op_test_xpu.py 11.3 KB
Newer Older
Q
QingshuChen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
16 17 18 19 20 21 22 23
from op_test import OpTest
from testsuite import append_loss_ops, create_op, set_input
from white_list import no_grad_set_white_list, op_threshold_white_list
from xpu.get_test_cover_info import (
    get_xpu_op_support_types,
    is_empty_grad_op_type,
    type_dict_str_to_numpy,
)
Q
QingshuChen 已提交
24 25 26 27 28

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.backward import append_backward
29
from paddle.fluid.framework import Program, convert_np_dtype_to_dtype_
Q
QingshuChen 已提交
30 31 32 33 34 35


class XPUOpTest(OpTest):
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
T
taixiurong 已提交
36 37
        cls.use_xpu = True
        cls.use_mkldnn = False
38
        cls.epsilon_xpu2xpu = 0.00000001
T
taixiurong 已提交
39
        super().setUpClass()
Q
QingshuChen 已提交
40 41 42 43 44 45 46

    @classmethod
    def tearDownClass(cls):
        """Restore random seeds"""

        def is_empty_grad_op(op_type):
            grad_op = op_type + '_grad'
47 48 49 50
            xpu_version = core.get_xpu_device_version(0)
            xpu_op_list = core.get_xpu_device_op_list(xpu_version)
            if grad_op in xpu_op_list.keys():
                return False
Q
QingshuChen 已提交
51 52
            return True

T
taixiurong 已提交
53 54
        if cls.dtype == np.float16:
            place = paddle.XPUPlace(0)
55
            if not core.is_float16_supported(place):
T
taixiurong 已提交
56
                return
57 58 59 60

        if cls.dtype == np.float64:
            return

T
taixiurong 已提交
61
        super().tearDownClass()
Q
QingshuChen 已提交
62

T
taixiurong 已提交
63
    def _get_places(self):
64
        places = [paddle.XPUPlace(0)]
T
taixiurong 已提交
65
        return places
Q
QingshuChen 已提交
66

67 68 69 70 71 72 73 74 75
    def check_output(
        self,
        atol=0.001,
        no_check_set=None,
        equal_nan=False,
        check_dygraph=True,
        inplace_atol=None,
        check_eager=False,
    ):
76
        place = paddle.XPUPlace(0)
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
        self.check_output_with_place(
            place,
            atol,
            no_check_set,
            equal_nan,
            check_dygraph,
            inplace_atol,
            check_eager,
        )

    def check_output_with_place(
        self,
        place,
        atol=0.001,
        no_check_set=None,
        equal_nan=False,
        check_dygraph=True,
        inplace_atol=None,
        check_eager=False,
    ):
Q
QingshuChen 已提交
97
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
T
taixiurong 已提交
98 99 100 101
        if self.dtype == np.float64:
            return

        if self.dtype == np.float16:
102
            if not core.is_float16_supported(place):
T
taixiurong 已提交
103
                return
104

105 106
        if self.dtype == np.float16:
            atol = 0.1
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
        return super().check_output_with_place(
            place, atol, no_check_set, equal_nan, check_dygraph, inplace_atol
        )

    def check_grad(
        self,
        inputs_to_check,
        output_names,
        no_grad_set=None,
        numeric_grad_delta=0.005,
        in_place=False,
        max_relative_error=0.005,
        user_defined_grads=None,
        user_defined_grad_outputs=None,
        check_dygraph=True,
        numeric_place=None,
        check_eager=False,
    ):
125
        place = paddle.XPUPlace(0)
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
        self.check_grad_with_place(
            place,
            inputs_to_check,
            output_names,
            no_grad_set,
            numeric_grad_delta,
            in_place,
            max_relative_error,
            user_defined_grads,
            user_defined_grad_outputs,
            check_dygraph,
            numeric_place,
            check_eager,
        )

    def check_grad_with_place(
        self,
        place,
        inputs_to_check,
        output_names,
        no_grad_set=None,
        numeric_grad_delta=0.005,
        in_place=False,
        max_relative_error=0.005,
        user_defined_grads=None,
        user_defined_grad_outputs=None,
        check_dygraph=True,
        numeric_place=None,
        check_eager=False,
    ):
T
TTerror 已提交
156 157
        if hasattr(self, 'op_type_need_check_grad'):
            xpu_version = core.get_xpu_device_version(0)
158 159 160
            if is_empty_grad_op_type(
                xpu_version, self.op_type, self.in_type_str
            ):
T
TTerror 已提交
161 162 163
                self._check_grad_helper()
                return

164 165 166 167 168
        cast_grad_op_types = get_xpu_op_support_types('cast')
        cast_grad_op_types_np = []
        for ctype in cast_grad_op_types:
            cast_grad_op_types_np.append(type_dict_str_to_numpy[ctype])

169
        if self.dtype not in cast_grad_op_types_np:
170 171
            return

T
taixiurong 已提交
172 173 174 175
        if self.dtype == np.float64:
            return

        if self.dtype == np.float16:
176
            if not core.is_float16_supported(place):
T
taixiurong 已提交
177 178 179
                return

        if self.dtype == np.float16:
180
            max_relative_error = 1.0
T
taixiurong 已提交
181
            return super().check_grad_with_place(
182 183 184 185 186 187 188 189 190 191 192
                place,
                inputs_to_check,
                output_names,
                no_grad_set,
                numeric_grad_delta,
                in_place,
                max_relative_error,
                user_defined_grads,
                user_defined_grad_outputs,
                check_dygraph,
            )
T
taixiurong 已提交
193

Q
QingshuChen 已提交
194
        a1 = self.get_grad_with_place(
T
TTerror 已提交
195 196 197 198
            place,
            inputs_to_check,
            output_names,
            no_grad_set=no_grad_set,
199 200
            user_defined_grad_outputs=user_defined_grad_outputs,
        )
Q
QingshuChen 已提交
201
        a2 = self.get_grad_with_place(
T
TTerror 已提交
202 203 204 205
            place,
            inputs_to_check,
            output_names,
            no_grad_set=no_grad_set,
206 207
            user_defined_grad_outputs=user_defined_grad_outputs,
        )
Q
QingshuChen 已提交
208 209 210 211
        a3 = self.get_grad_with_place(
            paddle.CPUPlace(),
            inputs_to_check,
            output_names,
T
TTerror 已提交
212
            no_grad_set=no_grad_set,
213 214 215
            user_defined_grad_outputs=user_defined_grad_outputs,
        )
        self._assert_is_close(
216 217 218 219 220
            a1,
            a2,
            inputs_to_check,
            self.epsilon_xpu2xpu,
            "Gradient Check On two xpu",
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
        )
        self._assert_is_close(
            a1,
            a3,
            inputs_to_check,
            max_relative_error,
            "Gradient Check On cpu & xpu",
        )

    def get_grad_with_place(
        self,
        place,
        inputs_to_check,
        output_names,
        no_grad_set=None,
        numeric_grad_delta=0.005,
        in_place=False,
        max_relative_error=0.005,
        user_defined_grad_outputs=None,
        check_dygraph=True,
    ):
Q
QingshuChen 已提交
242 243 244 245 246 247
        self.scope = core.Scope()
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()

        self._check_grad_helper()
248 249 250 251 252
        if (
            self.dtype == np.float64
            and self.op_type
            not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST
        ):
Q
QingshuChen 已提交
253 254 255 256 257 258 259 260 261
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7

        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
262
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"]:
Q
QingshuChen 已提交
263 264 265
            op_attrs["use_mkldnn"] = False
            use_onednn = True

266 267 268 269 270
        mean_grad_op_types = get_xpu_op_support_types('mean')
        mean_grad_op_types_np = []
        for mtype in mean_grad_op_types:
            mean_grad_op_types_np.append(type_dict_str_to_numpy[mtype])

271 272 273 274 275 276 277 278
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list,
        )
Q
QingshuChen 已提交
279 280 281 282 283 284 285

        if use_onednn:
            op_attrs["use_mkldnn"] = True

        if no_grad_set is None:
            no_grad_set = set()
        else:
286 287 288 289 290 291 292 293 294 295 296 297
            if (
                (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST)
                and (
                    self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
                )
                and (not self.is_bfloat16_op())
            ):
                raise AssertionError(
                    "no_grad_set must be None, op_type is "
                    + self.op_type
                    + " Op."
                )
Q
QingshuChen 已提交
298 299 300 301 302 303 304

        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)

        if not type(output_names) is list:
            output_names = [output_names]

305
        if self.dtype not in mean_grad_op_types_np:
306 307 308 309 310 311 312 313 314 315

            prog = Program()
            block = prog.global_block()
            scope = core.Scope()
            self._append_ops(block)

            inputs = self._get_inputs(block)
            outputs = self._get_outputs(block)
            feed_dict = self.feed_var(inputs, place)
            cast_inputs = list(map(block.var, output_names))
316 317 318 319 320 321 322 323 324 325 326 327
            cast_outputs = block.create_var(
                dtype="float32", shape=cast_inputs[0].shape
            )
            cast_op = block.append_op(
                type="cast",
                inputs={"X": cast_inputs},
                outputs={"Out": cast_outputs},
                attrs={
                    "in_dtype": convert_np_dtype_to_dtype_(self.dtype),
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
328 329 330 331 332 333 334 335
            cast_op.desc.infer_var_type(block.desc)
            cast_op.desc.infer_shape(block.desc)

            output_names = [cast_outputs.name]

            loss = append_loss_ops(block, output_names)
            loss_names = [loss.name]
            recast_inputs = list(map(block.var, loss_names))
336 337 338 339 340 341 342 343 344 345 346 347 348
            recast_loss = block.create_var(
                dtype=self.dtype, shape=recast_inputs[0].shape
            )

            recast_op = block.append_op(
                type="cast",
                inputs={"X": recast_inputs},
                outputs={"Out": recast_loss},
                attrs={
                    "in_dtype": core.VarDesc.VarType.FP32,
                    "out_dtype": convert_np_dtype_to_dtype_(self.dtype),
                },
            )
349 350 351
            recast_op.desc.infer_var_type(block.desc)
            recast_op.desc.infer_shape(block.desc)

352 353 354 355 356
            param_grad_list = append_backward(
                loss=recast_loss,
                parameter_list=[input_to_check],
                no_grad_set=no_grad_set,
            )
357 358 359 360 361 362
            fetch_list = [g for p, g in param_grad_list]

            executor = fluid.Executor(place)
            return list(
                map(
                    np.array,
363 364 365 366 367 368 369 370 371
                    executor.run(
                        prog,
                        feed_dict,
                        fetch_list,
                        scope=scope,
                        return_numpy=False,
                    ),
                )
            )
372

T
TTerror 已提交
373 374 375 376 377
        analytic_grads = self._get_gradient(
            inputs_to_check,
            place,
            output_names,
            no_grad_set,
378 379
            user_defined_grad_outputs=user_defined_grad_outputs,
        )
Q
QingshuChen 已提交
380
        return analytic_grads