Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
442688a8
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
442688a8
编写于
10月 29, 2021
作者:
T
taixiurong
提交者:
GitHub
10月 29, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add some ops support fp16 in kunlun2 (#36854)
* aaaa * add some ops support fp16 in kunlun2
上级
113816d8
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
482 addition
and
179 deletion
+482
-179
paddle/fluid/operators/activation_op_xpu.cc
paddle/fluid/operators/activation_op_xpu.cc
+68
-62
paddle/fluid/operators/amp/check_finite_and_unscale_op_xpu.cc
...le/fluid/operators/amp/check_finite_and_unscale_op_xpu.cc
+10
-23
paddle/fluid/operators/amp/update_loss_scaling_op_xpu.cc
paddle/fluid/operators/amp/update_loss_scaling_op_xpu.cc
+2
-4
paddle/fluid/operators/fill_constant_op_xpu.cc
paddle/fluid/operators/fill_constant_op_xpu.cc
+5
-2
paddle/fluid/operators/gather_op_xpu.cc
paddle/fluid/operators/gather_op_xpu.cc
+38
-14
paddle/fluid/operators/gelu_op_xpu.cc
paddle/fluid/operators/gelu_op_xpu.cc
+89
-0
paddle/fluid/operators/softmax_op.cc
paddle/fluid/operators/softmax_op.cc
+7
-5
paddle/fluid/operators/softmax_op_xpu.cc
paddle/fluid/operators/softmax_op_xpu.cc
+44
-23
paddle/fluid/platform/xpu/xpu2_op_list.h
paddle/fluid/platform/xpu/xpu2_op_list.h
+30
-1
paddle/fluid/platform/xpu/xpu_header.h
paddle/fluid/platform/xpu/xpu_header.h
+7
-0
python/paddle/fluid/tests/unittests/op_test_xpu.py
python/paddle/fluid/tests/unittests/op_test_xpu.py
+3
-0
python/paddle/fluid/tests/unittests/xpu/test_activation_op_xpu.py
...addle/fluid/tests/unittests/xpu/test_activation_op_xpu.py
+41
-0
python/paddle/fluid/tests/unittests/xpu/test_gather_op_xpu.py
...on/paddle/fluid/tests/unittests/xpu/test_gather_op_xpu.py
+108
-24
python/paddle/fluid/tests/unittests/xpu/test_softmax_op_xpu.py
...n/paddle/fluid/tests/unittests/xpu/test_softmax_op_xpu.py
+30
-21
未找到文件。
paddle/fluid/operators/activation_op_xpu.cc
浏览文件 @
442688a8
...
...
@@ -53,14 +53,14 @@ class XPUActivationGradKernel
}
};
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
DeviceContext
,
typename
T
,
typename
XPUT
>
void
xpu_activation_forward
(
const
framework
::
ExecutionContext
&
ctx
,
std
::
function
<
int
(
xpu
::
Context
*
,
const
T
*
,
T
*
,
int
)
>
func
)
{
std
::
function
<
int
(
xpu
::
Context
*
,
const
XPUT
*
,
XPU
T
*
,
int
)
>
func
)
{
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
const
T
*
x_data
=
x
->
data
<
T
>
(
);
T
*
y_data
=
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(
));
const
XPUT
*
x_data
=
reinterpret_cast
<
const
XPUT
*>
(
x
->
data
<
T
>
()
);
XPUT
*
y_data
=
reinterpret_cast
<
XPUT
*>
(
y
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()
));
auto
xpu_context
=
ctx
.
device_context
<
DeviceContext
>
().
x_context
();
int
r
=
func
(
xpu_context
,
x_data
,
y_data
,
x
->
numel
());
...
...
@@ -70,23 +70,24 @@ void xpu_activation_forward(
r
,
XPUAPIErrorMsg
[
r
]));
}
template
<
typename
DeviceContext
,
typename
T
>
void
xpu_activation_backward
(
const
framework
::
ExecutionContext
&
ctx
,
std
::
function
<
int
(
xpu
::
Context
*
,
const
T
*
,
const
T
*
,
const
T
*
,
T
*
,
int
)
>
func
)
{
template
<
typename
DeviceContext
,
typename
T
,
typename
XPUT
>
void
xpu_activation_backward
(
const
framework
::
ExecutionContext
&
ctx
,
std
::
function
<
int
(
xpu
::
Context
*
,
const
XPUT
*
,
const
XPUT
*
,
const
XPUT
*
,
XPUT
*
,
int
)
>
func
)
{
/* TODO: relu tanh sigmoid are inplace */
const
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
y
=
ctx
.
Input
<
Tensor
>
(
"Out"
);
auto
*
dOut
=
ctx
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dX
=
ctx
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
const
T
*
x_data
=
nullptr
;
const
T
*
y_data
=
nullptr
;
const
T
*
y_grad
=
nullptr
;
if
(
x
!=
nullptr
)
x_data
=
x
->
data
<
T
>
(
);
if
(
y
!=
nullptr
)
y_data
=
y
->
data
<
T
>
(
);
if
(
dOut
!=
nullptr
)
y_grad
=
dOut
->
data
<
T
>
(
);
T
*
x_grad
=
dX
->
mutable_data
<
T
>
(
ctx
.
GetPlace
(
));
const
XPU
T
*
x_data
=
nullptr
;
const
XPU
T
*
y_data
=
nullptr
;
const
XPU
T
*
y_grad
=
nullptr
;
if
(
x
!=
nullptr
)
x_data
=
reinterpret_cast
<
const
XPUT
*>
(
x
->
data
<
T
>
()
);
if
(
y
!=
nullptr
)
y_data
=
reinterpret_cast
<
const
XPUT
*>
(
y
->
data
<
T
>
()
);
if
(
dOut
!=
nullptr
)
y_grad
=
reinterpret_cast
<
const
XPUT
*>
(
dOut
->
data
<
T
>
()
);
XPUT
*
x_grad
=
reinterpret_cast
<
XPUT
*>
(
dX
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()
));
auto
xpu_context
=
ctx
.
device_context
<
DeviceContext
>
().
x_context
();
int
r
=
func
(
xpu_context
,
x_data
,
y_data
,
y_grad
,
x_grad
,
dX
->
numel
());
...
...
@@ -98,65 +99,64 @@ void xpu_activation_backward(const framework::ExecutionContext &ctx,
template
<
typename
T
>
struct
XPUReluFunctor
:
public
BaseActivationFunctor
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
xpu_activation_forward
<
paddle
::
platform
::
XPUDeviceContext
,
T
>
(
ctx
,
xpu
::
relu
<
T
>
);
xpu_activation_forward
<
paddle
::
platform
::
XPUDeviceContext
,
T
,
XPUType
>
(
ctx
,
xpu
::
relu
<
XPUType
>
);
}
};
template
<
typename
T
>
struct
XPUSigmoidFunctor
:
public
BaseActivationFunctor
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
xpu_activation_forward
<
paddle
::
platform
::
XPUDeviceContext
,
T
>
(
ctx
,
xpu
::
sigmoid
<
T
>
);
xpu_activation_forward
<
paddle
::
platform
::
XPUDeviceContext
,
T
,
XPUType
>
(
ctx
,
xpu
::
sigmoid
<
XPUType
>
);
}
};
template
<
typename
T
>
struct
XPUTanhFunctor
:
public
BaseActivationFunctor
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
xpu_activation_forward
<
paddle
::
platform
::
XPUDeviceContext
,
T
>
(
ctx
,
xpu
::
tanh
<
T
>
);
}
};
template
<
typename
T
>
struct
XPUGeluFunctor
:
public
BaseActivationFunctor
<
T
>
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
xpu_activation_forward
<
paddle
::
platform
::
XPUDeviceContext
,
T
>
(
ctx
,
xpu
::
gelu
<
T
>
);
xpu_activation_forward
<
paddle
::
platform
::
XPUDeviceContext
,
T
,
XPUType
>
(
ctx
,
xpu
::
tanh
<
XPUType
>
);
}
};
template
<
typename
T
>
struct
XPULogFunctor
:
public
BaseActivationFunctor
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
xpu_activation_forward
<
paddle
::
platform
::
XPUDeviceContext
,
T
>
(
ctx
,
xpu
::
log
<
T
>
);
xpu_activation_forward
<
paddle
::
platform
::
XPUDeviceContext
,
T
,
XPUType
>
(
ctx
,
xpu
::
log
<
XPUType
>
);
}
};
template
<
typename
T
>
struct
XPUSquareFunctor
:
public
BaseActivationFunctor
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
xpu_activation_forward
<
paddle
::
platform
::
XPUDeviceContext
,
T
>
(
ctx
,
xpu
::
square
<
T
>
);
xpu_activation_forward
<
paddle
::
platform
::
XPUDeviceContext
,
T
,
XPUType
>
(
ctx
,
xpu
::
square
<
XPUType
>
);
}
};
template
<
typename
T
>
struct
XPUSqrtFunctor
:
public
BaseActivationFunctor
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
xpu_activation_forward
<
paddle
::
platform
::
XPUDeviceContext
,
T
>
(
ctx
,
xpu
::
sqrt
<
T
>
);
xpu_activation_forward
<
paddle
::
platform
::
XPUDeviceContext
,
T
,
XPUType
>
(
ctx
,
xpu
::
sqrt
<
XPUType
>
);
}
};
template
<
typename
T
>
struct
XPUAbsFunctor
:
public
BaseActivationFunctor
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
xpu_activation_forward
<
paddle
::
platform
::
XPUDeviceContext
,
T
>
(
ctx
,
xpu
::
abs
<
T
>
);
xpu_activation_forward
<
paddle
::
platform
::
XPUDeviceContext
,
T
,
XPUType
>
(
ctx
,
xpu
::
abs
<
XPUType
>
);
}
};
...
...
@@ -196,6 +196,7 @@ struct XPUPowFunctor : public BaseActivationFunctor<T> {
template
<
typename
T
>
struct
XPUHardSwishFunctor
:
public
BaseActivationFunctor
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
float
threshold
=
ctx
.
Attr
<
float
>
(
"threshold"
);
float
scale
=
ctx
.
Attr
<
float
>
(
"scale"
);
...
...
@@ -208,61 +209,59 @@ struct XPUHardSwishFunctor : public BaseActivationFunctor<T> {
PADDLE_ENFORCE_EQ
(
offset
,
3.0
f
,
platform
::
errors
::
External
(
"Not support offset [%f] in XPU"
,
offset
));
xpu_activation_forward
<
paddle
::
platform
::
XPUDeviceContext
,
T
>
(
ctx
,
xpu
::
hard_swish
<
T
>
);
xpu_activation_forward
<
paddle
::
platform
::
XPUDeviceContext
,
T
,
XPUType
>
(
ctx
,
xpu
::
hard_swish
<
XPUType
>
);
}
};
template
<
typename
T
>
struct
XPUReluGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
xpu_activation_backward
<
paddle
::
platform
::
XPUDeviceContext
,
T
>
(
ctx
,
xpu
::
relu_grad
<
T
>
);
xpu_activation_backward
<
paddle
::
platform
::
XPUDeviceContext
,
T
,
XPUType
>
(
ctx
,
xpu
::
relu_grad
<
XPUType
>
);
}
};
template
<
typename
T
>
struct
XPUTanhGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
xpu_activation_backward
<
paddle
::
platform
::
XPUDeviceContext
,
T
>
(
ctx
,
xpu
::
tanh_grad
<
T
>
);
xpu_activation_backward
<
paddle
::
platform
::
XPUDeviceContext
,
T
,
XPUType
>
(
ctx
,
xpu
::
tanh_grad
<
XPUType
>
);
}
};
template
<
typename
T
>
struct
XPUSigmoidGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
xpu_activation_backward
<
paddle
::
platform
::
XPUDeviceContext
,
T
>
(
ctx
,
xpu
::
sigmoid_grad
<
T
>
);
}
};
template
<
typename
T
>
struct
XPUGeluGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
xpu_activation_backward
<
paddle
::
platform
::
XPUDeviceContext
,
T
>
(
ctx
,
xpu
::
gelu_grad
<
T
>
);
xpu_activation_backward
<
paddle
::
platform
::
XPUDeviceContext
,
T
,
XPUType
>
(
ctx
,
xpu
::
sigmoid_grad
<
XPUType
>
);
}
};
template
<
typename
T
>
struct
XPUSqrtGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
xpu_activation_backward
<
paddle
::
platform
::
XPUDeviceContext
,
T
>
(
ctx
,
xpu
::
sqrt_grad
<
T
>
);
xpu_activation_backward
<
paddle
::
platform
::
XPUDeviceContext
,
T
,
XPUType
>
(
ctx
,
xpu
::
sqrt_grad
<
XPUType
>
);
}
};
template
<
typename
T
>
struct
XPUSquareGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
xpu_activation_backward
<
paddle
::
platform
::
XPUDeviceContext
,
T
>
(
ctx
,
xpu
::
square_grad
<
T
>
);
xpu_activation_backward
<
paddle
::
platform
::
XPUDeviceContext
,
T
,
XPUType
>
(
ctx
,
xpu
::
square_grad
<
XPUType
>
);
}
};
template
<
typename
T
>
struct
XPUHardSwishGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
void
operator
()(
const
framework
::
ExecutionContext
&
ctx
)
const
{
float
threshold
=
ctx
.
Attr
<
float
>
(
"threshold"
);
float
scale
=
ctx
.
Attr
<
float
>
(
"scale"
);
...
...
@@ -275,8 +274,8 @@ struct XPUHardSwishGradFunctor : public BaseActivationFunctor<T> {
PADDLE_ENFORCE_EQ
(
offset
,
3.0
f
,
platform
::
errors
::
External
(
"Not support offset [%f] in XPU"
,
offset
));
xpu_activation_backward
<
paddle
::
platform
::
XPUDeviceContext
,
T
>
(
ctx
,
xpu
::
hard_swish_grad
<
T
>
);
xpu_activation_backward
<
paddle
::
platform
::
XPUDeviceContext
,
T
,
XPUType
>
(
ctx
,
xpu
::
hard_swish_grad
<
XPUType
>
);
}
};
...
...
@@ -342,16 +341,23 @@ namespace ops = paddle::operators;
ops::XPUActivationGradKernel<ops::grad_functor<float>>);
REGISTER_ACTIVATION_XPU_KERNEL
(
relu
,
XPUReluFunctor
,
XPUReluGradFunctor
)
REGISTER_ACTIVATION_XPU_KERNEL
(
tanh
,
XPUTanhFunctor
,
XPUTanhGradFunctor
)
REGISTER_ACTIVATION_XPU_KERNEL
(
sigmoid
,
XPUSigmoidFunctor
,
XPUSigmoidGradFunctor
)
REGISTER_ACTIVATION_XPU_KERNEL
(
gelu
,
XPUGeluFunctor
,
XPUGeluGradFunctor
)
REGISTER_ACTIVATION_XPU_KERNEL
(
sqrt
,
XPUSqrtFunctor
,
XPUSqrtGradFunctor
)
REGISTER_ACTIVATION_XPU_KERNEL
(
square
,
XPUSquareFunctor
,
XPUSquareGradFunctor
)
REGISTER_ACTIVATION_XPU_KERNEL
(
hard_swish
,
XPUHardSwishFunctor
,
XPUHardSwishGradFunctor
)
REGISTER_ACTIVATION_XPU_KERNEL
(
leaky_relu
,
XPULeakyReluFunctor
,
XPULeakyReluGradFunctor
)
REGISTER_OP_XPU_KERNEL
(
tanh
,
ops
::
XPUActivationKernel
<
ops
::
XPUTanhFunctor
<
float
>>
,
ops
::
XPUActivationKernel
<
ops
::
XPUTanhFunctor
<
paddle
::
platform
::
float16
>>
);
REGISTER_OP_XPU_KERNEL
(
tanh_grad
,
ops
::
XPUActivationGradKernel
<
ops
::
XPUTanhGradFunctor
<
float
>>
,
ops
::
XPUActivationGradKernel
<
ops
::
XPUTanhGradFunctor
<
paddle
::
platform
::
float16
>>
);
REGISTER_OP_XPU_KERNEL
(
log
,
ops
::
XPUActivationKernel
<
ops
::
XPULogFunctor
<
float
>>
);
REGISTER_OP_XPU_KERNEL
(
pow
,
...
...
paddle/fluid/operators/amp/check_finite_and_unscale_op_xpu.cc
浏览文件 @
442688a8
...
...
@@ -74,27 +74,15 @@ class CheckFiniteAndUnscaleXPUKernel : public framework::OpKernel<T> {
platform
::
errors
::
External
(
"XPU API(logical_not) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
r
=
xpu
::
isnan
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUTyp
*>
(
x
->
data
<
T
>
()),
is_nan
.
data
<
bool
>
(),
x
->
numel
());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(isnan) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
r
=
xpu
::
logical_or
(
dev_ctx
.
x_context
(),
is_finite
.
data
<
bool
>
(),
is_nan
.
data
<
bool
>
(),
is_finite
.
data
<
bool
>
(),
x
->
numel
());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(logical_or) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
r
=
xpu
::
any
(
dev_ctx
.
x_context
(),
is_finite
.
data
<
bool
>
(),
found_inf_data
,
x
->
numel
());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(any) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
if
(
dev_ctx
.
x_context
()
->
xpu_stream
)
{
dev_ctx
.
Wait
();
}
memory
::
Copy
(
platform
::
CPUPlace
(),
&
cpu_found_inf_data
,
BOOST_GET_CONST
(
platform
::
XPUPlace
,
dev_ctx
.
GetPlace
()),
found_inf_data
,
sizeof
(
bool
));
...
...
@@ -103,12 +91,12 @@ class CheckFiniteAndUnscaleXPUKernel : public framework::OpKernel<T> {
if
(
cpu_found_inf_data
)
{
inverse_scale
=
0.0
;
}
auto
dev_env
=
XPUEnv
::
getenv
(
"XPUSIM_DEVICE_MODEL"
);
paddle
::
platform
::
XPUVersion
version
=
dev_ctx
.
xpu_version
();
framework
::
Tensor
float_x
;
framework
::
Tensor
float_out
;
if
(
std
::
is_same
<
T
,
paddle
::
platform
::
float16
>::
value
&&
(
dev_env
==
nullptr
||
std
::
strcmp
(
dev_env
,
"KUNLUN1"
)))
{
framework
::
Tensor
float_x
;
framework
::
Tensor
float_out
;
(
version
==
paddle
::
platform
::
XPUVersion
::
XPU1
))
{
float_x
.
mutable_data
<
MPDType
>
(
dev_ctx
.
GetPlace
(),
x
->
numel
()
*
sizeof
(
MPDType
));
float_out
.
mutable_data
<
MPDType
>
(
dev_ctx
.
GetPlace
(),
...
...
@@ -137,10 +125,6 @@ class CheckFiniteAndUnscaleXPUKernel : public framework::OpKernel<T> {
"XPU API(cast_v2) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
if
(
dev_ctx
.
x_context
()
->
xpu_stream
)
{
dev_ctx
.
Wait
();
}
}
else
{
int
r
=
xpu
::
scale
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUTyp
*>
(
x
->
data
<
T
>
()),
...
...
@@ -152,6 +136,9 @@ class CheckFiniteAndUnscaleXPUKernel : public framework::OpKernel<T> {
r
,
XPUAPIErrorMsg
[
r
]));
}
}
if
(
dev_ctx
.
x_context
()
->
xpu_stream
)
{
dev_ctx
.
Wait
();
}
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
XPUPlace
,
dev_ctx
.
GetPlace
()),
found_inf_data
,
platform
::
CPUPlace
(),
&
cpu_found_inf_data
,
sizeof
(
bool
));
...
...
paddle/fluid/operators/amp/update_loss_scaling_op_xpu.cc
浏览文件 @
442688a8
...
...
@@ -113,10 +113,9 @@ class UpdateLossScalingXPUKernel : public framework::OpKernel<T> {
}
else
{
cpu_pre_loss_scaling_data
=
(
*
pre_loss_scaling_data
);
}
int
cpu_good_out_data
=
0
;
int
cpu_bad_out_data
=
0
;
MPDType
cpu_updated_loss_scaling_data
;
MPDType
cpu_updated_loss_scaling_data
=
cpu_pre_loss_scaling_data
;
if
(
cpu_found_inf_data
)
{
cpu_good_out_data
=
0
;
...
...
@@ -140,8 +139,7 @@ class UpdateLossScalingXPUKernel : public framework::OpKernel<T> {
cpu_good_out_data
=
0
;
}
}
// copy to host
// copy to device
memory
::
Copy
(
BOOST_GET_CONST
(
platform
::
XPUPlace
,
dev_ctx
.
GetPlace
()),
bad_out_data
,
platform
::
CPUPlace
(),
&
cpu_bad_out_data
,
sizeof
(
int
));
...
...
paddle/fluid/operators/fill_constant_op_xpu.cc
浏览文件 @
442688a8
...
...
@@ -17,8 +17,11 @@ namespace ops = paddle::operators;
#ifdef PADDLE_WITH_XPU
REGISTER_OP_XPU_KERNEL
(
fill_constant
,
ops
::
FillConstantKernel
<
float
>
,
ops
::
FillConstantKernel
<
int64_t
>
,
ops
::
FillConstantKernel
<
double
>
,
ops
::
FillConstantKernel
<
bool
>
,
ops
::
FillConstantKernel
<
int
>
,
ops
::
FillConstantKernel
<
double
>
,
ops
::
FillConstantKernel
<
uint8_t
>
,
ops
::
FillConstantKernel
<
int16_t
>
,
ops
::
FillConstantKernel
<
int
>
,
ops
::
FillConstantKernel
<
int64_t
>
,
ops
::
FillConstantKernel
<
bool
>
,
ops
::
FillConstantKernel
<
paddle
::
platform
::
float16
>
,
ops
::
FillConstantKernel
<
paddle
::
platform
::
bfloat16
>
,
ops
::
FillConstantKernel
<
paddle
::
platform
::
complex
<
float
>>
,
ops
::
FillConstantKernel
<
paddle
::
platform
::
complex
<
double
>>
);
#endif
paddle/fluid/operators/gather_op_xpu.cc
浏览文件 @
442688a8
...
...
@@ -24,6 +24,8 @@ namespace operators {
template
<
typename
T
>
class
GatherOpXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
...
...
@@ -63,13 +65,16 @@ class GatherOpXPUKernel : public framework::OpKernel<T> {
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
XPUDeviceContext
>();
int
r
=
XPU_SUCCESS
;
if
(
index
->
type
()
==
framework
::
proto
::
VarType
::
INT32
)
{
r
=
xpu
::
gather
<
T
,
int
>
(
dev_ctx
.
x_context
(),
x
->
data
<
T
>
(),
index
->
data
<
int
>
(),
output
->
data
<
T
>
(),
xshape
,
index
->
dims
()[
0
],
0
);
r
=
xpu
::
gather
<
XPUType
,
int
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x
->
data
<
T
>
()),
index
->
data
<
int
>
(),
reinterpret_cast
<
XPUType
*>
(
output
->
data
<
T
>
()),
xshape
,
index
->
dims
()[
0
],
0
);
}
else
{
r
=
xpu
::
gather
<
T
,
int64_t
>
(
dev_ctx
.
x_context
(),
x
->
data
<
T
>
(),
index
->
data
<
int64_t
>
(),
output
->
data
<
T
>
(),
xshape
,
index
->
dims
()[
0
],
0
);
r
=
xpu
::
gather
<
XPUType
,
int64_t
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x
->
data
<
T
>
()),
index
->
data
<
int64_t
>
(),
reinterpret_cast
<
XPUType
*>
(
output
->
data
<
T
>
()),
xshape
,
index
->
dims
()[
0
],
0
);
}
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
...
...
@@ -80,6 +85,8 @@ class GatherOpXPUKernel : public framework::OpKernel<T> {
template
<
typename
T
>
class
GatherGradOpXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
PADDLE_ENFORCE_EQ
(
...
...
@@ -123,13 +130,28 @@ class GatherGradOpXPUKernel : public framework::OpKernel<T> {
int
r
=
XPU_SUCCESS
;
if
(
index
->
type
()
==
framework
::
proto
::
VarType
::
INT32
)
{
r
=
xpu
::
gather_grad
<
T
,
int
>
(
dev_ctx
.
x_context
(),
dout
->
data
<
T
>
(),
index
->
data
<
int
>
(),
dx
->
data
<
T
>
(),
xshape
,
index
->
dims
()[
0
],
0
,
overwrite
);
r
=
xpu
::
gather_grad
<
XPUType
,
int
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
dout
->
data
<
T
>
()),
index
->
data
<
int
>
(),
reinterpret_cast
<
XPUType
*>
(
dx
->
data
<
T
>
()),
xshape
,
index
->
dims
()[
0
],
0
,
overwrite
);
}
else
{
r
=
xpu
::
gather_grad
<
T
,
int64_t
>
(
dev_ctx
.
x_context
(),
dout
->
data
<
T
>
(),
index
->
data
<
int64_t
>
(),
dx
->
data
<
T
>
(),
xshape
,
index
->
dims
()[
0
],
0
,
overwrite
);
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
int
*
index_int_ptr_l3
=
RAII_GUARD
.
alloc_l3_or_gm
<
int32_t
>
(
index
->
numel
());
r
=
xpu
::
cast_v2
<
int64_t
,
int32_t
>
(
dev_ctx
.
x_context
(),
index
->
data
<
int64_t
>
(),
index_int_ptr_l3
,
index
->
numel
());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(cast_v2) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
r
=
xpu
::
gather_grad
<
XPUType
,
int
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
dout
->
data
<
T
>
()),
index_int_ptr_l3
,
reinterpret_cast
<
XPUType
*>
(
dx
->
data
<
T
>
()),
xshape
,
index
->
dims
()[
0
],
0
,
overwrite
);
}
PADDLE_ENFORCE_EQ
(
r
,
xpu
::
Error_t
::
SUCCESS
,
platform
::
errors
::
External
(
...
...
@@ -142,6 +164,8 @@ class GatherGradOpXPUKernel : public framework::OpKernel<T> {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
gather
,
ops
::
GatherOpXPUKernel
<
float
>
);
REGISTER_OP_XPU_KERNEL
(
gather_grad
,
ops
::
GatherGradOpXPUKernel
<
float
>
);
REGISTER_OP_XPU_KERNEL
(
gather
,
ops
::
GatherOpXPUKernel
<
float
>
,
ops
::
GatherOpXPUKernel
<
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
gather_grad
,
ops
::
GatherGradOpXPUKernel
<
float
>
,
ops
::
GatherGradOpXPUKernel
<
paddle
::
platform
::
float16
>
);
#endif
paddle/fluid/operators/gelu_op_xpu.cc
0 → 100644
浏览文件 @
442688a8
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <memory>
#include <string>
#include "paddle/fluid/operators/gelu_op.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
GeluXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
place
=
ctx
.
GetPlace
();
const
XPUType
*
x_data
=
reinterpret_cast
<
const
XPUType
*>
(
x
->
data
<
T
>
());
XPUType
*
y_data
=
reinterpret_cast
<
XPUType
*>
(
out
->
mutable_data
<
T
>
(
place
));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
gelu
<
XPUType
>
(
dev_ctx
.
x_context
(),
x_data
,
y_data
,
x
->
numel
());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU gelu kernel return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
GeluGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
place
=
ctx
.
GetPlace
();
const
XPUType
*
x_data
=
reinterpret_cast
<
const
XPUType
*>
(
x
->
data
<
T
>
());
const
XPUType
*
dout_data
=
reinterpret_cast
<
const
XPUType
*>
(
dout
->
data
<
T
>
());
XPUType
*
dx_data
=
reinterpret_cast
<
XPUType
*>
(
dx
->
mutable_data
<
T
>
(
place
));
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
gelu_grad
<
XPUType
>
(
dev_ctx
.
x_context
(),
x_data
,
nullptr
,
dout_data
,
dx_data
,
dout
->
numel
());
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU gelu_grad kernel return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
gelu
,
ops
::
GeluXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
GeluXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
gelu_grad
,
ops
::
GeluGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
GeluGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
paddle/fluid/operators/softmax_op.cc
浏览文件 @
442688a8
...
...
@@ -85,9 +85,10 @@ class SoftmaxOp : public framework::OperatorWithKernel {
#ifndef PADDLE_WITH_ASCEND_CL
if
(
input_data_type
==
framework
::
proto
::
VarType
::
FP16
)
{
PADDLE_ENFORCE_EQ
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
()),
true
,
platform
::
errors
::
InvalidArgument
(
"float16 can only be used on GPU place"
));
PADDLE_ENFORCE_EQ
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
())
||
platform
::
is_xpu_place
(
ctx
.
GetPlace
()),
true
,
platform
::
errors
::
InvalidArgument
(
"float16 can only be used on GPU/XPU place"
));
}
#endif
...
...
@@ -214,9 +215,10 @@ class SoftmaxOpGrad : public framework::OperatorWithKernel {
#endif
if
(
input_data_type
==
framework
::
proto
::
VarType
::
FP16
)
{
if
(
!
(
platform
::
is_gpu_place
(
ctx
.
GetPlace
())
||
platform
::
is_npu_place
(
ctx
.
GetPlace
())))
platform
::
is_npu_place
(
ctx
.
GetPlace
())
||
platform
::
is_xpu_place
(
ctx
.
GetPlace
())))
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"float16 can only be used on GPU/NPU place"
));
"float16 can only be used on GPU/NPU
/XPU
place"
));
}
return
framework
::
OpKernelType
(
input_data_type
,
ctx
.
GetPlace
(),
layout_
,
...
...
paddle/fluid/operators/softmax_op_xpu.cc
浏览文件 @
442688a8
...
...
@@ -22,6 +22,8 @@ using DDim = framework::DDim;
template
<
typename
DeviceContext
,
typename
T
>
class
SoftmaxXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
...
...
@@ -43,29 +45,43 @@ class SoftmaxXPUKernel : public framework::OpKernel<T> {
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
XPU_SUCCESS
;
Tensor
clip_x
;
int
len
=
x
->
numel
();
T
*
clip_x_data
=
clip_x
.
mutable_data
<
T
>
(
context
.
GetPlace
(),
len
*
sizeof
(
T
));
r
=
xpu
::
clip_v2
(
dev_ctx
.
x_context
(),
x
->
data
<
float
>
(),
clip_x_data
,
len
,
static_cast
<
float
>
(
-
1e20
),
static_cast
<
float
>
(
1e20
));
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(clip) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
r
=
xpu
::
softmax
<
T
>
(
dev_ctx
.
x_context
(),
clip_x_data
,
out
->
data
<
float
>
(),
x_dims
,
axis
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(softmax2d_forward) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
paddle
::
platform
::
XPUVersion
version
=
dev_ctx
.
xpu_version
();
if
(
version
==
paddle
::
platform
::
XPUVersion
::
XPU1
)
{
xpu
::
ctx_guard
RAII_GUARD
(
dev_ctx
.
x_context
());
XPUType
*
clip_x_data_l3
=
RAII_GUARD
.
alloc_l3_or_gm
<
XPUType
>
(
x
->
numel
());
r
=
xpu
::
clip_v2
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x
->
data
<
T
>
()),
clip_x_data_l3
,
x
->
numel
(),
static_cast
<
XPUType
>
(
-
1e20
),
static_cast
<
XPUType
>
(
1e20
));
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(clip_v2) return wrong value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
r
=
xpu
::
softmax
<
XPUType
>
(
dev_ctx
.
x_context
(),
clip_x_data_l3
,
reinterpret_cast
<
XPUType
*>
(
out
->
data
<
T
>
()),
x_dims
,
axis
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(softmax2d_forward) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
else
{
r
=
xpu
::
softmax
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x
->
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
out
->
data
<
T
>
()),
x_dims
,
axis
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(softmax2d_forward) return wrong "
"value[%d %s]"
,
r
,
XPUAPIErrorMsg
[
r
]));
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
SoftmaxGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
out
=
context
.
Input
<
Tensor
>
(
"Out"
);
...
...
@@ -86,9 +102,10 @@ class SoftmaxGradXPUKernel : public framework::OpKernel<T> {
}
auto
&
dev_ctx
=
context
.
template
device_context
<
DeviceContext
>();
int
r
=
xpu
::
softmax_grad
<
T
>
(
dev_ctx
.
x_context
(),
out
->
data
<
float
>
(),
dout
->
data
<
float
>
(),
dx
->
data
<
float
>
(),
x_dims
,
axis
);
int
r
=
xpu
::
softmax_grad
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
out
->
data
<
T
>
()),
reinterpret_cast
<
const
XPUType
*>
(
dout
->
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
dx
->
data
<
T
>
()),
x_dims
,
axis
);
PADDLE_ENFORCE_EQ
(
r
,
XPU_SUCCESS
,
platform
::
errors
::
External
(
"XPU API(softmax2d_backward) return wrong "
...
...
@@ -103,9 +120,13 @@ class SoftmaxGradXPUKernel : public framework::OpKernel<T> {
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
softmax
,
ops
::
SoftmaxXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
softmax
,
ops
::
SoftmaxXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
SoftmaxXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_XPU_KERNEL
(
softmax_grad
,
ops
::
SoftmaxGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
);
ops
::
SoftmaxGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
float
>
,
ops
::
SoftmaxGradXPUKernel
<
paddle
::
platform
::
XPUDeviceContext
,
paddle
::
platform
::
float16
>
);
#endif // PADDLE_WITH_XPU
paddle/fluid/platform/xpu/xpu2_op_list.h
浏览文件 @
442688a8
...
...
@@ -186,7 +186,36 @@ XPUOpMap& get_kl2_ops() {
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"scale"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
()),
pOpKernelType
(
vartype
::
INT64
,
XPUPlace
())})}
pOpKernelType
(
vartype
::
INT64
,
XPUPlace
())})},
{
"tanh"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"tanh_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"gelu"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"gelu_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"gather"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"gather_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"fill_constant"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
INT64
,
XPUPlace
()),
pOpKernelType
(
vartype
::
INT32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
INT16
,
XPUPlace
()),
pOpKernelType
(
vartype
::
INT8
,
XPUPlace
()),
pOpKernelType
(
vartype
::
BOOL
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP64
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
()),
pOpKernelType
(
vartype
::
BF16
,
XPUPlace
()),
pOpKernelType
(
vartype
::
COMPLEX64
,
XPUPlace
()),
pOpKernelType
(
vartype
::
COMPLEX128
,
XPUPlace
())})},
{
"softmax"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"softmax_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})}
// AddMore
};
...
...
paddle/fluid/platform/xpu/xpu_header.h
浏览文件 @
442688a8
...
...
@@ -19,6 +19,7 @@
#include <string>
#include <unordered_map>
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/errors.h"
#include "paddle/fluid/platform/float16.h"
#include "xpu/runtime.h"
...
...
@@ -68,4 +69,10 @@ class XPUTypeTrait<paddle::platform::float16> {
using
Type
=
float16
;
};
template
<
>
class
XPUTypeTrait
<
paddle
::
platform
::
bfloat16
>
{
public:
using
Type
=
bfloat16
;
};
#endif
python/paddle/fluid/tests/unittests/op_test_xpu.py
浏览文件 @
442688a8
...
...
@@ -89,6 +89,8 @@ class XPUOpTest(OpTest):
if
self
.
dtype
==
np
.
float16
:
if
core
.
is_float16_supported
(
place
)
==
False
:
return
if
self
.
dtype
==
np
.
float16
:
atol
=
0.1
return
super
().
check_output_with_place
(
place
,
atol
,
no_check_set
,
equal_nan
,
check_dygraph
,
inplace_atol
)
...
...
@@ -115,6 +117,7 @@ class XPUOpTest(OpTest):
return
if
self
.
dtype
==
np
.
float16
:
max_relative_error
=
1.0
return
super
().
check_grad_with_place
(
place
,
inputs_to_check
,
output_names
,
no_grad_set
,
numeric_grad_delta
,
in_place
,
max_relative_error
,
...
...
python/paddle/fluid/tests/unittests/xpu/test_activation_op_xpu.py
浏览文件 @
442688a8
...
...
@@ -95,6 +95,26 @@ class TestXPUTanh(TestXPUActivation):
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
)
class
TestXPUTanhFP16
(
TestXPUActivation
):
def
setUp
(
self
):
self
.
op_type
=
"tanh"
self
.
init_dtype
()
x
=
np
.
random
.
uniform
(
0.1
,
1
,
[
11
,
17
]).
astype
(
self
.
dtype
)
out
=
np
.
tanh
(
x
)
self
.
attrs
=
{
'use_xpu'
:
True
}
self
.
inputs
=
{
'X'
:
OpTest
.
np_dtype_to_fluid_dtype
(
x
)}
self
.
outputs
=
{
'Out'
:
out
}
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
def
test_check_grad
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestXPUSqrt
(
TestXPUActivation
):
...
...
@@ -177,6 +197,27 @@ class TestXPUGelu(TestXPUActivation):
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
)
class
TestXPUGelu
(
TestXPUActivation
):
def
setUp
(
self
):
self
.
op_type
=
"gelu"
self
.
init_dtype
()
approximate
=
False
x
=
np
.
random
.
uniform
(
-
1
,
1
,
[
11
,
17
]).
astype
(
self
.
dtype
)
out
=
gelu
(
x
,
approximate
)
self
.
inputs
=
{
'X'
:
x
}
self
.
outputs
=
{
'Out'
:
out
}
self
.
attrs
=
{
"approximate"
:
approximate
,
'use_xpu'
:
True
}
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
def
test_check_grad
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
)
def
gelu
(
x
,
approximate
):
if
approximate
:
y_ref
=
0.5
*
x
*
(
1.0
+
np
.
tanh
(
...
...
python/paddle/fluid/tests/unittests/xpu/test_gather_op_xpu.py
浏览文件 @
442688a8
...
...
@@ -36,7 +36,6 @@ def gather_numpy(x, index, axis):
class
TestXPUGatherOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
dtype
=
"float32"
self
.
op_type
=
"gather"
self
.
use_xpu
=
True
self
.
use_mkldnn
=
False
...
...
@@ -50,6 +49,16 @@ class TestXPUGatherOp(XPUOpTest):
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
"X"
][
self
.
inputs
[
"Index"
]]}
def
config
(
self
):
"""
For multi-dimension input
"""
self
.
dtype
=
np
.
float32
self
.
x_shape
=
(
10
,
20
)
self
.
x_type
=
np
.
float32
self
.
index
=
[
1
,
3
,
5
]
self
.
index_type
=
np
.
int32
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
...
...
@@ -60,25 +69,17 @@ class TestXPUGatherOp(XPUOpTest):
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Out'
)
def
config
(
self
):
"""
For multi-dimension input
"""
self
.
x_shape
=
(
10
,
20
)
self
.
x_type
=
"float32"
self
.
index
=
[
1
,
3
,
5
]
self
.
index_type
=
"int32"
class
TestCase1
(
TestXPUGatherOp
):
def
config
(
self
):
"""
For one dimension input
"""
self
.
dtype
=
np
.
float32
self
.
x_shape
=
(
100
)
self
.
x_type
=
"float32"
self
.
x_type
=
np
.
float32
self
.
index
=
[
1
,
3
,
5
]
self
.
index_type
=
"int32"
self
.
index_type
=
np
.
int32
class
TestCase2
(
TestXPUGatherOp
):
...
...
@@ -86,10 +87,11 @@ class TestCase2(TestXPUGatherOp):
"""
For int64_t index type
"""
self
.
dtype
=
np
.
float32
self
.
x_shape
=
(
100
)
self
.
x_type
=
"float32"
self
.
x_type
=
np
.
float32
self
.
index
=
[
1
,
3
,
5
]
self
.
index_type
=
"int32"
self
.
index_type
=
np
.
int64
class
TestCase3
(
TestXPUGatherOp
):
...
...
@@ -97,46 +99,128 @@ class TestCase3(TestXPUGatherOp):
"""
For other input type
"""
self
.
dtype
=
np
.
float32
self
.
x_shape
=
(
10
,
20
)
self
.
x_type
=
"float32"
self
.
x_type
=
np
.
float32
self
.
index
=
[
1
,
3
,
5
]
self
.
index_type
=
"int32"
self
.
index_type
=
np
.
int32
class
TestCase4
(
TestXPUGatherOp
):
def
config
(
self
):
self
.
dtype
=
np
.
float32
self
.
x_shape
=
(
10
,
20
)
self
.
attrs
=
{
'use_xpu'
:
True
,
'overwrite'
:
False
}
self
.
x_type
=
"float32"
self
.
x_type
=
np
.
float32
self
.
index
=
[
1
,
1
]
self
.
index_type
=
"int32"
self
.
index_type
=
np
.
int32
class
TestCase5
(
TestXPUGatherOp
):
def
config
(
self
):
self
.
dtype
=
np
.
float32
self
.
x_shape
=
(
10
,
20
)
self
.
attrs
=
{
'use_xpu'
:
True
,
'overwrite'
:
False
}
self
.
x_type
=
"float32"
self
.
x_type
=
np
.
float32
self
.
index
=
[
1
,
1
,
3
]
self
.
index_type
=
"int32"
self
.
index_type
=
np
.
int32
class
TestCase6
(
TestXPUGatherOp
):
def
config
(
self
):
self
.
dtype
=
np
.
float32
self
.
x_shape
=
(
10
,
20
)
self
.
attrs
=
{
'use_xpu'
:
True
,
'overwrite'
:
True
}
self
.
x_type
=
"float32"
self
.
x_type
=
np
.
float32
self
.
index
=
[
1
,
3
]
self
.
index_type
=
"int32"
self
.
index_type
=
np
.
int32
class
TestCase7
(
TestXPUGatherOp
):
def
config
(
self
):
self
.
dtype
=
np
.
float32
self
.
x_shape
=
(
10
,
20
)
self
.
attrs
=
{
'use_xpu'
:
True
,
'overwrite'
:
True
}
self
.
x_type
=
np
.
float32
self
.
index
=
[
1
,
3
]
self
.
index_type
=
np
.
int64
## test fp16
class
TestCaseFP161
(
TestXPUGatherOp
):
def
config
(
self
):
"""
For one dimension input
"""
self
.
dtype
=
np
.
float16
self
.
x_shape
=
(
100
)
self
.
x_type
=
np
.
float16
self
.
index
=
[
1
,
3
,
5
]
self
.
index_type
=
np
.
int32
class
TestCaseFP162
(
TestXPUGatherOp
):
def
config
(
self
):
"""
For int64_t index type
"""
self
.
dtype
=
np
.
float16
self
.
x_shape
=
(
100
)
self
.
x_type
=
np
.
float16
self
.
index
=
[
1
,
3
,
5
]
self
.
index_type
=
np
.
int64
class
TestCaseFP163
(
TestXPUGatherOp
):
def
config
(
self
):
"""
For other input type
"""
self
.
dtype
=
np
.
float16
self
.
x_shape
=
(
10
,
20
)
self
.
x_type
=
np
.
float16
self
.
index
=
[
1
,
3
,
5
]
self
.
index_type
=
np
.
int32
class
TestCaseFP164
(
TestXPUGatherOp
):
def
config
(
self
):
self
.
dtype
=
np
.
float16
self
.
x_shape
=
(
10
,
20
)
self
.
attrs
=
{
'use_xpu'
:
True
,
'overwrite'
:
False
}
self
.
x_type
=
np
.
float16
self
.
index
=
[
1
,
1
]
self
.
index_type
=
np
.
int32
class
TestCaseFP165
(
TestXPUGatherOp
):
def
config
(
self
):
self
.
dtype
=
np
.
float16
self
.
x_shape
=
(
10
,
20
)
self
.
attrs
=
{
'use_xpu'
:
True
,
'overwrite'
:
False
}
self
.
x_type
=
np
.
float16
self
.
index
=
[
1
,
1
,
3
]
self
.
index_type
=
np
.
int32
class
TestCaseFP166
(
TestXPUGatherOp
):
def
config
(
self
):
self
.
dtype
=
np
.
float16
self
.
x_shape
=
(
10
,
20
)
self
.
attrs
=
{
'use_xpu'
:
True
,
'overwrite'
:
True
}
self
.
x_type
=
np
.
float16
self
.
index
=
[
1
,
3
]
self
.
index_type
=
np
.
int32
class
TestCaseFP167
(
TestXPUGatherOp
):
def
config
(
self
):
self
.
dtype
=
np
.
float16
self
.
x_shape
=
(
10
,
20
)
self
.
attrs
=
{
'use_xpu'
:
True
,
'overwrite'
:
True
}
self
.
x_type
=
"float32"
self
.
x_type
=
np
.
float16
self
.
index
=
[
1
,
3
]
self
.
index_type
=
"int64"
self
.
index_type
=
np
.
int64
if
__name__
==
"__main__"
:
...
...
python/paddle/fluid/tests/unittests/xpu/test_softmax_op_xpu.py
浏览文件 @
442688a8
...
...
@@ -17,8 +17,7 @@ import numpy as np
import
sys
import
unittest
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
from
op_test_xpu
import
XPUOpTest
paddle
.
enable_static
()
np
.
random
.
seed
(
10
)
...
...
@@ -41,15 +40,13 @@ def ref_softmax(x, axis=None, dtype=None):
return
np
.
apply_along_axis
(
stable_softmax
,
axis
,
x_t
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestXPUSoftmaxOp
(
OpTest
):
class
TestXPUSoftmaxOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"softmax"
self
.
dtype
=
np
.
float32
self
.
shape
=
[
2
,
3
,
4
,
5
]
self
.
axis
=
-
1
self
.
set_attrs
()
self
.
init_type
()
x
=
np
.
random
.
uniform
(
-
1
,
1
,
self
.
shape
).
astype
(
self
.
dtype
)
out
=
np
.
apply_along_axis
(
stable_softmax
,
self
.
axis
,
x
)
...
...
@@ -58,6 +55,9 @@ class TestXPUSoftmaxOp(OpTest):
self
.
outputs
=
{
'Out'
:
out
}
self
.
attrs
=
{
'axis'
:
self
.
axis
,
'use_xpu'
:
True
}
def
init_type
(
self
):
self
.
dtype
=
np
.
float16
def
set_attrs
(
self
):
pass
...
...
@@ -68,26 +68,35 @@ class TestXPUSoftmaxOp(OpTest):
self
.
check_grad_with_place
(
paddle
.
XPUPlace
(
0
),
[
'X'
],
'Out'
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestXPUSoftmaxAxis3
(
TestXPUSoftmaxOp
):
def
set_attrs
(
self
):
self
.
axis
=
3
# class TestXPUSoftmaxAxis3(TestXPUSoftmaxOp):
# def set_attrs(self):
# self.axis = 3
# class TestXPUSoftmax2D(TestXPUSoftmaxOp):
# def set_attrs(self):
# self.shape = [10, 12]
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestXPUSoftmax2D
(
TestXPUSoftmaxOp
):
def
set_attrs
(
self
):
self
.
shape
=
[
10
,
12
]
# class TestXPUSoftmax3D(TestXPUSoftmaxOp):
# def set_attrs(self):
# self.shape = [4, 5, 6]
# class TestXPUSoftmaxAxis3FP16(TestXPUSoftmaxOp):
# def set_attrs(self):
# self.axis = 3
# def init_type(self):
# self.dtype = np.float16
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_xpu
(),
"core is not compiled with XPU"
)
class
TestXPUSoftmax3D
(
TestXPUSoftmaxOp
):
def
set_attrs
(
self
):
self
.
shape
=
[
4
,
5
,
6
]
# class TestXPUSoftmax2DFP16(TestXPUSoftmaxOp):
# def set_attrs(self):
# self.shape = [10, 12]
# def init_type
(self):
# self.dtype = np.float16
# class TestXPUSoftmax3DFP16(TestXPUSoftmaxOp):
# def set_attrs(self):
# self.shape = [4, 5, 6]
# def init_type(self):
# self.dtype = np.float16
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录