flatten_op.cc 10.5 KB
Newer Older
B
Bai Yifan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <vector>
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class FlattenOpInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input (X) of Flatten op should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output (Output) of Flatten op should not be null.");
    const auto &axis = ctx->Attrs().Get<int>("axis");
    const auto &in_dims = ctx->GetInputDim("X");
    PADDLE_ENFORCE(axis >= 0, "The axis should be greater than or equal to 0.");
    PADDLE_ENFORCE(
        axis <= in_dims.size(),
        "The axis should be less than or equal to input tensor's rank.");

    const auto &out_dims = GetOutputShape(axis, in_dims);
    ctx->SetOutputDim("Out", framework::make_ddim(out_dims));
    if (in_dims[0] == out_dims[0]) {
      // Only pass LoD when the first dimension of output and Input(X)
      // are the same.
      ctx->ShareLoD("X", "Out");
    }
  }

  static std::vector<int32_t> GetOutputShape(const int axis,
                                             const framework::DDim &in_dims) {
    int64_t outer = 1, inner = 1;
    for (int i = 0; i < in_dims.size(); ++i) {
      if (i < axis) {
        outer *= in_dims[i];
      } else {
        inner *= in_dims[i];
      }
    }
    std::vector<int32_t> out_shape(2);
    out_shape[0] = outer;
    out_shape[1] = inner;
    return out_shape;
  }
};

class FlattenOp : public framework::OperatorBase {
 public:
  using OperatorBase::OperatorBase;

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
    auto &axis = Attr<int>("axis");
    auto in_dims =
        scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
    const auto &out_dims = FlattenOpInferShape::GetOutputShape(axis, in_dims);

    framework::AttributeMap attrs;
    attrs["shape"] = out_dims;
    attrs["inplace"] = false;
    // Invoke Reshape Op
    auto reshape_op = framework::OpRegistry::CreateOp(
        "reshape", {{"X", {Input("X")}}, {"Shape", {}}},
        {{"Out", {Output("Out")}}}, attrs);
    reshape_op->Run(scope, place);
  }
};

class FlattenOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "(Tensor) A tensor of rank >= axis.");
    AddOutput("Out",
              "A 2D tensor is reshaped input tensor. The input dimensions"
              "up to axis are flattened to the outer dimension of the output"
              "and the remaining input dimensions are flattened into the inner"
              "dimension of the output.");
    AddAttr<int>("axis",
                 "(int)"
                 "Indicate up to which input dimensions (exclusive) should be"
                 "flattened to the outer dimension of the output. The value"
                 "for axis must be in the range [0, R], where R is the rank of"
                 "the input tensor. When axis = 0, the shape of the output"
                 "tensor is (1, (d_0 X d_1 ... d_n), where the shape of the"
                 "input tensor is (d_0, d_1, ... d_n).")
        .SetDefault(1);
    AddComment(R"DOC(
Flatten Operator

Flattens the input tensor into a 2D matrix.

Examples:
Case 1:
  Given
    X.shape = (3, 100, 100, 4)
  and
    axis = 2
  We get:
    Out.shape = (3 * 100, 4 * 100)

Case 2:
  Given
    X.shape = (3, 100, 100, 4)
  and
    axis = 0
  We get:
    Out.shape = (1, 3 * 100 * 100 * 4)
)DOC");
  }
};

class FlattenGradInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    context->SetOutputDim(framework::GradVarName("X"),
                          context->GetInputDim("X"));
    context->ShareLoD("X", framework::GradVarName("X"));
  }
};

class FlattenGradOp : public framework::OperatorBase {
 public:
  using OperatorBase::OperatorBase;

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
    auto dx_name = Output(framework::GradVarName("X"));
    auto dout_name = Input(framework::GradVarName("Out"));
    auto in_dims =
        scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
    framework::AttributeMap attrs;
    attrs["shape"] = framework::vectorize2int(in_dims);
    attrs["inplace"] = false;

    auto reshape_op = framework::OpRegistry::CreateOp(
        "reshape", {{"X", {dout_name}}, {"Shape", {}}}, {{"Out", {dx_name}}},
        attrs);
    reshape_op->Run(scope, place);
  }
};

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
// FIXME(zcd): flatten2 adds an intermediate output(XShape) based on flatten,
// the XShape is used to carry the shape and lod of X which will be used in
// flatten_grad, in this way, the framework can reuse the memory of X
// immediately the flatten2_op is finished.
// Considering compatibility issues, we could not fix flatten2_op
class Flatten2OpInferShape : public FlattenOpInferShape {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
    FlattenOpInferShape::operator()(ctx);
    PADDLE_ENFORCE(ctx->HasOutput("XShape"),
                   "Output (XShape) of Flatten op should not be null.");
    const auto &in_dims = ctx->GetInputDim("X");
    std::vector<int64_t> xshape_dims(in_dims.size() + 1);
    xshape_dims[0] = 0;
    for (int i = 0; i < in_dims.size(); ++i) {
      xshape_dims[i + 1] = in_dims[i];
    }
    ctx->SetOutputDim("XShape", framework::make_ddim(xshape_dims));
    ctx->ShareLoD("X", "XShape");
  }
};

class Flatten2Op : public framework::OperatorBase {
 public:
  using OperatorBase::OperatorBase;

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
    auto &axis = Attr<int>("axis");
    auto in_dims =
        scope.FindVar(Input("X"))->Get<framework::LoDTensor>().dims();
    const auto &out_dims = FlattenOpInferShape::GetOutputShape(axis, in_dims);

    framework::AttributeMap attrs;
    attrs["shape"] = out_dims;
    attrs["inplace"] = false;
    // Invoke Reshape Op
    auto reshape_op = framework::OpRegistry::CreateOp(
        "reshape2", {{"X", {Input("X")}}, {"Shape", {}}},
        {{"Out", {Output("Out")}}, {"XShape", {Output("XShape")}}}, attrs);
    reshape_op->Run(scope, place);
  }
};

class Flatten2OpMaker : public FlattenOpMaker {
 public:
  void Make() override {
    FlattenOpMaker::Make();
    AddOutput("XShape",
              "XShape is just used to store the shape and lod of X, which will "
              "be used in FlattenGradOp.")
        .AsIntermediate();
  }
};

class Flatten2GradOpMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

  std::unique_ptr<framework::OpDesc> Apply() const override {
    auto *grad_op = new framework::OpDesc();
    grad_op->SetType("flatten2_grad");
    grad_op->SetInput("XShape", Output("XShape"));
    grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
    grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    grad_op->SetAttrMap(Attrs());
    return std::unique_ptr<framework::OpDesc>(grad_op);
  }
};

class Flatten2GradInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *context) const override {
    PADDLE_ENFORCE(context->HasInput("XShape"),
                   "Input(XShape) shouldn't be null.");
    PADDLE_ENFORCE(context->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) shouldn't be null.");
    auto xshape_dims = context->GetInputDim("XShape");
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
    context->SetOutputDim(framework::GradVarName("X"), x_dims);
    context->ShareLoD("XShape", framework::GradVarName("X"));
  }
};

class Flatten2GradOp : public framework::OperatorBase {
 public:
  using OperatorBase::OperatorBase;

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
    auto dx_name = Output(framework::GradVarName("X"));
    auto dout_name = Input(framework::GradVarName("Out"));
    auto xshape_name = Input("XShape");
    auto xshape_dims =
        scope.FindVar(xshape_name)->Get<framework::LoDTensor>().dims();
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());

    framework::AttributeMap attrs;
    attrs["shape"] = framework::vectorize2int(x_dims);
    attrs["inplace"] = false;

263 264 265 266 267
    auto reshape_grad_op = framework::OpRegistry::CreateOp(
        "reshape2_grad",
        {{"Out@GRAD", {dout_name}}, {"Shape", {}}, {"XShape", {xshape_name}}},
        {{"X@GRAD", {dx_name}}}, attrs);
    reshape_grad_op->Run(scope, place);
268 269 270
  }
};

L
liuwei1031 已提交
271
class FlattenOpInplaceInToOut : public framework::InplaceOpInference {
D
dzhwinter 已提交
272
 public:
L
liuwei1031 已提交
273
  std::unordered_map<std::string, std::string> operator()(
274 275
      const framework::OpDesc &op_desc, bool use_cuda) const override {
    return {{"X", "Out"}};
D
dzhwinter 已提交
276 277 278
  }
};

L
liuwei1031 已提交
279 280 281
class FlattenGradInplaceinToOut : public framework::InplaceOpInference {
 public:
  std::unordered_map<std::string, std::string> operator()(
282 283
      const framework::OpDesc &op_desc, bool use_cuda) const override {
    return {{framework::GradVarName("Out"), framework::GradVarName("X")}};
D
dzhwinter 已提交
284 285 286
  }
};

B
Bai Yifan 已提交
287 288 289 290 291 292 293 294
}  // namespace operators
}  // namespace paddle

USE_OP(reshape);

namespace ops = paddle::operators;
REGISTER_OPERATOR(flatten, ops::FlattenOp, ops::FlattenOpMaker,
                  ops::FlattenOpInferShape,
D
dzhwinter 已提交
295 296 297 298
                  paddle::framework::DefaultGradOpDescMaker<true>,
                  ops::FlattenOpInplaceInToOut);
REGISTER_OPERATOR(flatten_grad, ops::FlattenGradOp, ops::FlattenGradInferShape,
                  ops::FlattenGradInplaceinToOut);
299 300

REGISTER_OPERATOR(flatten2, ops::Flatten2Op, ops::Flatten2OpMaker,
D
dzhwinter 已提交
301 302
                  ops::Flatten2OpInferShape, ops::Flatten2GradOpMaker,
                  ops::FlattenOpInplaceInToOut);
303
REGISTER_OPERATOR(flatten2_grad, ops::Flatten2GradOp,
D
dzhwinter 已提交
304
                  ops::Flatten2GradInferShape, ops::FlattenGradInplaceinToOut);