op_test_xpu.py 12.7 KB
Newer Older
Q
QingshuChen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import unittest
import warnings
import numpy as np
import random
import six
import struct
import time
import itertools
import collections
from collections import defaultdict

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
33
from paddle.fluid.framework import Program, OpProtoHolder, Variable, convert_np_dtype_to_dtype_
Q
QingshuChen 已提交
34 35 36 37 38
from testsuite import create_op, set_input, append_input_output, append_loss_ops
from paddle.fluid import unique_name
from white_list import op_accuracy_white_list, check_shape_white_list, compile_vs_runtime_white_list, no_check_set_white_list
from white_list import op_threshold_white_list, no_grad_set_white_list
from op_test import OpTest, _set_use_system_allocator, get_numeric_gradient
39
from xpu.get_test_cover_info import is_empty_grad_op_type, get_xpu_op_support_types, type_dict_str_to_numpy
Q
QingshuChen 已提交
40 41 42


class XPUOpTest(OpTest):
43

Q
QingshuChen 已提交
44 45 46
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
T
taixiurong 已提交
47 48 49
        cls.use_xpu = True
        cls.use_mkldnn = False
        super().setUpClass()
Q
QingshuChen 已提交
50 51 52 53 54 55 56

    @classmethod
    def tearDownClass(cls):
        """Restore random seeds"""

        def is_empty_grad_op(op_type):
            grad_op = op_type + '_grad'
57 58 59 60
            xpu_version = core.get_xpu_device_version(0)
            xpu_op_list = core.get_xpu_device_op_list(xpu_version)
            if grad_op in xpu_op_list.keys():
                return False
Q
QingshuChen 已提交
61 62
            return True

T
taixiurong 已提交
63 64 65 66
        if cls.dtype == np.float16:
            place = paddle.XPUPlace(0)
            if core.is_float16_supported(place) == False:
                return
67 68 69 70

        if cls.dtype == np.float64:
            return

T
taixiurong 已提交
71
        super().tearDownClass()
Q
QingshuChen 已提交
72

T
taixiurong 已提交
73
    def _get_places(self):
74
        places = [paddle.XPUPlace(0)]
T
taixiurong 已提交
75
        return places
Q
QingshuChen 已提交
76

77 78 79 80 81 82 83 84 85 86 87
    def check_output(self,
                     atol=0.001,
                     no_check_set=None,
                     equal_nan=False,
                     check_dygraph=True,
                     inplace_atol=None,
                     check_eager=False):
        place = paddle.XPUPlace(0)
        self.check_output_with_place(place, atol, no_check_set, equal_nan,
                                     check_dygraph, inplace_atol, check_eager)

Q
QingshuChen 已提交
88 89 90 91 92 93
    def check_output_with_place(self,
                                place,
                                atol=0.001,
                                no_check_set=None,
                                equal_nan=False,
                                check_dygraph=True,
94 95
                                inplace_atol=None,
                                check_eager=False):
Q
QingshuChen 已提交
96
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
T
taixiurong 已提交
97 98 99 100 101 102
        if self.dtype == np.float64:
            return

        if self.dtype == np.float16:
            if core.is_float16_supported(place) == False:
                return
103

104 105
        if self.dtype == np.float16:
            atol = 0.1
106 107 108
        return super().check_output_with_place(place, atol, no_check_set,
                                               equal_nan, check_dygraph,
                                               inplace_atol)
Q
QingshuChen 已提交
109

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    def check_grad(self,
                   inputs_to_check,
                   output_names,
                   no_grad_set=None,
                   numeric_grad_delta=0.005,
                   in_place=False,
                   max_relative_error=0.005,
                   user_defined_grads=None,
                   user_defined_grad_outputs=None,
                   check_dygraph=True,
                   numeric_place=None,
                   check_eager=False):
        place = paddle.XPUPlace(0)
        self.check_grad_with_place(place, inputs_to_check, output_names,
                                   no_grad_set, numeric_grad_delta, in_place,
                                   max_relative_error, user_defined_grads,
                                   user_defined_grad_outputs, check_dygraph,
                                   numeric_place, check_eager)

Q
QingshuChen 已提交
129 130 131 132 133 134 135 136 137
    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
                              user_defined_grads=None,
T
taixiurong 已提交
138 139
                              user_defined_grad_outputs=None,
                              check_dygraph=True,
140 141
                              numeric_place=None,
                              check_eager=False):
T
TTerror 已提交
142 143 144 145 146 147 148
        if hasattr(self, 'op_type_need_check_grad'):
            xpu_version = core.get_xpu_device_version(0)
            if is_empty_grad_op_type(xpu_version, self.op_type,
                                     self.in_type_str):
                self._check_grad_helper()
                return

149 150 151 152 153 154 155 156
        cast_grad_op_types = get_xpu_op_support_types('cast')
        cast_grad_op_types_np = []
        for ctype in cast_grad_op_types:
            cast_grad_op_types_np.append(type_dict_str_to_numpy[ctype])

        if (self.dtype not in cast_grad_op_types_np):
            return

T
taixiurong 已提交
157 158 159 160 161 162 163 164
        if self.dtype == np.float64:
            return

        if self.dtype == np.float16:
            if core.is_float16_supported(place) == False:
                return

        if self.dtype == np.float16:
165
            max_relative_error = 1.0
T
taixiurong 已提交
166 167 168
            return super().check_grad_with_place(
                place, inputs_to_check, output_names, no_grad_set,
                numeric_grad_delta, in_place, max_relative_error,
T
TTerror 已提交
169
                user_defined_grads, user_defined_grad_outputs, check_dygraph)
T
taixiurong 已提交
170

Q
QingshuChen 已提交
171
        a1 = self.get_grad_with_place(
T
TTerror 已提交
172 173 174 175 176
            place,
            inputs_to_check,
            output_names,
            no_grad_set=no_grad_set,
            user_defined_grad_outputs=user_defined_grad_outputs)
Q
QingshuChen 已提交
177
        a2 = self.get_grad_with_place(
T
TTerror 已提交
178 179 180 181 182
            place,
            inputs_to_check,
            output_names,
            no_grad_set=no_grad_set,
            user_defined_grad_outputs=user_defined_grad_outputs)
Q
QingshuChen 已提交
183 184 185 186
        a3 = self.get_grad_with_place(
            paddle.CPUPlace(),
            inputs_to_check,
            output_names,
T
TTerror 已提交
187 188
            no_grad_set=no_grad_set,
            user_defined_grad_outputs=user_defined_grad_outputs)
Q
QingshuChen 已提交
189 190
        self._assert_is_close(a1, a2, inputs_to_check, 0.00000001,
                              "Gradient Check On two xpu")
191
        self._assert_is_close(a1, a3, inputs_to_check, max_relative_error,
Q
QingshuChen 已提交
192 193 194 195 196 197 198 199 200 201
                              "Gradient Check On cpu & xpu")

    def get_grad_with_place(self,
                            place,
                            inputs_to_check,
                            output_names,
                            no_grad_set=None,
                            numeric_grad_delta=0.005,
                            in_place=False,
                            max_relative_error=0.005,
T
TTerror 已提交
202
                            user_defined_grad_outputs=None,
Q
QingshuChen 已提交
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
                            check_dygraph=True):
        self.scope = core.Scope()
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()

        self._check_grad_helper()
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7

        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"] == True:
            op_attrs["use_mkldnn"] = False
            use_onednn = True

225 226 227 228 229
        mean_grad_op_types = get_xpu_op_support_types('mean')
        mean_grad_op_types_np = []
        for mtype in mean_grad_op_types:
            mean_grad_op_types_np.append(type_dict_str_to_numpy[mtype])

230 231 232 233 234 235
        self.op = create_op(self.scope,
                            self.op_type,
                            op_inputs,
                            op_outputs,
                            op_attrs,
                            cache_list=cache_list)
Q
QingshuChen 已提交
236 237 238 239 240 241 242 243

        if use_onednn:
            op_attrs["use_mkldnn"] = True

        if no_grad_set is None:
            no_grad_set = set()
        else:
            if (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST
244 245 246
                ) and (self.op_type
                       not in no_grad_set_white_list.NOT_CHECK_OP_LIST) and (
                           not self.is_bfloat16_op()):
Q
QingshuChen 已提交
247 248 249 250 251 252 253 254 255
                raise AssertionError("no_grad_set must be None, op_type is " +
                                     self.op_type + " Op.")

        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)

        if not type(output_names) is list:
            output_names = [output_names]

256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
        if (self.dtype not in mean_grad_op_types_np):

            prog = Program()
            block = prog.global_block()
            scope = core.Scope()
            self._append_ops(block)

            inputs = self._get_inputs(block)
            outputs = self._get_outputs(block)
            feed_dict = self.feed_var(inputs, place)
            cast_inputs = list(map(block.var, output_names))
            cast_outputs = block.create_var(dtype="float32",
                                            shape=cast_inputs[0].shape)
            cast_op = block.append_op(type="cast",
                                      inputs={"X": cast_inputs},
                                      outputs={"Out": cast_outputs},
                                      attrs={
                                          "in_dtype":
                                          convert_np_dtype_to_dtype_(
                                              self.dtype),
                                          "out_dtype":
                                          core.VarDesc.VarType.FP32
                                      })
            cast_op.desc.infer_var_type(block.desc)
            cast_op.desc.infer_shape(block.desc)

            output_names = [cast_outputs.name]

            loss = append_loss_ops(block, output_names)
            loss_names = [loss.name]
            recast_inputs = list(map(block.var, loss_names))
            recast_loss = block.create_var(dtype=self.dtype,
                                           shape=recast_inputs[0].shape)

            recast_op = block.append_op(type="cast",
                                        inputs={"X": recast_inputs},
                                        outputs={"Out": recast_loss},
                                        attrs={
                                            "in_dtype":
                                            core.VarDesc.VarType.FP32,
                                            "out_dtype":
                                            convert_np_dtype_to_dtype_(
                                                self.dtype)
                                        })
            recast_op.desc.infer_var_type(block.desc)
            recast_op.desc.infer_shape(block.desc)

            param_grad_list = append_backward(loss=recast_loss,
                                              parameter_list=[input_to_check],
                                              no_grad_set=no_grad_set)
            fetch_list = [g for p, g in param_grad_list]

            executor = fluid.Executor(place)
            return list(
                map(
                    np.array,
                    executor.run(prog,
                                 feed_dict,
                                 fetch_list,
                                 scope=scope,
                                 return_numpy=False)))

T
TTerror 已提交
318 319 320 321 322 323
        analytic_grads = self._get_gradient(
            inputs_to_check,
            place,
            output_names,
            no_grad_set,
            user_defined_grad_outputs=user_defined_grad_outputs)
Q
QingshuChen 已提交
324
        return analytic_grads