conv_mkldnn_op.cc 47.1 KB
Newer Older
A
Adam Osewski 已提交
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

A
Adam Osewski 已提交
15 16
#include <tuple>

17
#include "paddle/fluid/framework/expect.h"
18
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/cpu_info.h"
A
Adam Osewski 已提交
20
#include "paddle/fluid/platform/mkldnn_helper.h"
J
Jacek Czaja 已提交
21
#include "paddle/fluid/platform/mkldnn_reuse.h"
22 23 24

namespace paddle {
namespace operators {
A
Adam Osewski 已提交
25
namespace {
26

27 28 29
inline MKLDNNMemoryFormat GetWeightsFormat(const MKLDNNMemoryFormat format,
                                           const int groups,
                                           const bool is_conv3d) {
Y
Yihua Xu 已提交
30
  if (is_conv3d) {
31
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
32
  } else {
33
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
34 35 36
  }
}

37 38 39 40 41 42
static dnnl::memory::data_type GetDstType(bool is_int8, bool is_bfloat16,
                                          bool force_fp32_output,
                                          std::string fuse_activation,
                                          bool fuse_residual_conn,
                                          const Tensor* residual_param) {
  auto dst_dt = dnnl::memory::data_type::f32;
43 44
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
45 46
                 ? dnnl::memory::data_type::u8
                 : dnnl::memory::data_type::s8;
47
    if (force_fp32_output) {
48
      dst_dt = dnnl::memory::data_type::f32;
49
    }
50
    if (fuse_residual_conn && residual_param) {
51 52
      auto residual_dt = framework::ToMKLDNNDataType(
          framework::TransToProtoVarType(residual_param->dtype()));
53
      if (dst_dt != residual_dt) dst_dt = residual_dt;
54
    }
55 56
  } else {
    if (!force_fp32_output && is_bfloat16) {
57
      dst_dt = dnnl::memory::data_type::bf16;
58
      if (fuse_residual_conn && residual_param) {
59 60
        dst_dt = framework::ToMKLDNNDataType(
            framework::TransToProtoVarType(residual_param->dtype()));
61 62
      }
    }
63 64 65 66
  }
  return dst_dt;
}

67
template <typename T, typename K, typename T_out>
68
class ConvMKLDNNHandlerT
69 70 71
    : public platform::MKLDNNHandlerT<T, dnnl::convolution_forward,
                                      dnnl::convolution_backward_data,
                                      dnnl::convolution_backward_weights> {
72
 public:
A
Adam Osewski 已提交
73
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
74
                     const platform::MKLDNNDeviceContext& dev_ctx,
75
                     const dnnl::engine mkldnn_engine,
76 77 78
                     platform::Place cpu_place, const Tensor* input,
                     const Tensor* filter, const Tensor* bias, Tensor* output,
                     const std::string& unique_name)
79 80 81
      : platform::MKLDNNHandlerT<T, dnnl::convolution_forward,
                                 dnnl::convolution_backward_data,
                                 dnnl::convolution_backward_weights>(
82
            dev_ctx, mkldnn_engine, cpu_place,
83
            platform::CreateKey(dev_ctx, framework::vectorize(input->dims()),
84
                                unique_name)) {
85
    if (unlikely(!this->isCached())) {
86
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
87
          input->layout(), framework::DataLayout::kMKLDNN,
88 89
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
90
              framework::DataLayout::kMKLDNN, input->layout()));
91 92 93
      PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Input tensor"));
94

95
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
96
          filter->layout(), framework::DataLayout::kMKLDNN,
97 98
          platform::errors::InvalidArgument(
              "The Filter tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
99
              framework::DataLayout::kMKLDNN, filter->layout()));
100 101 102
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Filter tensor"));
K
Krzysztof Binias 已提交
103

104 105 106 107 108 109 110 111 112 113 114 115
      PADDLE_ENFORCE_GE(
          input->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
      PADDLE_ENFORCE_LE(
          input->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
116

117 118 119 120 121 122 123 124 125 126 127 128
      PADDLE_ENFORCE_GE(
          filter->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
      PADDLE_ENFORCE_LE(
          filter->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
129

130 131
      if (bias) {
        PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
132
            bias->layout(), framework::DataLayout::kMKLDNN,
133 134
            platform::errors::InvalidArgument(
                "The Bias tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
135
                framework::DataLayout::kMKLDNN, bias->layout()));
136 137 138
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
139

140 141 142 143 144 145
        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, "
                              "i.e. X, but got dimension = %d .",
                              bias->dims().size()));
      }
F
FDInSky 已提交
146

147 148 149 150 151 152 153 154 155
      const std::string fuse_activation =
          ctx.Attr<std::string>("fuse_activation");
      const float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      const float fuse_beta = ctx.Attr<float>("fuse_beta");
      const bool fuse_residual_conn =
          ctx.Attr<bool>("fuse_residual_connection");
      const int groups = ctx.Attr<int>("groups");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
F
FDInSky 已提交
156

157 158 159 160 161 162
      const auto input_dims = input->dims();
      const auto data_dims =
          framework::slice_ddim(input_dims, 2, input_dims.size());
      const auto filter_dims = filter->dims();
      const auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
163

164
      const auto ksize = framework::vectorize(filter_data_dims);
165
      const bool is_test = ctx.Attr<bool>("is_test");
166

167 168
      auto strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
169

170 171
      auto paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
A
Adam 已提交
172

173 174 175
      auto dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));
A
Adam 已提交
176

177 178
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);
A
Adam 已提交
179

180 181
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
182

A
Adam Osewski 已提交
183
      const auto src_tz = framework::vectorize(input->dims());
184

A
Adam Osewski 已提交
185
      auto weights_tz = framework::vectorize(filter->dims());
186
      platform::GetGroupConvWeightsTz(weights_tz, groups);
187

A
Adam Osewski 已提交
188
      const auto dst_tz = framework::vectorize(output->dims());
189

190
      const dnnl::memory::dims stride_dims = strides;
191
      const auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
192
      const dnnl::memory::dims dilations_dims = dilations;
A
Adam 已提交
193

194 195 196 197
      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
198
      auto chosen_memory_format = MKLDNNMemoryFormat::any;
199
      auto data_type = dnnl::memory::data_type::f32;
200 201
      if (ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16" ||
          std::is_same<T_out, platform::bfloat16>::value)
202
        data_type = dnnl::memory::data_type::bf16;
203

204
      dnnl::memory::desc src_md, weights_md;
A
Adam Osewski 已提交
205 206
      if (platform::is_int8<T>()) {
        src_md = platform::MKLDNNMemDesc(
207 208
            src_tz, framework::ToMKLDNNDataType(
                        framework::TransToProtoVarType(input->dtype())),
A
Adam Osewski 已提交
209 210
            chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(
211
            weights_tz, dnnl::memory::data_type::s8, chosen_memory_format);
A
Adam Osewski 已提交
212 213 214 215 216 217 218
      } else {
        src_md =
            platform::MKLDNNMemDesc(src_tz, data_type, chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(weights_tz, data_type,
                                             MKLDNNMemoryFormat::any);
      }

219
      const auto dst_md = platform::MKLDNNMemDesc(
220
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
221 222
      const auto fwd_prop_kind = is_test ? dnnl::prop_kind::forward_inference
                                         : dnnl::prop_kind::forward_training;
223

J
jakpiase 已提交
224
      float sum_scale = 1.0f;
225
      float activation_scale = 1.0f;
A
Adam Osewski 已提交
226
      std::vector<float> output_shift_scale;
J
jakpiase 已提交
227
      if (platform::is_int8<T>())
228 229
        std::tie(sum_scale, output_shift_scale, activation_scale) =
            get_int8_scales(ctx);
A
Adam Osewski 已提交
230

231
      const dnnl::primitive_attr conv_attr = CreatePostOps(
A
Adam Osewski 已提交
232
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn,
233
          output_shift_scale, sum_scale, activation_scale);  // for INT8 only!
A
Adam 已提交
234

235 236
      if (bias) {
        auto bias_tz = framework::vectorize(bias->dims());
237
        dnnl::memory::desc bias_md;
A
Adam Osewski 已提交
238 239
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
240
              bias_tz, dnnl::memory::data_type::s32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
241 242 243 244
        } else {
          bias_md = platform::MKLDNNMemDesc(bias_tz, data_type,
                                            MKLDNNMemoryFormat::x);
        }
245

246
        this->AcquireForwardPrimitiveDescriptor(
247
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
248
            src_md, weights_md, bias_md, dst_md, stride_dims, dilations_dims,
249 250
            mkldnn_paddings[0], mkldnn_paddings[1]);
      } else {
251
        this->AcquireForwardPrimitiveDescriptor(
252
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
253 254
            src_md, weights_md, dst_md, stride_dims, dilations_dims,
            mkldnn_paddings[0], mkldnn_paddings[1]);
255 256 257
      }
    }
  }
258

259 260 261 262 263 264
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
                     const platform::MKLDNNDeviceContext& dev_ctx,
                     platform::Place cpu_place, const Tensor* in,
                     const Tensor* filter, const Tensor* bias,
                     const Tensor* out_grad, Tensor* filter_grad,
                     Tensor* in_x_grad, const std::string& unique_name)
265 266 267
      : platform::MKLDNNHandlerT<T, dnnl::convolution_forward,
                                 dnnl::convolution_backward_data,
                                 dnnl::convolution_backward_weights>(
268 269
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
            platform::CreateKey(dev_ctx, framework::vectorize(in->dims()),
270
                                unique_name)) {
271
    if (unlikely(!this->isBwdCached())) {
272
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
273
          in->layout(), framework::DataLayout::kMKLDNN,
274 275
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
276
              framework::DataLayout::kMKLDNN, in->layout()));
277 278 279 280 281
      PADDLE_ENFORCE_NE(in->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Got wrong format for Input tensor."));

      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
282
          filter->layout(), framework::DataLayout::kMKLDNN,
283 284
          platform::errors::InvalidArgument(
              "The filter tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
285
              framework::DataLayout::kMKLDNN, filter->layout()));
286 287 288 289 290
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Got wrong format for Filter tensor."));

      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
291
          out_grad->layout(), framework::DataLayout::kMKLDNN,
292 293
          platform::errors::InvalidArgument(
              "The output_grad tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
294
              framework::DataLayout::kMKLDNN, out_grad->layout()));
295 296 297 298 299
      PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for output_grad tensor"));

      PADDLE_ENFORCE_EQ(
300
          ctx.Attr<bool>("is_test"), false,
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
          platform::errors::InvalidArgument(
              "is_test attribute should be set to False in training phase."));

      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));

      auto input_dims = in->dims();
      auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
      auto filter_dims = filter->dims();
      auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
      auto ksize = framework::vectorize(filter_data_dims);

A
Adam Osewski 已提交
321 322
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
323 324 325 326 327 328
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);

      auto src_tz = framework::vectorize(in->dims());
      auto weights_tz = framework::vectorize(filter->dims());

A
Adam Osewski 已提交
329
      int groups = ctx.Attr<int>("groups");
330 331
      int g = std::max(groups, 1);
      platform::GetGroupConvWeightsTz(weights_tz, g);
A
Adam Osewski 已提交
332
      auto dst_tz = framework::vectorize(out_grad->dims());
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356

      /* create memory descriptor for conv backward without specified format
       * ('any') which lets a primitive (conv backward in this case) choose
       * the memory format preferred for best performance
       */
      const auto chosen_memory_format = MKLDNNMemoryFormat::any;
      const auto weights_format = MKLDNNMemoryFormat::any;

      auto src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      const auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
      auto diff_src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

      auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
357
      const dnnl::memory::dims dilations_dims = dilations;
358

359
      const dnnl::memory::dims stride_dims = strides;
360
      // Recreating FWD PD. For training there are no post ops in convolution
361
      dnnl::primitive_attr conv_attr;
362 363
      if (bias) {
        auto bias_tz = framework::vectorize(bias->dims());
364
        dnnl::memory::desc bias_md;
A
Adam Osewski 已提交
365 366
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
367
              bias_tz, dnnl::memory::data_type::s32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
368 369
        } else {
          bias_md = platform::MKLDNNMemDesc(
370
              bias_tz, dnnl::memory::data_type::f32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
371
        }
372

373
        this->AcquireForwardPrimitiveDescriptor(
374
            conv_attr, dnnl::prop_kind::forward_training,
375 376 377 378
            dnnl::algorithm::convolution_direct, src_md, weights_md, bias_md,
            dst_md, stride_dims, dilations_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      } else {
379
        this->AcquireForwardPrimitiveDescriptor(
380
            conv_attr, dnnl::prop_kind::forward_training,
381 382 383 384 385
            dnnl::algorithm::convolution_direct, src_md, weights_md, dst_md,
            stride_dims, dilations_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      }

386
      this->AcquireBackwardPrimitiveDescriptor(
387
          dnnl::algorithm::convolution_direct, diff_src_md, weights_md,
388 389 390
          diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
          mkldnn_paddings[1]);

391
      this->AcquireBackwardWeightsPrimitiveDescriptor(
392
          dnnl::algorithm::convolution_direct, src_md, diff_weights_md,
393 394 395 396 397
          diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
          mkldnn_paddings[1]);
    }
  }

398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
  std::shared_ptr<std::tuple<float, std::vector<float>>> get_int8_bias_scales(
      const framework::ExecutionContext& ctx) {
    // Get scales int8 bias key
    const std::string key_bs = this->key_ + "@bs";

    // Scales for int8 bias are to be cached to avoid
    // computing them each iteration
    auto bias_scale_tuple =
        std::static_pointer_cast<std::tuple<float, std::vector<float>>>(
            this->dev_ctx_.GetBlob(key_bs));
    if (bias_scale_tuple) return bias_scale_tuple;

    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto& weights_tz = framework::vectorize(filter->dims());
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const auto& scale_in_data = ctx.Attr<float>("Scale_in");

    bool is_multi_channel = scale_weights_data.size() > 1;
    int mask_reorder = is_multi_channel ? 1 << 0 : 1;

    int count = 1;
    if (is_multi_channel) {
      count *= weights_tz[0];
      if (groups > 1) {
        count *= weights_tz[1];
      }
    }

    bias_scale_tuple =
        std::make_shared<std::tuple<float, std::vector<float>>>(std::make_tuple(
            static_cast<float>(mask_reorder), std::vector<float>(count)));
    for (int i = 0; i < count; i++) {
      std::get<1>(*bias_scale_tuple)[i] = scale_in_data * scale_weights_data[i];
    }

    this->dev_ctx_.SetBlob(key_bs, bias_scale_tuple);

    return bias_scale_tuple;
  }

441
  std::tuple<float, std::vector<float>, float> get_int8_scales(
A
Adam Osewski 已提交
442 443 444 445 446 447 448 449 450 451 452 453
      const framework::ExecutionContext& ctx) const {
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto& weights_tz = framework::vectorize(filter->dims());

    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_in_data = ctx.Attr<float>("Scale_in");
    const auto& scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    bool is_multi_channel = scale_weights_data.size() > 1;
454 455 456 457
    bool has_activation = !ctx.Attr<std::string>("fuse_activation").empty();
    float activation_scale =
        force_fp32_output ? 1.0f : has_activation ? ctx.Attr<float>("Scale_out")
                                                  : 1.0f;
A
Adam Osewski 已提交
458
    auto scale_out_data =
459 460 461
        force_fp32_output ? 1.0f : has_activation
                                       ? 1.0f
                                       : ctx.Attr<float>("Scale_out");
A
Adam Osewski 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
    float sum_scale =
        fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
    int count =
        is_multi_channel
            ? (groups > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
            : 1;
    std::vector<float> output_shift_scale(count);

#pragma omp parallel for if (count > 50)
    for (int i = 0; i < count; i++) {
      if (scale_weights_data[i] == 0.0)
        // weights data will contain 0 in some models, then weights
        // scale couldn't be calculated
        output_shift_scale[i] = scale_out_data;
      else
        output_shift_scale[i] =
            static_cast<float>(static_cast<double>(scale_out_data) /
                               (static_cast<double>(scale_in_data) *
                                static_cast<double>(scale_weights_data[i])));
    }

483
    return std::make_tuple(sum_scale, output_shift_scale, activation_scale);
A
Adam Osewski 已提交
484 485
  }

486
  dnnl::primitive_attr CreatePostOps(
487 488
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
489
      float sum_scale = 1.0f, float activation_scale = 1.0f) {
490 491
    dnnl::primitive_attr conv_attr;
    dnnl::post_ops post_operations;
492 493 494 495
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
496

497 498 499 500 501 502 503 504 505 506 507
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
508 509 510
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_relu, fuse_alpha,
                                     fuse_beta);
511
    } else if (fuse_activation == "relu6") {
512 513
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_bounded_relu,
514
                                     fuse_alpha, fuse_beta);
515 516 517 518
    } else if (fuse_activation == "swish") {
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_swish, fuse_alpha,
                                     fuse_beta);
J
jakpiase 已提交
519
    } else if (fuse_activation == "hard_swish") {
520 521
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_hardswish,
522
                                     fuse_alpha, fuse_beta);
523 524 525 526
    } else if (fuse_activation == "mish") {
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_mish, fuse_alpha,
                                     fuse_beta);
527
    } else if (fuse_activation == "hard_sigmoid") {
528 529
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_linear,
530
                                     fuse_alpha, fuse_beta);
531 532
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_clip, 0.0f, 1.0f);
B
baoachun 已提交
533
    } else if (fuse_activation == "gelu_tanh") {
534 535
      post_operations.append_eltwise(
          activation_scale, dnnl::algorithm::eltwise_gelu_tanh, 0.0f, 0.0f);
B
baoachun 已提交
536
    } else if (fuse_activation == "gelu_erf") {
537 538
      post_operations.append_eltwise(
          activation_scale, dnnl::algorithm::eltwise_gelu_erf, 0.0f, 0.0f);
539 540 541 542
    }
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }
543

544
  std::shared_ptr<dnnl::memory>
545 546 547 548 549 550 551 552 553 554 555 556
  AcquireWeightsMemoryWithReorderFromDataPrimitive(
      const framework::Tensor* filter, const int groups, const bool is_conv3d) {
    const K* filter_data = filter->data<K>();
    auto weights_tz = framework::vectorize(filter->dims());
    platform::GetGroupConvWeightsTz(weights_tz, groups);

    auto user_src_md = platform::MKLDNNMemDesc(
        weights_tz, platform::MKLDNNGetDataType<K>(),
        GetWeightsFormat(filter->format(), groups, is_conv3d));

    return this->AcquireMemoryWithReorder(
        user_src_md, this->bwd_pd_->weights_desc(),
A
Adam Osewski 已提交
557
        platform::to_void_cast<K>(filter_data), "@weights_mem_d_p", false);
558 559
  }

560
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorder(
561
      const framework::Tensor* input) {
562 563 564 565
    return this->AcquireMemoryWithReorderPrimitive(
        input, "@src_mem_p_user", "@src_mem_p_target", "@src_mem_p",
        this->fwd_pd_->src_desc());
  }
566

567
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorderFromWeightsPrimitive(
568 569 570 571 572 573
      const framework::Tensor* input) {
    return this->AcquireMemoryWithReorderPrimitive(
        input, "@src_mem_w_p_user", "@src_mem_w_p_target", "@src_mem_w_p",
        this->bwd_w_pd_->src_desc());
  }

574
  std::shared_ptr<dnnl::memory>
575 576 577 578 579 580 581
  AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad, "@diff_dst_mem_w_p_user", "@diff_dst_mem_w_p_target",
        "@diff_dst_mem_w_p", this->bwd_w_pd_->diff_dst_desc());
  }

582
  std::shared_ptr<dnnl::memory>
583 584 585 586 587 588 589
  AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad, "@diff_dst_mem_p_user", "@diff_dst_mem_p_target",
        "@diff_dst_mem_p", this->bwd_pd_->diff_dst_desc());
  }

590
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorderPrimitive(
591 592
      const framework::Tensor* in_mem, const char* key_mem_user,
      const char* key_mem_target, const char* key_mem,
593
      const dnnl::memory::desc& mem_md) {
594 595 596 597 598 599 600 601
    const T* in_mem_data = in_mem->data<T>();
    const std::string user_key_suffix{key_mem_user};
    auto user_mem_p = this->AcquireMemory(user_key_suffix);

    if (!user_mem_p) {
      auto user_mem_md = platform::MKLDNNMemDesc(
          framework::vectorize(in_mem->dims()),
          platform::MKLDNNGetDataType<T>(), in_mem->format());
602
      return this->AcquireMemoryWithReorder(
603
          user_mem_md, mem_md, platform::to_void_cast<T>(in_mem_data), key_mem);
604
    } else {
605 606
      const std::string target_key_suffix{key_mem_target};
      const auto target_mem_p = this->AcquireMemory(target_key_suffix);
A
Adam Osewski 已提交
607
      user_mem_p->set_data_handle(platform::to_void_cast<T>(in_mem_data));
608
      if (user_mem_p != target_mem_p) {
609
        this->AcquireReorder(user_mem_p, target_mem_p);
610
      }
611
      return target_mem_p;
612
    }
613 614
  }

615
  std::shared_ptr<dnnl::memory> AcquireWeightsMemoryWithReorder(
616
      const framework::Tensor* filter, const int groups, const bool is_conv3d,
617 618
      const bool is_test, const std::vector<float>& scale_data = {1.0f},
      int mask = 0) {
619 620 621
    // This is workaround to make execution faster, delete
    // if statement after including md inside Tensor
    auto weights_mem_p = this->AcquireMemory("@weights_mem_p_target");
622
    if (is_test && weights_mem_p) {
623
      return weights_mem_p;
624
    } else if (is_test) {
625
      const K* filter_data = filter->data<K>();
626
      auto weights_tz = framework::vectorize(filter->dims());
627
      platform::GetGroupConvWeightsTz(weights_tz, groups);
628 629

      auto user_src_md = platform::MKLDNNMemDesc(
630
          weights_tz, platform::MKLDNNGetDataType<K>(),
631 632 633 634
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
635 636
          platform::to_void_cast<K>(filter_data), "@weights_mem_p", is_test, {},
          scale_data, mask);
637 638 639 640 641 642 643 644 645 646 647 648 649
    } else {
      const T* filter_data = filter->data<T>();
      auto weights_tz = framework::vectorize(filter->dims());
      platform::GetGroupConvWeightsTz(weights_tz, groups);

      auto user_src_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(),
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
          platform::to_void_cast<T>(filter_data), "@weights_mem_p", is_test, {},
          scale_data, mask);
650
    }
651
  }
652

653
  std::shared_ptr<dnnl::memory> AcquireBiasMemoryWithReorder(
654
      const framework::Tensor* bias, const bool is_test,
A
Adam Osewski 已提交
655
      const std::vector<float>& scale_data = {1.0f}, int mask = 0) {
656
    auto bias_mem_p = this->AcquireMemory("@bias_mem_p_target");
657
    if (is_test && bias_mem_p) {
658 659 660 661 662 663 664 665
      return bias_mem_p;
    } else {
      const K* bias_data = bias->data<K>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          framework::vectorize(bias->dims()), platform::MKLDNNGetDataType<K>(),
          MKLDNNMemoryFormat::x);

      return this->AcquireMemoryWithReorder(
A
Adam Osewski 已提交
666
          user_bias_md, this->fwd_pd_->bias_desc(),
667
          platform::to_void_cast<K>(bias_data), "@bias_mem_p", is_test, {},
A
Adam Osewski 已提交
668
          scale_data, mask);
669
    }
670
  }
671

672
  std::shared_ptr<dnnl::memory> AcquireResidualMemory(
673
      const framework::Tensor* residual_param) {
674
    void* residual_data =
675 676
        framework::TransToProtoVarType(residual_param->dtype()) ==
                framework::DataTypeTrait<T_out>::DataType()
A
Adam Osewski 已提交
677 678
            ? platform::to_void_cast<T_out>(residual_param->data<T_out>())
            : platform::to_void_cast<T>(residual_param->data<T>());
679 680 681 682 683 684 685
    auto residual_mem_p = this->AcquireMemory("@user_residual_data_mem_p");
    if (residual_mem_p) {
      residual_mem_p->set_data_handle(residual_data);
      return residual_mem_p;
    } else {
      auto user_residual_md = platform::MKLDNNMemDesc(
          framework::vectorize(residual_param->dims()),
686 687
          framework::ToMKLDNNDataType(
              framework::TransToProtoVarType(residual_param->dtype())),
688
          residual_param->format());
689

690 691 692
      return this->AcquireMemoryFromPrimitive(user_residual_md, residual_data,
                                              "@user_residual_data_mem_p");
    }
693 694
  }

695
  std::shared_ptr<dnnl::memory> AcquireDstMemoryWithResidual(
696 697 698 699 700
      framework::Tensor* output, const framework::Tensor* residual_param) {
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (residual_param->format() !=
        platform::GetMKLDNNFormat(this->fwd_pd_->dst_desc())) {
      auto residual_memory_p = this->AcquireResidualMemory(residual_param);
701
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
702
      this->AcquireReorder(residual_memory_p, dst_memory_p);
703 704 705 706 707
    } else {
      // Changing ShareDataWith to TensorCopy results in performance drop
      // on ResNet architectures
      // (https://github.com/PaddlePaddle/Paddle/issues/22964)
      output->ShareDataWith(*residual_param);
708
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
709 710 711 712 713
    }
    return dst_memory_p;
  }
};

A
Adam Osewski 已提交
714 715
}  // anonymous namespace

716
template <typename T, typename K>
A
Adam Osewski 已提交
717
class ConvMKLDNNOpKernel : public framework::OpKernel<T> {
718
 public:
A
Adam Osewski 已提交
719
  void Compute(const framework::ExecutionContext& ctx) const override {
720
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
A
Adam Osewski 已提交
721
                      platform::errors::PreconditionNotMet(
722 723 724
                          "Operator DNNL Conv must use CPUPlace"));
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
725 726 727 728 729 730 731 732
    bool is_BFLOAT16 = ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16";
    auto residual_param = ctx.Input<Tensor>("ResidualData");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    auto dst_dt =
        GetDstType(is_INT8, is_BFLOAT16, force_fp32_output, fuse_activation,
                   fuse_residual_conn, residual_param);
733
    if (!is_INT8) {
734
      if (dst_dt == dnnl::memory::data_type::f32) {
735
        ComputeFP32<float>(ctx);
736
      } else if (dst_dt == dnnl::memory::data_type::bf16) {
737 738
        ComputeFP32<platform::bfloat16>(ctx);
      }
739
    } else {
740
      if (dst_dt == dnnl::memory::data_type::f32) {
741
        ComputeINT8<float>(ctx);
742
      } else if (dst_dt == dnnl::memory::data_type::u8) {
743
        ComputeINT8<uint8_t>(ctx);
744
      } else if (dst_dt == dnnl::memory::data_type::s8) {
745 746
        ComputeINT8<int8_t>(ctx);
      }
747
    }
748
  }
749

750
  template <typename T_out>
A
Adam Osewski 已提交
751
  void ComputeFP32(const framework::ExecutionContext& ctx) const {
752
    auto& dev_ctx =
A
Adam Osewski 已提交
753
        ctx.template device_context<platform::MKLDNNDeviceContext>();
754
    const auto& mkldnn_engine = dev_ctx.GetEngine();
755

756
    const bool is_test = ctx.Attr<bool>("is_test");
757 758
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
    const bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
759

760 761 762 763 764
    const auto* input = ctx.Input<Tensor>("Input");
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
765

766
    ConvMKLDNNHandlerT<T, K, T_out> handler(
767 768
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
769

770
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
771

772
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
773
        filter, ctx.Attr<int>("groups"), is_conv3d, is_test);
774

775 776 777
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
778
      dst_memory_p =
779 780
          handler.AcquireDstMemoryWithResidual(output, residual_param);
    } else {
781
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
782
    }
783

784
    auto conv_p = handler.AcquireForwardPrimitive();
A
Adam 已提交
785

786
    std::unordered_map<int, dnnl::memory> args = {
787 788 789
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};
A
Adam 已提交
790

791
    if (bias) {
792
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(bias, is_test);
793
      args.insert({DNNL_ARG_BIAS, *bias_memory_p});
794
    }
795

796
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
797
    conv_p->execute(astream, args);
A
Adam 已提交
798
    astream.wait();
799

A
Adam Osewski 已提交
800 801
    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
802
  }
803

804
  template <typename T_out>
A
Adam Osewski 已提交
805
  void ComputeINT8(const framework::ExecutionContext& ctx) const {
806
    auto& dev_ctx =
A
Adam Osewski 已提交
807
        ctx.template device_context<platform::MKLDNNDeviceContext>();
808 809
    const auto& mkldnn_engine = dev_ctx.GetEngine();

A
Adam Osewski 已提交
810 811 812 813 814
    const std::string& fuse_activation =
        ctx.Attr<std::string>("fuse_activation");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
815

816 817
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
818 819
    bool need_s8_to_u8 = false;

A
Adam Osewski 已提交
820 821 822 823 824 825 826 827
    PADDLE_ENFORCE_NE(
        is_conv3d, true,
        platform::errors::Unimplemented(
            "OneDNN int8 convolution does not support 3D inputs currently"));
    PADDLE_ENFORCE_EQ(
        fuse_residual_conn && force_fp32_output, false,
        platform::errors::Unimplemented(
            "residual fusion does not support force output with fp32"));
A
Adam 已提交
828

A
Adam Osewski 已提交
829 830 831 832
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
833

A
Adam Osewski 已提交
834 835 836
    ConvMKLDNNHandlerT<T, K, T_out> handler(
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
837

A
Adam Osewski 已提交
838
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
F
FDInSky 已提交
839

A
Adam Osewski 已提交
840 841 842 843 844 845 846
    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const bool is_multi_channel = scale_weights_data.size() > 1;
    const int& groups = ctx.Attr<int>("groups");
    int mask_reorder =
        is_multi_channel ? ((groups != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
847
        filter, groups, false, true, scale_weights_data, mask_reorder);
848

A
Adam Osewski 已提交
849 850 851
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
852
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
853 854 855 856 857 858
          output->dims(), residual_param->dims(),
          platform::errors::InvalidArgument(
              "Output and elementwise parameter need to have the "
              "same dimension sizes, but got output's dimension = %d"
              " and residual param's dimension =%d .",
              output->dims().size(), residual_param->dims().size()));
859
      dst_memory_p =
A
Adam Osewski 已提交
860 861
          handler.AcquireDstMemoryWithResidual(output, residual_param);
      need_s8_to_u8 = (platform::MKLDNNGetDataType<T_out>() ==
862
                       dnnl::memory::data_type::s8) &&
A
Adam Osewski 已提交
863 864 865 866
                      unsigned_output;
    } else {
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
    }
L
lidanqing 已提交
867

A
Adam Osewski 已提交
868 869 870
    auto conv_p = handler.AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> args = {
871 872 873
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};
A
Adam 已提交
874

A
Adam Osewski 已提交
875
    if (bias) {
876
      auto p_scales_tuple = handler.get_int8_bias_scales(ctx);
A
Adam 已提交
877

A
Adam Osewski 已提交
878
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(
879
          bias, true, std::get<1>(*p_scales_tuple),
880
          std::get<0>(*p_scales_tuple));
881
      args.insert({DNNL_ARG_BIAS, *bias_memory_p});
882
    }
A
Adam Osewski 已提交
883 884 885

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    conv_p->execute(astream, args);
A
Adam 已提交
886
    astream.wait();
A
Adam Osewski 已提交
887

888
    if (need_s8_to_u8) {
X
xiaolil1 已提交
889 890
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
A
Adam Osewski 已提交
891 892 893

    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
894
  }
895 896
};

897
template <typename T, typename K>
A
Adam Osewski 已提交
898
class ConvMKLDNNGradOpKernel : public framework::OpKernel<T> {
899
 public:
A
Adam Osewski 已提交
900
  void Compute(const framework::ExecutionContext& ctx) const override {
901
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
A
Adam Osewski 已提交
902
                      platform::errors::PreconditionNotMet(
903
                          "Operator DNNL ConvGrad must use CPUPlace"));
904 905
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
906 907 908 909
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
910 911
    const Tensor* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
912 913 914 915 916 917 918
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    if (!input_grad && !filter_grad) return;

919 920 921 922 923
    // TODO(jczaja): Are all tensors really needed?
    ConvMKLDNNHandlerT<T, K, T> handler(
        ctx, dev_ctx, ctx.GetPlace(), input, filter, bias, output_grad,
        filter_grad, input_grad,
        ctx.InputName("Input") + ctx.InputName("Filter"));
924 925

    // create mkldnn memory from input tensors (data/weights)
926
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
927

928 929 930 931 932 933
    if (filter_grad) {
      auto src_memory_p =
          handler.AcquireSrcMemoryWithReorderFromWeightsPrimitive(input);
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
              output_grad);
934

935 936
      // For convoluition with groups write filter grad into
      // oneDNN buffer and then we reorder it into filter_grad tensor
937
      int g = std::max(ctx.Attr<int>("groups"), 1);
938
      auto diff_weights_memory_p =
939 940
          g > 1 ? handler.AcquireDiffWeightsMemory()
                : handler.AcquireDiffWeightsMemory(filter_grad);
941

942
      auto conv_bwd_weights_p = handler.AcquireBackwardWeightsPrimitive();
943

A
Adam 已提交
944 945
      // TODO(grygielski) why no bias_diff?
      conv_bwd_weights_p->execute(
946 947 948
          astream, {{DNNL_ARG_SRC, *src_memory_p},
                    {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
                    {DNNL_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
A
Adam 已提交
949
      astream.wait();
950

A
Adam Osewski 已提交
951
      filter_grad->set_layout(framework::DataLayout::kMKLDNN);
952 953
      // in OneDNN groups in convolution are treated as separate dimension
      // which is not the case in paddlepaddle
A
Adam Osewski 已提交
954
      auto filter_fmt = platform::GetMKLDNNFormat(*diff_weights_memory_p);
955 956 957 958

      // For convolution with groups convert from blocked to NCHW
      // otherwise there will be problems in next operators working on this data
      if (g > 1) {
959 960
        dnnl::memory::data_type in_type = framework::ToMKLDNNDataType(
            framework::TransToProtoVarType(filter->dtype()));
961 962
        // for 3d conv with groups (six dimensional data reorder to goidhw)
        // for 2d conv with groups (five dimensional data reorder to goihw)
A
Adam Osewski 已提交
963
        // auto weights_tz = framework::vectorize(filter->dims());
964 965

        auto weights_tz = diff_weights_memory_p->get_desc().dims();
966 967 968
        dnnl::memory::format_tag out_format =
            weights_tz.size() == 6 ? dnnl::memory::format_tag::goidhw
                                   : dnnl::memory::format_tag::goihw;
969 970 971
        platform::ReorderMKLDNNHandler handler(
            weights_tz, framework::TransToProtoVarType(filter->dtype()),
            in_type, mkldnn_engine);
972 973 974 975 976 977
        auto reorder_dst_memory_p =
            handler.AcquireDstMemory(filter_grad, out_format, ctx.GetPlace());

        auto reorder_p =
            handler.AcquireReorder(reorder_dst_memory_p, diff_weights_memory_p);

978
        {
C
chenjian 已提交
979 980 981
          platform::RecordEvent record_reorder(
              "int_reorder", platform::TracerEventType::UserDefined, 2,
              platform::EventRole::kUniqueOp);
982 983 984 985
          reorder_p->execute(astream, *diff_weights_memory_p,
                             *reorder_dst_memory_p);
          astream.wait();
        }
986 987 988 989

        // So here we have a data in goihw , which can be interpreted as OIHW
        // (OIDHW for conv3d)
        // because filter_grad shape is set for OIHW (OIDHW for conv3d)
990 991 992
        dnnl::memory::format_tag target_format =
            weights_tz.size() == 6 ? dnnl::memory::format_tag::oidhw
                                   : dnnl::memory::format_tag::oihw;
993 994 995 996
        filter_grad->set_format(target_format);
      } else {
        filter_grad->set_format(filter_fmt);
      }
997 998
    }
    if (input_grad) {
999 1000 1001 1002
      auto weights_memory_p =
          handler.AcquireWeightsMemoryWithReorderFromDataPrimitive(
              filter, ctx.Attr<int>("groups"),
              ctx.Attr<std::vector<int>>("strides").size() == 3U);
1003

1004 1005 1006 1007
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
              output_grad);
      auto diff_src_memory_p = handler.AcquireDiffSrcMemory(input_grad);
1008

1009
      auto conv_bwd_data_p = handler.AcquireBackwardPrimitive();
1010

A
Adam 已提交
1011
      conv_bwd_data_p->execute(astream,
1012 1013 1014
                               {{DNNL_ARG_WEIGHTS, *weights_memory_p},
                                {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
                                {DNNL_ARG_DIFF_SRC, *diff_src_memory_p}});
A
Adam 已提交
1015
      astream.wait();
1016

A
Adam Osewski 已提交
1017 1018
      input_grad->set_layout(framework::DataLayout::kMKLDNN);
      input_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory_p));
1019
    }
X
xiaolil1 已提交
1020
  }
1021
};
1022

1023 1024 1025 1026 1027
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
1028 1029 1030
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1031
                                    ops::ConvMKLDNNOpKernel<float, float>);
1032

1033 1034 1035 1036
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

1037 1038
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
1039
                                    ops::kConvMKLDNNINT8,
1040
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
1041 1042 1043

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
1044
                                    ops::kConvMKLDNNINT8,
1045
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
1046 1047 1048 1049

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1050
                                    ops::ConvMKLDNNGradOpKernel<float, float>);
1051

1052 1053 1054
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kConvMKLDNNFP32,
1055 1056
    ops::ConvMKLDNNGradOpKernel<paddle::platform::bfloat16,
                                paddle::platform::bfloat16>);
1057

1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    depthwise_conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
                                    ops::kConvMKLDNNINT8,
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
                                    ops::kConvMKLDNNINT8,
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    depthwise_conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNGradOpKernel<paddle::platform::bfloat16, float>);

1088 1089 1090
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1091
                                    ops::ConvMKLDNNOpKernel<float, float>);
1092 1093 1094 1095

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1096
                                    ops::ConvMKLDNNGradOpKernel<float, float>);