op_test_xpu.py 11.3 KB
Newer Older
Q
QingshuChen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.backward import append_backward
21 22
from paddle.fluid.framework import Program, convert_np_dtype_to_dtype_
from testsuite import append_loss_ops, create_op, set_input
Q
QingshuChen 已提交
23
from white_list import op_threshold_white_list, no_grad_set_white_list
24
from op_test import OpTest
25 26 27 28 29
from xpu.get_test_cover_info import (
    is_empty_grad_op_type,
    get_xpu_op_support_types,
    type_dict_str_to_numpy,
)
Q
QingshuChen 已提交
30 31 32 33 34 35


class XPUOpTest(OpTest):
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
T
taixiurong 已提交
36 37 38
        cls.use_xpu = True
        cls.use_mkldnn = False
        super().setUpClass()
Q
QingshuChen 已提交
39 40 41 42 43 44 45

    @classmethod
    def tearDownClass(cls):
        """Restore random seeds"""

        def is_empty_grad_op(op_type):
            grad_op = op_type + '_grad'
46 47 48 49
            xpu_version = core.get_xpu_device_version(0)
            xpu_op_list = core.get_xpu_device_op_list(xpu_version)
            if grad_op in xpu_op_list.keys():
                return False
Q
QingshuChen 已提交
50 51
            return True

T
taixiurong 已提交
52 53
        if cls.dtype == np.float16:
            place = paddle.XPUPlace(0)
54
            if not core.is_float16_supported(place):
T
taixiurong 已提交
55
                return
56 57 58 59

        if cls.dtype == np.float64:
            return

T
taixiurong 已提交
60
        super().tearDownClass()
Q
QingshuChen 已提交
61

T
taixiurong 已提交
62
    def _get_places(self):
63
        places = [paddle.XPUPlace(0)]
T
taixiurong 已提交
64
        return places
Q
QingshuChen 已提交
65

66 67 68 69 70 71 72 73 74
    def check_output(
        self,
        atol=0.001,
        no_check_set=None,
        equal_nan=False,
        check_dygraph=True,
        inplace_atol=None,
        check_eager=False,
    ):
75
        place = paddle.XPUPlace(0)
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
        self.check_output_with_place(
            place,
            atol,
            no_check_set,
            equal_nan,
            check_dygraph,
            inplace_atol,
            check_eager,
        )

    def check_output_with_place(
        self,
        place,
        atol=0.001,
        no_check_set=None,
        equal_nan=False,
        check_dygraph=True,
        inplace_atol=None,
        check_eager=False,
    ):
Q
QingshuChen 已提交
96
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
T
taixiurong 已提交
97 98 99 100
        if self.dtype == np.float64:
            return

        if self.dtype == np.float16:
101
            if not core.is_float16_supported(place):
T
taixiurong 已提交
102
                return
103

104 105
        if self.dtype == np.float16:
            atol = 0.1
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
        return super().check_output_with_place(
            place, atol, no_check_set, equal_nan, check_dygraph, inplace_atol
        )

    def check_grad(
        self,
        inputs_to_check,
        output_names,
        no_grad_set=None,
        numeric_grad_delta=0.005,
        in_place=False,
        max_relative_error=0.005,
        user_defined_grads=None,
        user_defined_grad_outputs=None,
        check_dygraph=True,
        numeric_place=None,
        check_eager=False,
    ):
124
        place = paddle.XPUPlace(0)
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
        self.check_grad_with_place(
            place,
            inputs_to_check,
            output_names,
            no_grad_set,
            numeric_grad_delta,
            in_place,
            max_relative_error,
            user_defined_grads,
            user_defined_grad_outputs,
            check_dygraph,
            numeric_place,
            check_eager,
        )

    def check_grad_with_place(
        self,
        place,
        inputs_to_check,
        output_names,
        no_grad_set=None,
        numeric_grad_delta=0.005,
        in_place=False,
        max_relative_error=0.005,
        user_defined_grads=None,
        user_defined_grad_outputs=None,
        check_dygraph=True,
        numeric_place=None,
        check_eager=False,
    ):
T
TTerror 已提交
155 156
        if hasattr(self, 'op_type_need_check_grad'):
            xpu_version = core.get_xpu_device_version(0)
157 158 159
            if is_empty_grad_op_type(
                xpu_version, self.op_type, self.in_type_str
            ):
T
TTerror 已提交
160 161 162
                self._check_grad_helper()
                return

163 164 165 166 167
        cast_grad_op_types = get_xpu_op_support_types('cast')
        cast_grad_op_types_np = []
        for ctype in cast_grad_op_types:
            cast_grad_op_types_np.append(type_dict_str_to_numpy[ctype])

168
        if self.dtype not in cast_grad_op_types_np:
169 170
            return

T
taixiurong 已提交
171 172 173 174
        if self.dtype == np.float64:
            return

        if self.dtype == np.float16:
175
            if not core.is_float16_supported(place):
T
taixiurong 已提交
176 177 178
                return

        if self.dtype == np.float16:
179
            max_relative_error = 1.0
T
taixiurong 已提交
180
            return super().check_grad_with_place(
181 182 183 184 185 186 187 188 189 190 191
                place,
                inputs_to_check,
                output_names,
                no_grad_set,
                numeric_grad_delta,
                in_place,
                max_relative_error,
                user_defined_grads,
                user_defined_grad_outputs,
                check_dygraph,
            )
T
taixiurong 已提交
192

Q
QingshuChen 已提交
193
        a1 = self.get_grad_with_place(
T
TTerror 已提交
194 195 196 197
            place,
            inputs_to_check,
            output_names,
            no_grad_set=no_grad_set,
198 199
            user_defined_grad_outputs=user_defined_grad_outputs,
        )
Q
QingshuChen 已提交
200
        a2 = self.get_grad_with_place(
T
TTerror 已提交
201 202 203 204
            place,
            inputs_to_check,
            output_names,
            no_grad_set=no_grad_set,
205 206
            user_defined_grad_outputs=user_defined_grad_outputs,
        )
Q
QingshuChen 已提交
207 208 209 210
        a3 = self.get_grad_with_place(
            paddle.CPUPlace(),
            inputs_to_check,
            output_names,
T
TTerror 已提交
211
            no_grad_set=no_grad_set,
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
            user_defined_grad_outputs=user_defined_grad_outputs,
        )
        self._assert_is_close(
            a1, a2, inputs_to_check, 0.00000001, "Gradient Check On two xpu"
        )
        self._assert_is_close(
            a1,
            a3,
            inputs_to_check,
            max_relative_error,
            "Gradient Check On cpu & xpu",
        )

    def get_grad_with_place(
        self,
        place,
        inputs_to_check,
        output_names,
        no_grad_set=None,
        numeric_grad_delta=0.005,
        in_place=False,
        max_relative_error=0.005,
        user_defined_grad_outputs=None,
        check_dygraph=True,
    ):
Q
QingshuChen 已提交
237 238 239 240 241 242
        self.scope = core.Scope()
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()

        self._check_grad_helper()
243 244 245 246 247
        if (
            self.dtype == np.float64
            and self.op_type
            not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST
        ):
Q
QingshuChen 已提交
248 249 250 251 252 253 254 255 256
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7

        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
257
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"]:
Q
QingshuChen 已提交
258 259 260
            op_attrs["use_mkldnn"] = False
            use_onednn = True

261 262 263 264 265
        mean_grad_op_types = get_xpu_op_support_types('mean')
        mean_grad_op_types_np = []
        for mtype in mean_grad_op_types:
            mean_grad_op_types_np.append(type_dict_str_to_numpy[mtype])

266 267 268 269 270 271 272 273
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list,
        )
Q
QingshuChen 已提交
274 275 276 277 278 279 280

        if use_onednn:
            op_attrs["use_mkldnn"] = True

        if no_grad_set is None:
            no_grad_set = set()
        else:
281 282 283 284 285 286 287 288 289 290 291 292
            if (
                (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST)
                and (
                    self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
                )
                and (not self.is_bfloat16_op())
            ):
                raise AssertionError(
                    "no_grad_set must be None, op_type is "
                    + self.op_type
                    + " Op."
                )
Q
QingshuChen 已提交
293 294 295 296 297 298 299

        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)

        if not type(output_names) is list:
            output_names = [output_names]

300
        if self.dtype not in mean_grad_op_types_np:
301 302 303 304 305 306 307 308 309 310

            prog = Program()
            block = prog.global_block()
            scope = core.Scope()
            self._append_ops(block)

            inputs = self._get_inputs(block)
            outputs = self._get_outputs(block)
            feed_dict = self.feed_var(inputs, place)
            cast_inputs = list(map(block.var, output_names))
311 312 313 314 315 316 317 318 319 320 321 322
            cast_outputs = block.create_var(
                dtype="float32", shape=cast_inputs[0].shape
            )
            cast_op = block.append_op(
                type="cast",
                inputs={"X": cast_inputs},
                outputs={"Out": cast_outputs},
                attrs={
                    "in_dtype": convert_np_dtype_to_dtype_(self.dtype),
                    "out_dtype": core.VarDesc.VarType.FP32,
                },
            )
323 324 325 326 327 328 329 330
            cast_op.desc.infer_var_type(block.desc)
            cast_op.desc.infer_shape(block.desc)

            output_names = [cast_outputs.name]

            loss = append_loss_ops(block, output_names)
            loss_names = [loss.name]
            recast_inputs = list(map(block.var, loss_names))
331 332 333 334 335 336 337 338 339 340 341 342 343
            recast_loss = block.create_var(
                dtype=self.dtype, shape=recast_inputs[0].shape
            )

            recast_op = block.append_op(
                type="cast",
                inputs={"X": recast_inputs},
                outputs={"Out": recast_loss},
                attrs={
                    "in_dtype": core.VarDesc.VarType.FP32,
                    "out_dtype": convert_np_dtype_to_dtype_(self.dtype),
                },
            )
344 345 346
            recast_op.desc.infer_var_type(block.desc)
            recast_op.desc.infer_shape(block.desc)

347 348 349 350 351
            param_grad_list = append_backward(
                loss=recast_loss,
                parameter_list=[input_to_check],
                no_grad_set=no_grad_set,
            )
352 353 354 355 356 357
            fetch_list = [g for p, g in param_grad_list]

            executor = fluid.Executor(place)
            return list(
                map(
                    np.array,
358 359 360 361 362 363 364 365 366
                    executor.run(
                        prog,
                        feed_dict,
                        fetch_list,
                        scope=scope,
                        return_numpy=False,
                    ),
                )
            )
367

T
TTerror 已提交
368 369 370 371 372
        analytic_grads = self._get_gradient(
            inputs_to_check,
            place,
            output_names,
            no_grad_set,
373 374
            user_defined_grad_outputs=user_defined_grad_outputs,
        )
Q
QingshuChen 已提交
375
        return analytic_grads