes
(
const
infrt
::
paddle
::
framework_proto
::
OpDesc
&
op_
)
{
// GetInputVarName
llvm
::
SmallVector
<
mlir
::
NamedAttribute
,
4
>
attrs
;
#define ATTR_IMPL_CASE(PROTO_TYPE, PROTO_TYPE_METHOD, MLIR_TYPE_METHOD) \
case infrt::paddle::framework_proto::AttrType::PROTO_TYPE: { \
auto data = op_.attrs(attrs_num).PROTO_TYPE_METHOD(); \
auto value_ = builder_.MLIR_TYPE_METHOD(data); \
auto name_ = builder_.getStringAttr(attr_name_); \
auto attr_ = mlir::NamedAttribute(name_, value_); \
attrs.push_back(attr_); \
break; \
}
#define REPEATED_ATTR_IMPLE_CASE( \
PROTO_TYPE, PROTO_TYPE_METHOD, MLIR_TYPE, MLIR_TYPE_METHOD) \
case infrt::paddle::framework_proto::AttrType::PROTO_TYPE: { \
std::vector<MLIR_TYPE> data; \
for (const auto &var : op_.attrs(attrs_num).PROTO_TYPE_METHOD()) { \
data.push_back(MLIR_TYPE(var)); \
} \
auto value_ = \
builder_.MLIR_TYPE_METHOD(llvm::makeArrayRef<MLIR_TYPE>(data)); \
auto name_ = builder_.getStringAttr(attr_name_); \
auto attr_ = mlir::NamedAttribute(name_, value_); \
attrs.push_back(attr_); \
break; \
}
#define UNIMPLEMENTED_ATTR_IMPL_CASE(PROTO_TYPE) \
case infrt::paddle::framework_proto::AttrType::PROTO_TYPE: { \
std::cout << "Unimplemented attr type: framework_proto::AttrType::" \
<< #PROTO_TYPE << std::endl; \
break; \
}
// get registered attributes
const
std
::
string
&
op_name
=
"pd."
+
op_
.
type
();
mlir
::
RegisteredOperationName
registered_op_name_
=
mlir
::
RegisteredOperationName
::
lookup
(
op_name
,
context_
).
getValue
();
llvm
::
ArrayRef
<
mlir
::
StringAttr
>
attr_names_
=
registered_op_name_
.
getAttributeNames
();
std
::
vector
<
mlir
::
StringAttr
>
attr_names_vec_
=
attr_names_
.
vec
();
// update attrs
for
(
int
attrs_num
=
0
;
attrs_num
<
op_
.
attrs_size
();
attrs_num
++
)
{
auto
attr_name_
=
op_
.
attrs
(
attrs_num
).
name
();
auto
type
=
op_
.
attrs
(
attrs_num
).
type
();
if
(
!
std
::
count
(
attr_names_vec_
.
begin
(),
attr_names_vec_
.
end
(),
attr_name_
))
continue
;
switch
(
type
)
{
ATTR_IMPL_CASE
(
FLOAT
,
f
,
getF32FloatAttr
);
ATTR_IMPL_CASE
(
BOOLEAN
,
b
,
getBoolAttr
);
ATTR_IMPL_CASE
(
INT
,
i
,
getI32IntegerAttr
);
ATTR_IMPL_CASE
(
LONG
,
l
,
getI64IntegerAttr
);
ATTR_IMPL_CASE
(
STRING
,
s
,
getStringAttr
);
REPEATED_ATTR_IMPLE_CASE
(
STRINGS
,
strings
,
llvm
::
StringRef
,
getStrArrayAttr
);
REPEATED_ATTR_IMPLE_CASE
(
FLOATS
,
floats
,
float
,
getF32ArrayAttr
);
REPEATED_ATTR_IMPLE_CASE
(
INTS
,
ints
,
int32_t
,
getI32ArrayAttr
);
REPEATED_ATTR_IMPLE_CASE
(
LONGS
,
longs
,
int64_t
,
getI64ArrayAttr
);
// Unimplemented attr type, will be supported later @DannyIsFunny
// bools attribute is not supported due to bug of llvm.
// REPEATED_ATTR_IMPLE_CASE(BOOLEANS, bools, bool, getBoolArrayAttr);
UNIMPLEMENTED_ATTR_IMPL_CASE
(
BOOLEANS
);
UNIMPLEMENTED_ATTR_IMPL_CASE
(
BLOCK
);
UNIMPLEMENTED_ATTR_IMPL_CASE
(
BLOCKS
);
default:
std
::
cout
<<
"error attribute"
<<
attr_name_
<<
std
::
endl
;
}
}
return
attrs
;
}
void
MLIRModelGenImpl
::
RegisterOpOutputVars
(
const
infrt
::
paddle
::
framework_proto
::
OpDesc
&
op_
,
mlir
::
Operation
*
mlir_op_
)
{
// op outputs
for
(
int
var_idx
=
0
;
var_idx
<
op_
.
outputs_size
();
++
var_idx
)
{
auto
&
var_name
=
op_
.
outputs
(
var_idx
).
arguments
()[
0
];
// output name
auto
var_
=
mlir_op_
->
getResult
(
var_idx
);
params_map_
.
insert
(
std
::
pair
<
std
::
string
,
mlir
::
Value
>
(
var_name
,
var_
));
}
}
bool
ConvertDataType
(
infrt
::
paddle
::
framework_proto
::
VarType
::
Type
dtype
,
mlir
::
Builder
builder
,
mlir
::
Type
*
type
)
{
switch
(
dtype
)
{
case
infrt
::
paddle
::
framework_proto
::
VarType
::
Type
::
VarType_Type_FP16
:
*
type
=
builder
.
getF16Type
();
return
true
;
case
infrt
::
paddle
::
framework_proto
::
VarType
::
Type
::
VarType_Type_FP32
:
*
type
=
builder
.
getF32Type
();
return
true
;
case
infrt
::
paddle
::
framework_proto
::
VarType
::
Type
::
VarType_Type_FP64
:
*
type
=
builder
.
getF64Type
();
return
true
;
case
infrt
::
paddle
::
framework_proto
::
VarType
::
Type
::
VarType_Type_BOOL
:
*
type
=
builder
.
getIntegerType
(
1
);
return
true
;
case
infrt
::
paddle
::
framework_proto
::
VarType
::
Type
::
VarType_Type_INT8
:
*
type
=
builder
.
getIntegerType
(
8
);
return
true
;
case
infrt
::
paddle
::
framework_proto
::
VarType
::
Type
::
VarType_Type_INT16
:
*
type
=
builder
.
getIntegerType
(
16
);
return
true
;
case
infrt
::
paddle
::
framework_proto
::
VarType
::
Type
::
VarType_Type_INT32
:
*
type
=
builder
.
getIntegerType
(
32
);
return
true
;
case
infrt
::
paddle
::
framework_proto
::
VarType
::
Type
::
VarType_Type_INT64
:
*
type
=
builder
.
getIntegerType
(
64
);
return
true
;
case
infrt
::
paddle
::
framework_proto
::
VarType
::
Type
::
VarType_Type_UINT8
:
*
type
=
builder
.
getIntegerType
(
8
,
/*isSigned=*/
false
);
return
true
;
default:
return
false
;
}
}
paddle/infrt/host_context/paddle_mlir.h
0 → 100644
浏览文件 @
2be20e20
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef PADDLE_INFRT_HOST_CONTEXT_PADDLE_MLIR_H_
#define PADDLE_INFRT_HOST_CONTEXT_PADDLE_MLIR_H_
#include <fstream>
#include <iostream>
#include <string>
#include "llvm/Support/CommandLine.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/AsmState.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/MLIRContext.h"
#include "paddle/infrt/common/global.h"
#include "paddle/infrt/common/string.h"
#include "paddle/infrt/dialect/basic_kernels.h"
#include "paddle/infrt/dialect/dense_tensor.h"
#include "paddle/infrt/dialect/infrt_base.h"
#include "paddle/infrt/dialect/init_infrt_dialects.h"
#include "paddle/infrt/dialect/pd_ops.h"
#include "paddle/infrt/dialect/tensor_shape.h"
#include "paddle/infrt/paddle/model_parser.h"
class
MLIRModelGenImpl
{
public:
MLIRModelGenImpl
();
mlir
::
ModuleOp
ImportPaddleModel
(
const
std
::
string
&
model_file
,
const
std
::
string
&
param_file
);
mlir
::
ModuleOp
ImportPaddleModel
(
const
std
::
string
&
model_dir
);
private:
// parse paddle model file
infrt
::
paddle
::
framework_proto
::
ProgramDesc
ParsePaddleModel
(
const
std
::
string
&
model_file
);
// convert paddle model proto into paddle dialect module
mlir
::
ModuleOp
ImportPaddleModel
(
const
infrt
::
paddle
::
framework_proto
::
ProgramDesc
&
program
);
// get inputs and outputs info from program_desc
llvm
::
SmallVector
<
mlir
::
Type
,
4
>
GetModelInputsType
(
const
infrt
::
paddle
::
framework_proto
::
ProgramDesc
&
program
);
llvm
::
SmallVector
<
mlir
::
Type
,
4
>
GetModelOutputsType
(
const
infrt
::
paddle
::
framework_proto
::
ProgramDesc
&
program
);
// create main function module
mlir
::
FuncOp
UpdateModelModule
(
llvm
::
SmallVector
<
mlir
::
Type
,
4
>
operandTypes
,
llvm
::
SmallVector
<
mlir
::
Type
,
4
>
resultTypes
);
// convert paddle ops into paddle dialect ops (in mlir form)
void
UpdateModelOps
(
const
infrt
::
paddle
::
framework_proto
::
ProgramDesc
&
program
);
// convert persistable params and inputs variable into mlir domain
void
UpdateModelParams
(
const
infrt
::
paddle
::
framework_proto
::
ProgramDesc
&
program
,
mlir
::
FuncOp
*
mainFunc
);
// register model outpus into params_map_
void
UpdateModelOutputs
(
const
infrt
::
paddle
::
framework_proto
::
ProgramDesc
&
program
);
// method for converting proto::op into op in paddle dialect
void
buildOperation
(
const
infrt
::
paddle
::
framework_proto
::
OpDesc
&
op_
);
llvm
::
SmallVector
<
mlir
::
Value
,
4
>
GetOpInputValue
(
const
infrt
::
paddle
::
framework_proto
::
OpDesc
&
op_
);
llvm
::
SmallVector
<
mlir
::
Type
,
4
>
GetOpOutputType
(
const
infrt
::
paddle
::
framework_proto
::
OpDesc
&
op_
);
llvm
::
SmallVector
<
mlir
::
NamedAttribute
,
4
>
GetOpAttributes
(
const
infrt
::
paddle
::
framework_proto
::
OpDesc
&
op_
);
void
RegisterOpOutputVars
(
const
infrt
::
paddle
::
framework_proto
::
OpDesc
&
op_
,
mlir
::
Operation
*
mlir_op_
);
mlir
::
MLIRContext
*
context_
;
mlir
::
OpBuilder
builder_
;
mlir
::
ModuleOp
module_
;
infrt
::
paddle
::
framework_proto
::
BlockDesc
main_block_
;
std
::
map
<
std
::
string
,
mlir
::
Value
>
params_map_
;
};
// convert protobuf repeated to std::vector.
template
<
typename
T
>
inline
std
::
vector
<
T
>
RepeatedToVector
(
const
google
::
protobuf
::
RepeatedField
<
T
>
&
repeated_field
)
{
std
::
vector
<
T
>
ret
;
ret
.
reserve
(
repeated_field
.
size
());
std
::
copy
(
repeated_field
.
begin
(),
repeated_field
.
end
(),
std
::
back_inserter
(
ret
));
return
ret
;
}
// convert proto type to mlir type
bool
ConvertDataType
(
infrt
::
paddle
::
framework_proto
::
VarType
::
Type
dtype
,
mlir
::
Builder
builder
,
mlir
::
Type
*
type
);
#endif // PADDLE_INFRT_HOST_CONTEXT_PADDLE_MLIR_H_
paddle/infrt/host_context/paddle_mlir_converter.cc
0 → 100644
浏览文件 @
2be20e20
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/infrt/host_context/paddle_mlir.h"
void
print_usage
()
{
std
::
cout
<<
"Error inputs format, two kinds of inputs are supported:
\n
"
;
std
::
cout
<<
" [1] ./paddle-mlir-convert $path_to_model_file "
"$path_to_params_file
\n
"
;
std
::
cout
<<
" [2] ./paddle-mlir-convert $path_to_model_dir(__model__ + "
"params)
\n
"
;
}
bool
parse_inputs
(
int
argc
,
char
**
argv
,
std
::
string
*
model_file_name
,
std
::
string
*
params_file_name
)
{
switch
(
argc
)
{
case
1
:
{
print_usage
();
return
false
;
}
case
2
:
{
*
model_file_name
=
std
::
string
(
argv
[
1
])
+
std
::
string
(
"/__model__"
);
*
params_file_name
=
std
::
string
(
argv
[
1
])
+
std
::
string
(
"/params"
);
return
true
;
}
case
3
:
{
*
model_file_name
=
argv
[
1
];
*
params_file_name
=
argv
[
2
];
return
true
;
}
default:
{
return
false
;
}
}
}
int
main
(
int
argc
,
char
**
argv
)
{
std
::
string
model_file_name
;
std
::
string
params_file_name
;
if
(
parse_inputs
(
argc
,
argv
,
&
model_file_name
,
&
params_file_name
))
{
MLIRModelGenImpl
myGen
;
auto
module_
=
myGen
.
ImportPaddleModel
(
model_file_name
,
params_file_name
);
module_
.
dump
();
}
}
tools/infrt/generate_pd_op_dialect_from_paddle_op_maker.py
浏览文件 @
2be20e20
...
...
@@ -24,6 +24,7 @@ def get_original_ops():
all_ops
,
_
,
_
=
core
.
op_supported_infos
(
'CPU'
,
core
.
VarDesc
.
VarType
.
FP16
)
grad_ops
=
[]
original_ops
=
[]
necessary_ops
=
[
"scale"
]
for
op
in
all_ops
:
if
op
.
endswith
(
"_grad"
):
...
...
@@ -33,6 +34,8 @@ def get_original_ops():
for
op
in
all_ops
:
if
str
(
op
+
"_grad"
)
in
grad_ops
:
original_ops
.
append
(
op
)
elif
op
in
necessary_ops
:
original_ops
.
append
(
op
)
print
(
"Grad ops num: "
+
str
(
len
(
grad_ops
)))
print
(
"Responded original ops num: "
+
str
(
len
(
original_ops
)))
...
...
@@ -110,6 +113,7 @@ def get_all_ops_desc():
# funtion to generate paddle op dialect file
def
convert_op_proto_into_mlir
(
op_descs
):
dst_dialect_file
=
"../../paddle/infrt/dialect/pd_ops.td"
dialect_info_file
=
"../../paddle/infrt/dialect/pd_ops_info.h"
custom_dialect_file
=
"custom_pdop.td"
# 1. Head files
...
...
@@ -144,12 +148,14 @@ def convert_op_proto_into_mlir(op_descs):
"while"
,
"conditional_block"
,
"set_value"
,
"run_program"
]
skipped_attr_list
=
[
"trainable_statistics"
,
"use_global_stats"
,
"is_test"
,
"use_mkldnn"
,
"use_cudnn"
"trainable_statistics"
,
"use_global_stats"
,
"is_test"
,
"use_quantizer"
]
original_ops_
=
get_original_ops
()
automatically_generated_op_dialect
=
[]
ops_inputs_map_
=
{}
ops_outputs_map_
=
{}
for
op_type
,
op_proto
in
op_descs
.
items
():
if
(
op_type
in
skipped_op_list
)
or
(
op_type
not
in
original_ops_
):
continue
...
...
@@ -172,13 +178,16 @@ def convert_op_proto_into_mlir(op_descs):
if
(
len
(
op_proto
[
INPUTS
])
>
0
or
len
(
op_proto
[
ATTRS
])
>
0
):
ARGUMENTS
=
" let arguments = (ins "
# 2.3.1 inputs
ins_cache_list_
=
[]
for
input_
in
op_proto
[
INPUTS
]:
if
op_proto
[
INPUTS
][
input_
][
EXTRA
]
!=
True
and
op_proto
[
INPUTS
][
input_
][
INTERMEDIATE
]
!=
True
:
ins_cache_list_
.
append
(
input_
)
if
op_proto
[
INPUTS
][
input_
][
DUPLICABLE
]
!=
"true"
:
ARGUMENTS
=
ARGUMENTS
+
" PD_Tensor:$"
+
input_
+
","
else
:
ARGUMENTS
=
ARGUMENTS
+
" PD_Tensor_Array:$"
+
input_
+
","
ops_inputs_map_
[
op_type
]
=
ins_cache_list_
# unsupported: BLOCK = 8; BLOCKS = 10;
attr_mlir_converter
=
{
0
:
'SI32Attr'
,
...
...
@@ -244,15 +253,17 @@ def convert_op_proto_into_mlir(op_descs):
RESULTS
=
""
if
(
len
(
op_proto
[
OUTPUTS
])
>
0
):
RESULTS
=
"
\n
let results = (outs "
outs_cache_list_
=
[]
for
output_
in
op_proto
[
OUTPUTS
]:
if
op_proto
[
OUTPUTS
][
output_
][
EXTRA
]
!=
True
and
op_proto
[
OUTPUTS
][
output_
][
INTERMEDIATE
]
!=
True
:
outs_cache_list_
.
append
(
output_
)
if
op_proto
[
OUTPUTS
][
output_
][
DUPLICABLE
]
!=
"true"
:
RESULTS
=
RESULTS
+
"PD_Tensor:$"
+
output_
+
","
else
:
RESULTS
=
RESULTS
+
"PD_Tensor_Array:$"
+
output_
+
","
print
(
HEAD
+
" PD_Tensor_Array:$"
+
output_
+
","
)
ops_outputs_map_
[
op_type
]
=
outs_cache_list_
RESULTS
=
RESULTS
[:
-
1
]
+
");
\n
"
with
open
(
dst_dialect_file
,
'a'
)
as
ops_mlir_file
:
ops_mlir_file
.
write
(
HEAD
)
...
...
@@ -267,6 +278,29 @@ def convert_op_proto_into_mlir(op_descs):
print
(
"Automatically generated op dialects num: "
+
str
(
len
(
automatically_generated_op_dialect
)))
with
open
(
dialect_info_file
,
'w'
)
as
pd_ops_info_file
:
pd_ops_info_file
.
write
(
"#include<map>
\n
#include<string>
\n
#include<vector>
\n
"
)
pd_ops_info_file
.
write
(
"const std::map<std::string, std::vector<std::string>> pd_dialect_inputs_info_map_ = {
\n
"
)
for
data_
in
ops_inputs_map_
:
pd_ops_info_file
.
write
(
" {
\"
"
+
data_
+
"
\"
, {"
)
for
var_
in
ops_inputs_map_
[
data_
]:
pd_ops_info_file
.
write
(
"
\"
"
+
var_
+
"
\"
,"
)
pd_ops_info_file
.
write
(
"}},
\n
"
)
pd_ops_info_file
.
write
(
"};
\n
"
)
pd_ops_info_file
.
write
(
"const std::map<std::string, std::vector<std::string>> pd_dialect_outputs_info_map_ = {
\n
"
)
for
data_
in
ops_outputs_map_
:
pd_ops_info_file
.
write
(
" {
\"
"
+
data_
+
"
\"
, {"
)
for
var_
in
ops_outputs_map_
[
data_
]:
pd_ops_info_file
.
write
(
"
\"
"
+
var_
+
"
\"
,"
)
pd_ops_info_file
.
write
(
"}},
\n
"
)
pd_ops_info_file
.
write
(
"};
\n
"
)
# 3. custom op dialect and end of file
with
open
(
dst_dialect_file
,
'a'
)
as
ops_mlir_file
:
with
open
(
custom_dialect_file
,
'r'
)
as
custom_ops_file
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录