op_test_xpu.py 12.2 KB
Newer Older
Q
QingshuChen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.backward import append_backward
21 22
from paddle.fluid.framework import Program, convert_np_dtype_to_dtype_
from testsuite import append_loss_ops, create_op, set_input
Q
QingshuChen 已提交
23
from white_list import op_threshold_white_list, no_grad_set_white_list
24
from op_test import OpTest
25
from xpu.get_test_cover_info import is_empty_grad_op_type, get_xpu_op_support_types, type_dict_str_to_numpy
Q
QingshuChen 已提交
26 27 28


class XPUOpTest(OpTest):
29

Q
QingshuChen 已提交
30 31 32
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
T
taixiurong 已提交
33 34 35
        cls.use_xpu = True
        cls.use_mkldnn = False
        super().setUpClass()
Q
QingshuChen 已提交
36 37 38 39 40 41 42

    @classmethod
    def tearDownClass(cls):
        """Restore random seeds"""

        def is_empty_grad_op(op_type):
            grad_op = op_type + '_grad'
43 44 45 46
            xpu_version = core.get_xpu_device_version(0)
            xpu_op_list = core.get_xpu_device_op_list(xpu_version)
            if grad_op in xpu_op_list.keys():
                return False
Q
QingshuChen 已提交
47 48
            return True

T
taixiurong 已提交
49 50 51 52
        if cls.dtype == np.float16:
            place = paddle.XPUPlace(0)
            if core.is_float16_supported(place) == False:
                return
53 54 55 56

        if cls.dtype == np.float64:
            return

T
taixiurong 已提交
57
        super().tearDownClass()
Q
QingshuChen 已提交
58

T
taixiurong 已提交
59
    def _get_places(self):
60
        places = [paddle.XPUPlace(0)]
T
taixiurong 已提交
61
        return places
Q
QingshuChen 已提交
62

63 64 65 66 67 68 69 70 71 72 73
    def check_output(self,
                     atol=0.001,
                     no_check_set=None,
                     equal_nan=False,
                     check_dygraph=True,
                     inplace_atol=None,
                     check_eager=False):
        place = paddle.XPUPlace(0)
        self.check_output_with_place(place, atol, no_check_set, equal_nan,
                                     check_dygraph, inplace_atol, check_eager)

Q
QingshuChen 已提交
74 75 76 77 78 79
    def check_output_with_place(self,
                                place,
                                atol=0.001,
                                no_check_set=None,
                                equal_nan=False,
                                check_dygraph=True,
80 81
                                inplace_atol=None,
                                check_eager=False):
Q
QingshuChen 已提交
82
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
T
taixiurong 已提交
83 84 85 86 87 88
        if self.dtype == np.float64:
            return

        if self.dtype == np.float16:
            if core.is_float16_supported(place) == False:
                return
89

90 91
        if self.dtype == np.float16:
            atol = 0.1
92 93 94
        return super().check_output_with_place(place, atol, no_check_set,
                                               equal_nan, check_dygraph,
                                               inplace_atol)
Q
QingshuChen 已提交
95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    def check_grad(self,
                   inputs_to_check,
                   output_names,
                   no_grad_set=None,
                   numeric_grad_delta=0.005,
                   in_place=False,
                   max_relative_error=0.005,
                   user_defined_grads=None,
                   user_defined_grad_outputs=None,
                   check_dygraph=True,
                   numeric_place=None,
                   check_eager=False):
        place = paddle.XPUPlace(0)
        self.check_grad_with_place(place, inputs_to_check, output_names,
                                   no_grad_set, numeric_grad_delta, in_place,
                                   max_relative_error, user_defined_grads,
                                   user_defined_grad_outputs, check_dygraph,
                                   numeric_place, check_eager)

Q
QingshuChen 已提交
115 116 117 118 119 120 121 122 123
    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
                              user_defined_grads=None,
T
taixiurong 已提交
124 125
                              user_defined_grad_outputs=None,
                              check_dygraph=True,
126 127
                              numeric_place=None,
                              check_eager=False):
T
TTerror 已提交
128 129 130 131 132 133 134
        if hasattr(self, 'op_type_need_check_grad'):
            xpu_version = core.get_xpu_device_version(0)
            if is_empty_grad_op_type(xpu_version, self.op_type,
                                     self.in_type_str):
                self._check_grad_helper()
                return

135 136 137 138 139 140 141 142
        cast_grad_op_types = get_xpu_op_support_types('cast')
        cast_grad_op_types_np = []
        for ctype in cast_grad_op_types:
            cast_grad_op_types_np.append(type_dict_str_to_numpy[ctype])

        if (self.dtype not in cast_grad_op_types_np):
            return

T
taixiurong 已提交
143 144 145 146 147 148 149 150
        if self.dtype == np.float64:
            return

        if self.dtype == np.float16:
            if core.is_float16_supported(place) == False:
                return

        if self.dtype == np.float16:
151
            max_relative_error = 1.0
T
taixiurong 已提交
152 153 154
            return super().check_grad_with_place(
                place, inputs_to_check, output_names, no_grad_set,
                numeric_grad_delta, in_place, max_relative_error,
T
TTerror 已提交
155
                user_defined_grads, user_defined_grad_outputs, check_dygraph)
T
taixiurong 已提交
156

Q
QingshuChen 已提交
157
        a1 = self.get_grad_with_place(
T
TTerror 已提交
158 159 160 161 162
            place,
            inputs_to_check,
            output_names,
            no_grad_set=no_grad_set,
            user_defined_grad_outputs=user_defined_grad_outputs)
Q
QingshuChen 已提交
163
        a2 = self.get_grad_with_place(
T
TTerror 已提交
164 165 166 167 168
            place,
            inputs_to_check,
            output_names,
            no_grad_set=no_grad_set,
            user_defined_grad_outputs=user_defined_grad_outputs)
Q
QingshuChen 已提交
169 170 171 172
        a3 = self.get_grad_with_place(
            paddle.CPUPlace(),
            inputs_to_check,
            output_names,
T
TTerror 已提交
173 174
            no_grad_set=no_grad_set,
            user_defined_grad_outputs=user_defined_grad_outputs)
Q
QingshuChen 已提交
175 176
        self._assert_is_close(a1, a2, inputs_to_check, 0.00000001,
                              "Gradient Check On two xpu")
177
        self._assert_is_close(a1, a3, inputs_to_check, max_relative_error,
Q
QingshuChen 已提交
178 179 180 181 182 183 184 185 186 187
                              "Gradient Check On cpu & xpu")

    def get_grad_with_place(self,
                            place,
                            inputs_to_check,
                            output_names,
                            no_grad_set=None,
                            numeric_grad_delta=0.005,
                            in_place=False,
                            max_relative_error=0.005,
T
TTerror 已提交
188
                            user_defined_grad_outputs=None,
Q
QingshuChen 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
                            check_dygraph=True):
        self.scope = core.Scope()
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()

        self._check_grad_helper()
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7

        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"] == True:
            op_attrs["use_mkldnn"] = False
            use_onednn = True

211 212 213 214 215
        mean_grad_op_types = get_xpu_op_support_types('mean')
        mean_grad_op_types_np = []
        for mtype in mean_grad_op_types:
            mean_grad_op_types_np.append(type_dict_str_to_numpy[mtype])

216 217 218 219 220 221
        self.op = create_op(self.scope,
                            self.op_type,
                            op_inputs,
                            op_outputs,
                            op_attrs,
                            cache_list=cache_list)
Q
QingshuChen 已提交
222 223 224 225 226 227 228 229

        if use_onednn:
            op_attrs["use_mkldnn"] = True

        if no_grad_set is None:
            no_grad_set = set()
        else:
            if (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST
230 231 232
                ) and (self.op_type
                       not in no_grad_set_white_list.NOT_CHECK_OP_LIST) and (
                           not self.is_bfloat16_op()):
Q
QingshuChen 已提交
233 234 235 236 237 238 239 240 241
                raise AssertionError("no_grad_set must be None, op_type is " +
                                     self.op_type + " Op.")

        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)

        if not type(output_names) is list:
            output_names = [output_names]

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
        if (self.dtype not in mean_grad_op_types_np):

            prog = Program()
            block = prog.global_block()
            scope = core.Scope()
            self._append_ops(block)

            inputs = self._get_inputs(block)
            outputs = self._get_outputs(block)
            feed_dict = self.feed_var(inputs, place)
            cast_inputs = list(map(block.var, output_names))
            cast_outputs = block.create_var(dtype="float32",
                                            shape=cast_inputs[0].shape)
            cast_op = block.append_op(type="cast",
                                      inputs={"X": cast_inputs},
                                      outputs={"Out": cast_outputs},
                                      attrs={
                                          "in_dtype":
                                          convert_np_dtype_to_dtype_(
                                              self.dtype),
                                          "out_dtype":
                                          core.VarDesc.VarType.FP32
                                      })
            cast_op.desc.infer_var_type(block.desc)
            cast_op.desc.infer_shape(block.desc)

            output_names = [cast_outputs.name]

            loss = append_loss_ops(block, output_names)
            loss_names = [loss.name]
            recast_inputs = list(map(block.var, loss_names))
            recast_loss = block.create_var(dtype=self.dtype,
                                           shape=recast_inputs[0].shape)

            recast_op = block.append_op(type="cast",
                                        inputs={"X": recast_inputs},
                                        outputs={"Out": recast_loss},
                                        attrs={
                                            "in_dtype":
                                            core.VarDesc.VarType.FP32,
                                            "out_dtype":
                                            convert_np_dtype_to_dtype_(
                                                self.dtype)
                                        })
            recast_op.desc.infer_var_type(block.desc)
            recast_op.desc.infer_shape(block.desc)

            param_grad_list = append_backward(loss=recast_loss,
                                              parameter_list=[input_to_check],
                                              no_grad_set=no_grad_set)
            fetch_list = [g for p, g in param_grad_list]

            executor = fluid.Executor(place)
            return list(
                map(
                    np.array,
                    executor.run(prog,
                                 feed_dict,
                                 fetch_list,
                                 scope=scope,
                                 return_numpy=False)))

T
TTerror 已提交
304 305 306 307 308 309
        analytic_grads = self._get_gradient(
            inputs_to_check,
            place,
            output_names,
            no_grad_set,
            user_defined_grad_outputs=user_defined_grad_outputs)
Q
QingshuChen 已提交
310
        return analytic_grads