conv_mkldnn_op.cc 45.2 KB
Newer Older
A
Adam Osewski 已提交
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

A
Adam Osewski 已提交
15 16
#include <tuple>

17
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
18
#include "paddle/fluid/platform/cpu_info.h"
A
Adam Osewski 已提交
19
#include "paddle/fluid/platform/mkldnn_helper.h"
J
Jacek Czaja 已提交
20
#include "paddle/fluid/platform/mkldnn_reuse.h"
21 22 23

namespace paddle {
namespace operators {
A
Adam Osewski 已提交
24
namespace {
25

26 27 28
inline MKLDNNMemoryFormat GetWeightsFormat(const MKLDNNMemoryFormat format,
                                           const int groups,
                                           const bool is_conv3d) {
Y
Yihua Xu 已提交
29
  if (is_conv3d) {
30
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
31
  } else {
32
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
33 34 35
  }
}

36 37 38 39 40 41
static dnnl::memory::data_type GetDstType(bool is_int8, bool is_bfloat16,
                                          bool force_fp32_output,
                                          std::string fuse_activation,
                                          bool fuse_residual_conn,
                                          const Tensor* residual_param) {
  auto dst_dt = dnnl::memory::data_type::f32;
42 43
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
44 45
                 ? dnnl::memory::data_type::u8
                 : dnnl::memory::data_type::s8;
46
    if (force_fp32_output) {
47
      dst_dt = dnnl::memory::data_type::f32;
48
    }
49 50
    if (fuse_residual_conn && residual_param) {
      auto residual_dt = framework::ToMKLDNNDataType(residual_param->type());
51
      if (dst_dt != residual_dt) dst_dt = residual_dt;
52
    }
53 54
  } else {
    if (!force_fp32_output && is_bfloat16) {
55
      dst_dt = dnnl::memory::data_type::bf16;
56 57 58 59
      if (fuse_residual_conn && residual_param) {
        dst_dt = framework::ToMKLDNNDataType(residual_param->type());
      }
    }
60 61 62 63
  }
  return dst_dt;
}

64
template <typename T, typename K, typename T_out>
65
class ConvMKLDNNHandlerT
66 67 68
    : public platform::MKLDNNHandlerT<T, dnnl::convolution_forward,
                                      dnnl::convolution_backward_data,
                                      dnnl::convolution_backward_weights> {
69
 public:
A
Adam Osewski 已提交
70
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
71
                     const platform::MKLDNNDeviceContext& dev_ctx,
72
                     const dnnl::engine mkldnn_engine,
73 74 75
                     platform::Place cpu_place, const Tensor* input,
                     const Tensor* filter, const Tensor* bias, Tensor* output,
                     const std::string& unique_name)
76 77 78
      : platform::MKLDNNHandlerT<T, dnnl::convolution_forward,
                                 dnnl::convolution_backward_data,
                                 dnnl::convolution_backward_weights>(
79
            dev_ctx, mkldnn_engine, cpu_place,
80
            platform::CreateKey(dev_ctx, framework::vectorize(input->dims()),
81
                                unique_name)) {
82
    if (!this->isCached()) {
83
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
84
          input->layout(), framework::DataLayout::kMKLDNN,
85 86
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
87
              framework::DataLayout::kMKLDNN, input->layout()));
88 89 90
      PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Input tensor"));
91

92
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
93
          filter->layout(), framework::DataLayout::kMKLDNN,
94 95
          platform::errors::InvalidArgument(
              "The Filter tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
96
              framework::DataLayout::kMKLDNN, filter->layout()));
97 98 99
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Filter tensor"));
K
Krzysztof Binias 已提交
100

101 102 103 104 105 106 107 108 109 110 111 112
      PADDLE_ENFORCE_GE(
          input->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
      PADDLE_ENFORCE_LE(
          input->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
113

114 115 116 117 118 119 120 121 122 123 124 125
      PADDLE_ENFORCE_GE(
          filter->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
      PADDLE_ENFORCE_LE(
          filter->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
126

127 128
      if (bias) {
        PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
129
            bias->layout(), framework::DataLayout::kMKLDNN,
130 131
            platform::errors::InvalidArgument(
                "The Bias tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
132
                framework::DataLayout::kMKLDNN, bias->layout()));
133 134 135
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
136

137 138 139 140 141 142
        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, "
                              "i.e. X, but got dimension = %d .",
                              bias->dims().size()));
      }
F
FDInSky 已提交
143

144 145 146 147 148 149 150 151 152
      const std::string fuse_activation =
          ctx.Attr<std::string>("fuse_activation");
      const float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      const float fuse_beta = ctx.Attr<float>("fuse_beta");
      const bool fuse_residual_conn =
          ctx.Attr<bool>("fuse_residual_connection");
      const int groups = ctx.Attr<int>("groups");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
F
FDInSky 已提交
153

154 155 156 157 158 159
      const auto input_dims = input->dims();
      const auto data_dims =
          framework::slice_ddim(input_dims, 2, input_dims.size());
      const auto filter_dims = filter->dims();
      const auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
160

161
      const auto ksize = framework::vectorize(filter_data_dims);
162
      const bool is_test = ctx.Attr<bool>("is_test");
163

164 165
      auto strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
166

167 168
      auto paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
A
Adam 已提交
169

170 171 172
      auto dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));
A
Adam 已提交
173

174 175
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);
A
Adam 已提交
176

177 178
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
179

A
Adam Osewski 已提交
180
      const auto src_tz = framework::vectorize(input->dims());
181

A
Adam Osewski 已提交
182
      auto weights_tz = framework::vectorize(filter->dims());
183
      platform::GetGroupConvWeightsTz(weights_tz, groups);
184

A
Adam Osewski 已提交
185
      const auto dst_tz = framework::vectorize(output->dims());
186

187
      const dnnl::memory::dims stride_dims = strides;
188
      const auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
189
      const dnnl::memory::dims dilations_dims = dilations;
A
Adam 已提交
190

191 192 193 194
      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
195
      auto chosen_memory_format = MKLDNNMemoryFormat::any;
196
      auto data_type = dnnl::memory::data_type::f32;
197 198
      if (ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16" ||
          std::is_same<T_out, platform::bfloat16>::value)
199
        data_type = dnnl::memory::data_type::bf16;
200

201
      dnnl::memory::desc src_md, weights_md;
A
Adam Osewski 已提交
202 203 204 205 206
      if (platform::is_int8<T>()) {
        src_md = platform::MKLDNNMemDesc(
            src_tz, framework::ToMKLDNNDataType(input->type()),
            chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(
207
            weights_tz, dnnl::memory::data_type::s8, chosen_memory_format);
A
Adam Osewski 已提交
208 209 210 211 212 213 214
      } else {
        src_md =
            platform::MKLDNNMemDesc(src_tz, data_type, chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(weights_tz, data_type,
                                             MKLDNNMemoryFormat::any);
      }

215
      const auto dst_md = platform::MKLDNNMemDesc(
216
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
217 218
      const auto fwd_prop_kind = is_test ? dnnl::prop_kind::forward_inference
                                         : dnnl::prop_kind::forward_training;
219

J
jakpiase 已提交
220
      float sum_scale = 1.0f;
A
Adam Osewski 已提交
221
      std::vector<float> output_shift_scale;
J
jakpiase 已提交
222 223
      if (platform::is_int8<T>())
        std::tie(sum_scale, output_shift_scale) = get_int8_scales(ctx);
A
Adam Osewski 已提交
224

225
      const dnnl::primitive_attr conv_attr = CreatePostOps(
A
Adam Osewski 已提交
226 227
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn,
          output_shift_scale, sum_scale);  // for INT8 only!
A
Adam 已提交
228

229 230
      if (bias) {
        auto bias_tz = framework::vectorize(bias->dims());
231
        dnnl::memory::desc bias_md;
A
Adam Osewski 已提交
232 233
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
234
              bias_tz, dnnl::memory::data_type::s32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
235 236 237 238
        } else {
          bias_md = platform::MKLDNNMemDesc(bias_tz, data_type,
                                            MKLDNNMemoryFormat::x);
        }
239

240
        this->AcquireForwardPrimitiveDescriptor(
241
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
242
            src_md, weights_md, bias_md, dst_md, stride_dims, dilations_dims,
243 244
            mkldnn_paddings[0], mkldnn_paddings[1]);
      } else {
245
        this->AcquireForwardPrimitiveDescriptor(
246
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
247 248
            src_md, weights_md, dst_md, stride_dims, dilations_dims,
            mkldnn_paddings[0], mkldnn_paddings[1]);
249 250 251
      }
    }
  }
252

253 254 255 256 257 258
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
                     const platform::MKLDNNDeviceContext& dev_ctx,
                     platform::Place cpu_place, const Tensor* in,
                     const Tensor* filter, const Tensor* bias,
                     const Tensor* out_grad, Tensor* filter_grad,
                     Tensor* in_x_grad, const std::string& unique_name)
259 260 261
      : platform::MKLDNNHandlerT<T, dnnl::convolution_forward,
                                 dnnl::convolution_backward_data,
                                 dnnl::convolution_backward_weights>(
262 263
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
            platform::CreateKey(dev_ctx, framework::vectorize(in->dims()),
264
                                unique_name)) {
265 266
    if (!this->isBwdCached()) {
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
267
          in->layout(), framework::DataLayout::kMKLDNN,
268 269
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
270
              framework::DataLayout::kMKLDNN, in->layout()));
271 272 273 274 275
      PADDLE_ENFORCE_NE(in->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Got wrong format for Input tensor."));

      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
276
          filter->layout(), framework::DataLayout::kMKLDNN,
277 278
          platform::errors::InvalidArgument(
              "The filter tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
279
              framework::DataLayout::kMKLDNN, filter->layout()));
280 281 282 283 284
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Got wrong format for Filter tensor."));

      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
285
          out_grad->layout(), framework::DataLayout::kMKLDNN,
286 287
          platform::errors::InvalidArgument(
              "The output_grad tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
288
              framework::DataLayout::kMKLDNN, out_grad->layout()));
289 290 291 292 293
      PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for output_grad tensor"));

      PADDLE_ENFORCE_EQ(
294
          ctx.Attr<bool>("is_test"), false,
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
          platform::errors::InvalidArgument(
              "is_test attribute should be set to False in training phase."));

      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));

      auto input_dims = in->dims();
      auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
      auto filter_dims = filter->dims();
      auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
      auto ksize = framework::vectorize(filter_data_dims);

A
Adam Osewski 已提交
315 316
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
317 318 319 320 321 322
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);

      auto src_tz = framework::vectorize(in->dims());
      auto weights_tz = framework::vectorize(filter->dims());

A
Adam Osewski 已提交
323
      int groups = ctx.Attr<int>("groups");
324 325
      int g = std::max(groups, 1);
      platform::GetGroupConvWeightsTz(weights_tz, g);
A
Adam Osewski 已提交
326
      auto dst_tz = framework::vectorize(out_grad->dims());
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350

      /* create memory descriptor for conv backward without specified format
       * ('any') which lets a primitive (conv backward in this case) choose
       * the memory format preferred for best performance
       */
      const auto chosen_memory_format = MKLDNNMemoryFormat::any;
      const auto weights_format = MKLDNNMemoryFormat::any;

      auto src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      const auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
      auto diff_src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

      auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
351
      const dnnl::memory::dims dilations_dims = dilations;
352

353
      const dnnl::memory::dims stride_dims = strides;
354
      // Recreating FWD PD. For training there are no post ops in convolution
355
      dnnl::primitive_attr conv_attr;
356 357
      if (bias) {
        auto bias_tz = framework::vectorize(bias->dims());
358
        dnnl::memory::desc bias_md;
A
Adam Osewski 已提交
359 360
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
361
              bias_tz, dnnl::memory::data_type::s32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
362 363
        } else {
          bias_md = platform::MKLDNNMemDesc(
364
              bias_tz, dnnl::memory::data_type::f32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
365
        }
366

367
        this->AcquireForwardPrimitiveDescriptor(
368
            conv_attr, dnnl::prop_kind::forward_training,
369 370 371 372
            dnnl::algorithm::convolution_direct, src_md, weights_md, bias_md,
            dst_md, stride_dims, dilations_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      } else {
373
        this->AcquireForwardPrimitiveDescriptor(
374
            conv_attr, dnnl::prop_kind::forward_training,
375 376 377 378 379
            dnnl::algorithm::convolution_direct, src_md, weights_md, dst_md,
            stride_dims, dilations_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      }

380
      this->AcquireBackwardPrimitiveDescriptor(
381
          dnnl::algorithm::convolution_direct, diff_src_md, weights_md,
382 383 384
          diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
          mkldnn_paddings[1]);

385
      this->AcquireBackwardWeightsPrimitiveDescriptor(
386
          dnnl::algorithm::convolution_direct, src_md, diff_weights_md,
387 388 389 390 391
          diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
          mkldnn_paddings[1]);
    }
  }

392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
  std::shared_ptr<std::tuple<float, std::vector<float>>> get_int8_bias_scales(
      const framework::ExecutionContext& ctx) {
    // Get scales int8 bias key
    const std::string key_bs = this->key_ + "@bs";

    // Scales for int8 bias are to be cached to avoid
    // computing them each iteration
    auto bias_scale_tuple =
        std::static_pointer_cast<std::tuple<float, std::vector<float>>>(
            this->dev_ctx_.GetBlob(key_bs));
    if (bias_scale_tuple) return bias_scale_tuple;

    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto& weights_tz = framework::vectorize(filter->dims());
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const auto& scale_in_data = ctx.Attr<float>("Scale_in");

    bool is_multi_channel = scale_weights_data.size() > 1;
    int mask_reorder = is_multi_channel ? 1 << 0 : 1;

    int count = 1;
    if (is_multi_channel) {
      count *= weights_tz[0];
      if (groups > 1) {
        count *= weights_tz[1];
      }
    }

    bias_scale_tuple =
        std::make_shared<std::tuple<float, std::vector<float>>>(std::make_tuple(
            static_cast<float>(mask_reorder), std::vector<float>(count)));
    for (int i = 0; i < count; i++) {
      std::get<1>(*bias_scale_tuple)[i] = scale_in_data * scale_weights_data[i];
    }

    this->dev_ctx_.SetBlob(key_bs, bias_scale_tuple);

    return bias_scale_tuple;
  }

A
Adam Osewski 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
  std::tuple<float, std::vector<float>> get_int8_scales(
      const framework::ExecutionContext& ctx) const {
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto& weights_tz = framework::vectorize(filter->dims());

    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_in_data = ctx.Attr<float>("Scale_in");
    const auto& scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    bool is_multi_channel = scale_weights_data.size() > 1;
    auto scale_out_data =
        force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
    float sum_scale =
        fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
    int count =
        is_multi_channel
            ? (groups > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
            : 1;
    std::vector<float> output_shift_scale(count);

#pragma omp parallel for if (count > 50)
    for (int i = 0; i < count; i++) {
      if (scale_weights_data[i] == 0.0)
        // weights data will contain 0 in some models, then weights
        // scale couldn't be calculated
        output_shift_scale[i] = scale_out_data;
      else
        output_shift_scale[i] =
            static_cast<float>(static_cast<double>(scale_out_data) /
                               (static_cast<double>(scale_in_data) *
                                static_cast<double>(scale_weights_data[i])));
    }

    return std::make_tuple(sum_scale, output_shift_scale);
  }

474
  dnnl::primitive_attr CreatePostOps(
475 476 477
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
      float sum_scale = 1.0f) {
478 479
    dnnl::primitive_attr conv_attr;
    dnnl::post_ops post_operations;
480 481 482 483
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
484

485 486 487 488 489 490 491 492 493 494
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
495
    constexpr float scale = 1.0f;
496
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
497
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_relu,
498 499
                                     fuse_alpha, fuse_beta);
    } else if (fuse_activation == "relu6") {
500 501
      post_operations.append_eltwise(
          scale, dnnl::algorithm::eltwise_bounded_relu, fuse_alpha, fuse_beta);
502
    } else if (fuse_activation == "swish") {
503
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_swish,
504
                                     fuse_alpha, fuse_beta);
J
jakpiase 已提交
505
    } else if (fuse_activation == "hard_swish") {
506 507
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_hardswish,
                                     fuse_alpha, fuse_beta);
508
    } else if (fuse_activation == "hard_sigmoid") {
509
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_linear,
510
                                     fuse_alpha, fuse_beta);
511 512
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_clip, 0.0f,
                                     1.0f);
B
baoachun 已提交
513 514 515 516 517 518
    } else if (fuse_activation == "gelu_tanh") {
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_gelu_tanh,
                                     0.0f, 0.0f);
    } else if (fuse_activation == "gelu_erf") {
      post_operations.append_eltwise(scale, dnnl::algorithm::eltwise_gelu_erf,
                                     0.0f, 0.0f);
519 520 521 522
    }
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }
523

524
  std::shared_ptr<dnnl::memory>
525 526 527 528 529 530 531 532 533 534 535 536
  AcquireWeightsMemoryWithReorderFromDataPrimitive(
      const framework::Tensor* filter, const int groups, const bool is_conv3d) {
    const K* filter_data = filter->data<K>();
    auto weights_tz = framework::vectorize(filter->dims());
    platform::GetGroupConvWeightsTz(weights_tz, groups);

    auto user_src_md = platform::MKLDNNMemDesc(
        weights_tz, platform::MKLDNNGetDataType<K>(),
        GetWeightsFormat(filter->format(), groups, is_conv3d));

    return this->AcquireMemoryWithReorder(
        user_src_md, this->bwd_pd_->weights_desc(),
A
Adam Osewski 已提交
537
        platform::to_void_cast<K>(filter_data), "@weights_mem_d_p", false);
538 539
  }

540
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorder(
541
      const framework::Tensor* input) {
542 543 544 545
    return this->AcquireMemoryWithReorderPrimitive(
        input, "@src_mem_p_user", "@src_mem_p_target", "@src_mem_p",
        this->fwd_pd_->src_desc());
  }
546

547
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorderFromWeightsPrimitive(
548 549 550 551 552 553
      const framework::Tensor* input) {
    return this->AcquireMemoryWithReorderPrimitive(
        input, "@src_mem_w_p_user", "@src_mem_w_p_target", "@src_mem_w_p",
        this->bwd_w_pd_->src_desc());
  }

554
  std::shared_ptr<dnnl::memory>
555 556 557 558 559 560 561
  AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad, "@diff_dst_mem_w_p_user", "@diff_dst_mem_w_p_target",
        "@diff_dst_mem_w_p", this->bwd_w_pd_->diff_dst_desc());
  }

562
  std::shared_ptr<dnnl::memory>
563 564 565 566 567 568 569
  AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad, "@diff_dst_mem_p_user", "@diff_dst_mem_p_target",
        "@diff_dst_mem_p", this->bwd_pd_->diff_dst_desc());
  }

570
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorderPrimitive(
571 572
      const framework::Tensor* in_mem, const char* key_mem_user,
      const char* key_mem_target, const char* key_mem,
573
      const dnnl::memory::desc& mem_md) {
574 575 576 577 578 579 580 581
    const T* in_mem_data = in_mem->data<T>();
    const std::string user_key_suffix{key_mem_user};
    auto user_mem_p = this->AcquireMemory(user_key_suffix);

    if (!user_mem_p) {
      auto user_mem_md = platform::MKLDNNMemDesc(
          framework::vectorize(in_mem->dims()),
          platform::MKLDNNGetDataType<T>(), in_mem->format());
582
      return this->AcquireMemoryWithReorder(
583
          user_mem_md, mem_md, platform::to_void_cast<T>(in_mem_data), key_mem);
584
    } else {
585 586
      const std::string target_key_suffix{key_mem_target};
      const auto target_mem_p = this->AcquireMemory(target_key_suffix);
A
Adam Osewski 已提交
587
      user_mem_p->set_data_handle(platform::to_void_cast<T>(in_mem_data));
588
      if (user_mem_p != target_mem_p) {
589
        this->AcquireReorder(user_mem_p, target_mem_p);
590
      }
591
      return target_mem_p;
592
    }
593 594
  }

595
  std::shared_ptr<dnnl::memory> AcquireWeightsMemoryWithReorder(
596
      const framework::Tensor* filter, const int groups, const bool is_conv3d,
597 598
      const bool is_test, const std::vector<float>& scale_data = {1.0f},
      int mask = 0) {
599 600 601
    // This is workaround to make execution faster, delete
    // if statement after including md inside Tensor
    auto weights_mem_p = this->AcquireMemory("@weights_mem_p_target");
602
    if (is_test && weights_mem_p) {
603 604
      return weights_mem_p;
    } else {
605
      const K* filter_data = filter->data<K>();
606
      auto weights_tz = framework::vectorize(filter->dims());
607
      platform::GetGroupConvWeightsTz(weights_tz, groups);
608 609

      auto user_src_md = platform::MKLDNNMemDesc(
610
          weights_tz, platform::MKLDNNGetDataType<K>(),
611 612 613 614
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
615 616
          platform::to_void_cast<K>(filter_data), "@weights_mem_p", is_test, {},
          scale_data, mask);
617
    }
618
  }
619

620
  std::shared_ptr<dnnl::memory> AcquireBiasMemoryWithReorder(
621
      const framework::Tensor* bias, const bool is_test,
A
Adam Osewski 已提交
622
      const std::vector<float>& scale_data = {1.0f}, int mask = 0) {
623
    auto bias_mem_p = this->AcquireMemory("@bias_mem_p_target");
624
    if (is_test && bias_mem_p) {
625 626 627 628 629 630 631 632
      return bias_mem_p;
    } else {
      const K* bias_data = bias->data<K>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          framework::vectorize(bias->dims()), platform::MKLDNNGetDataType<K>(),
          MKLDNNMemoryFormat::x);

      return this->AcquireMemoryWithReorder(
A
Adam Osewski 已提交
633
          user_bias_md, this->fwd_pd_->bias_desc(),
634
          platform::to_void_cast<K>(bias_data), "@bias_mem_p", is_test, {},
A
Adam Osewski 已提交
635
          scale_data, mask);
636
    }
637
  }
638

639
  std::shared_ptr<dnnl::memory> AcquireResidualMemory(
640
      const framework::Tensor* residual_param) {
641 642
    void* residual_data =
        residual_param->type() == framework::DataTypeTrait<T_out>::DataType()
A
Adam Osewski 已提交
643 644
            ? platform::to_void_cast<T_out>(residual_param->data<T_out>())
            : platform::to_void_cast<T>(residual_param->data<T>());
645 646 647 648 649 650 651 652 653
    auto residual_mem_p = this->AcquireMemory("@user_residual_data_mem_p");
    if (residual_mem_p) {
      residual_mem_p->set_data_handle(residual_data);
      return residual_mem_p;
    } else {
      auto user_residual_md = platform::MKLDNNMemDesc(
          framework::vectorize(residual_param->dims()),
          framework::ToMKLDNNDataType(residual_param->type()),
          residual_param->format());
654

655 656 657
      return this->AcquireMemoryFromPrimitive(user_residual_md, residual_data,
                                              "@user_residual_data_mem_p");
    }
658 659
  }

660
  std::shared_ptr<dnnl::memory> AcquireDstMemoryWithResidual(
661 662 663 664 665
      framework::Tensor* output, const framework::Tensor* residual_param) {
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (residual_param->format() !=
        platform::GetMKLDNNFormat(this->fwd_pd_->dst_desc())) {
      auto residual_memory_p = this->AcquireResidualMemory(residual_param);
666
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
667
      this->AcquireReorder(residual_memory_p, dst_memory_p);
668 669 670 671 672
    } else {
      // Changing ShareDataWith to TensorCopy results in performance drop
      // on ResNet architectures
      // (https://github.com/PaddlePaddle/Paddle/issues/22964)
      output->ShareDataWith(*residual_param);
673
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
674 675 676 677 678
    }
    return dst_memory_p;
  }
};

A
Adam Osewski 已提交
679 680
}  // anonymous namespace

681
template <typename T, typename K>
A
Adam Osewski 已提交
682
class ConvMKLDNNOpKernel : public framework::OpKernel<T> {
683
 public:
A
Adam Osewski 已提交
684
  void Compute(const framework::ExecutionContext& ctx) const override {
685
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
A
Adam Osewski 已提交
686
                      platform::errors::PreconditionNotMet(
687 688 689
                          "Operator DNNL Conv must use CPUPlace"));
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
690 691 692 693 694 695 696 697
    bool is_BFLOAT16 = ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16";
    auto residual_param = ctx.Input<Tensor>("ResidualData");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    auto dst_dt =
        GetDstType(is_INT8, is_BFLOAT16, force_fp32_output, fuse_activation,
                   fuse_residual_conn, residual_param);
698
    if (!is_INT8) {
699
      if (dst_dt == dnnl::memory::data_type::f32) {
700
        ComputeFP32<float>(ctx);
701
      } else if (dst_dt == dnnl::memory::data_type::bf16) {
702 703
        ComputeFP32<platform::bfloat16>(ctx);
      }
704
    } else {
705
      if (dst_dt == dnnl::memory::data_type::f32) {
706
        ComputeINT8<float>(ctx);
707
      } else if (dst_dt == dnnl::memory::data_type::u8) {
708
        ComputeINT8<uint8_t>(ctx);
709
      } else if (dst_dt == dnnl::memory::data_type::s8) {
710 711
        ComputeINT8<int8_t>(ctx);
      }
712
    }
713
  }
714

715
  template <typename T_out>
A
Adam Osewski 已提交
716
  void ComputeFP32(const framework::ExecutionContext& ctx) const {
717
    auto& dev_ctx =
A
Adam Osewski 已提交
718
        ctx.template device_context<platform::MKLDNNDeviceContext>();
719
    const auto& mkldnn_engine = dev_ctx.GetEngine();
720

721
    const bool is_test = ctx.Attr<bool>("is_test");
722 723
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
    const bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
724

725 726 727 728 729
    const auto* input = ctx.Input<Tensor>("Input");
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
730

731
    ConvMKLDNNHandlerT<T, K, T_out> handler(
732 733
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
734

735
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
736

737
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
738
        filter, ctx.Attr<int>("groups"), is_conv3d, is_test);
739

740 741 742
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
743
      dst_memory_p =
744 745
          handler.AcquireDstMemoryWithResidual(output, residual_param);
    } else {
746
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
747
    }
748

749
    auto conv_p = handler.AcquireForwardPrimitive();
A
Adam 已提交
750

751
    std::unordered_map<int, dnnl::memory> args = {
752 753 754
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};
A
Adam 已提交
755

756
    if (bias) {
757
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(bias, is_test);
758
      args.insert({DNNL_ARG_BIAS, *bias_memory_p});
759
    }
760

761
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
762
    conv_p->execute(astream, args);
A
Adam 已提交
763
    astream.wait();
764

A
Adam Osewski 已提交
765 766
    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
767
  }
768

769
  template <typename T_out>
A
Adam Osewski 已提交
770
  void ComputeINT8(const framework::ExecutionContext& ctx) const {
771
    auto& dev_ctx =
A
Adam Osewski 已提交
772
        ctx.template device_context<platform::MKLDNNDeviceContext>();
773 774
    const auto& mkldnn_engine = dev_ctx.GetEngine();

A
Adam Osewski 已提交
775 776 777 778 779
    const std::string& fuse_activation =
        ctx.Attr<std::string>("fuse_activation");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
780

781 782
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
783 784
    bool need_s8_to_u8 = false;

A
Adam Osewski 已提交
785 786 787 788 789 790 791 792
    PADDLE_ENFORCE_NE(
        is_conv3d, true,
        platform::errors::Unimplemented(
            "OneDNN int8 convolution does not support 3D inputs currently"));
    PADDLE_ENFORCE_EQ(
        fuse_residual_conn && force_fp32_output, false,
        platform::errors::Unimplemented(
            "residual fusion does not support force output with fp32"));
A
Adam 已提交
793

A
Adam Osewski 已提交
794 795 796 797
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
798

A
Adam Osewski 已提交
799 800 801
    ConvMKLDNNHandlerT<T, K, T_out> handler(
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
802

A
Adam Osewski 已提交
803
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
F
FDInSky 已提交
804

A
Adam Osewski 已提交
805 806 807 808 809 810 811
    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const bool is_multi_channel = scale_weights_data.size() > 1;
    const int& groups = ctx.Attr<int>("groups");
    int mask_reorder =
        is_multi_channel ? ((groups != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
812
        filter, groups, false, true, scale_weights_data, mask_reorder);
813

A
Adam Osewski 已提交
814 815 816
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
817
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
818 819 820 821 822 823
          output->dims(), residual_param->dims(),
          platform::errors::InvalidArgument(
              "Output and elementwise parameter need to have the "
              "same dimension sizes, but got output's dimension = %d"
              " and residual param's dimension =%d .",
              output->dims().size(), residual_param->dims().size()));
824
      dst_memory_p =
A
Adam Osewski 已提交
825 826
          handler.AcquireDstMemoryWithResidual(output, residual_param);
      need_s8_to_u8 = (platform::MKLDNNGetDataType<T_out>() ==
827
                       dnnl::memory::data_type::s8) &&
A
Adam Osewski 已提交
828 829 830 831
                      unsigned_output;
    } else {
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
    }
L
lidanqing 已提交
832

A
Adam Osewski 已提交
833 834 835
    auto conv_p = handler.AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> args = {
836 837 838
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};
A
Adam 已提交
839

A
Adam Osewski 已提交
840
    if (bias) {
841
      auto p_scales_tuple = handler.get_int8_bias_scales(ctx);
A
Adam 已提交
842

A
Adam Osewski 已提交
843
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(
844
          bias, true, std::get<1>(*p_scales_tuple),
845
          std::get<0>(*p_scales_tuple));
846
      args.insert({DNNL_ARG_BIAS, *bias_memory_p});
847
    }
A
Adam Osewski 已提交
848 849 850

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    conv_p->execute(astream, args);
A
Adam 已提交
851
    astream.wait();
A
Adam Osewski 已提交
852

853
    if (need_s8_to_u8) {
X
xiaolil1 已提交
854 855
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
A
Adam Osewski 已提交
856 857 858

    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
859
  }
860 861
};

862
template <typename T, typename K>
A
Adam Osewski 已提交
863
class ConvMKLDNNGradOpKernel : public framework::OpKernel<T> {
864
 public:
A
Adam Osewski 已提交
865
  void Compute(const framework::ExecutionContext& ctx) const override {
866
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
A
Adam Osewski 已提交
867
                      platform::errors::PreconditionNotMet(
868
                          "Operator DNNL ConvGrad must use CPUPlace"));
869 870
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
871 872 873 874
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
875 876
    const Tensor* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
877 878 879 880 881 882 883
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    if (!input_grad && !filter_grad) return;

884 885 886 887 888
    // TODO(jczaja): Are all tensors really needed?
    ConvMKLDNNHandlerT<T, K, T> handler(
        ctx, dev_ctx, ctx.GetPlace(), input, filter, bias, output_grad,
        filter_grad, input_grad,
        ctx.InputName("Input") + ctx.InputName("Filter"));
889 890

    // create mkldnn memory from input tensors (data/weights)
891
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
892

893 894 895 896 897 898
    if (filter_grad) {
      auto src_memory_p =
          handler.AcquireSrcMemoryWithReorderFromWeightsPrimitive(input);
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
              output_grad);
899

900 901
      // For convoluition with groups write filter grad into
      // oneDNN buffer and then we reorder it into filter_grad tensor
902
      int g = std::max(ctx.Attr<int>("groups"), 1);
903
      auto diff_weights_memory_p =
904 905
          g > 1 ? handler.AcquireDiffWeightsMemory()
                : handler.AcquireDiffWeightsMemory(filter_grad);
906

907
      auto conv_bwd_weights_p = handler.AcquireBackwardWeightsPrimitive();
908

A
Adam 已提交
909 910
      // TODO(grygielski) why no bias_diff?
      conv_bwd_weights_p->execute(
911 912 913
          astream, {{DNNL_ARG_SRC, *src_memory_p},
                    {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
                    {DNNL_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
A
Adam 已提交
914
      astream.wait();
915

A
Adam Osewski 已提交
916
      filter_grad->set_layout(framework::DataLayout::kMKLDNN);
917 918
      // in OneDNN groups in convolution are treated as separate dimension
      // which is not the case in paddlepaddle
A
Adam Osewski 已提交
919
      auto filter_fmt = platform::GetMKLDNNFormat(*diff_weights_memory_p);
920 921 922 923

      // For convolution with groups convert from blocked to NCHW
      // otherwise there will be problems in next operators working on this data
      if (g > 1) {
924
        dnnl::memory::data_type in_type =
A
Adam Osewski 已提交
925
            framework::ToMKLDNNDataType(filter->type());
926 927
        // for 3d conv with groups (six dimensional data reorder to goidhw)
        // for 2d conv with groups (five dimensional data reorder to goihw)
A
Adam Osewski 已提交
928
        // auto weights_tz = framework::vectorize(filter->dims());
929 930

        auto weights_tz = diff_weights_memory_p->get_desc().dims();
931 932 933
        dnnl::memory::format_tag out_format =
            weights_tz.size() == 6 ? dnnl::memory::format_tag::goidhw
                                   : dnnl::memory::format_tag::goihw;
934 935
        platform::ReorderMKLDNNHandler handler(weights_tz, filter->type(),
                                               in_type, mkldnn_engine);
936 937 938 939 940 941
        auto reorder_dst_memory_p =
            handler.AcquireDstMemory(filter_grad, out_format, ctx.GetPlace());

        auto reorder_p =
            handler.AcquireReorder(reorder_dst_memory_p, diff_weights_memory_p);

942 943 944 945 946 947 948
        {
          platform::RecordEvent record_reorder("int_reorder",
                                               platform::EventRole::kUniqueOp);
          reorder_p->execute(astream, *diff_weights_memory_p,
                             *reorder_dst_memory_p);
          astream.wait();
        }
949 950 951 952

        // So here we have a data in goihw , which can be interpreted as OIHW
        // (OIDHW for conv3d)
        // because filter_grad shape is set for OIHW (OIDHW for conv3d)
953 954 955
        dnnl::memory::format_tag target_format =
            weights_tz.size() == 6 ? dnnl::memory::format_tag::oidhw
                                   : dnnl::memory::format_tag::oihw;
956 957 958 959
        filter_grad->set_format(target_format);
      } else {
        filter_grad->set_format(filter_fmt);
      }
960 961
    }
    if (input_grad) {
962 963 964 965
      auto weights_memory_p =
          handler.AcquireWeightsMemoryWithReorderFromDataPrimitive(
              filter, ctx.Attr<int>("groups"),
              ctx.Attr<std::vector<int>>("strides").size() == 3U);
966

967 968 969 970
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
              output_grad);
      auto diff_src_memory_p = handler.AcquireDiffSrcMemory(input_grad);
971

972
      auto conv_bwd_data_p = handler.AcquireBackwardPrimitive();
973

A
Adam 已提交
974
      conv_bwd_data_p->execute(astream,
975 976 977
                               {{DNNL_ARG_WEIGHTS, *weights_memory_p},
                                {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
                                {DNNL_ARG_DIFF_SRC, *diff_src_memory_p}});
A
Adam 已提交
978
      astream.wait();
979

A
Adam Osewski 已提交
980 981
      input_grad->set_layout(framework::DataLayout::kMKLDNN);
      input_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory_p));
982
    }
X
xiaolil1 已提交
983
  }
984
};
985

986 987 988 989 990
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
991 992 993
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
994
                                    ops::ConvMKLDNNOpKernel<float, float>);
995

996 997 998 999
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

1000 1001
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
1002
                                    ops::kConvMKLDNNINT8,
1003
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
1004 1005 1006

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
1007
                                    ops::kConvMKLDNNINT8,
1008
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
1009 1010 1011 1012

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1013
                                    ops::ConvMKLDNNGradOpKernel<float, float>);
1014

1015 1016 1017 1018 1019
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNGradOpKernel<paddle::platform::bfloat16, float>);

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    depthwise_conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
                                    ops::kConvMKLDNNINT8,
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
                                    ops::kConvMKLDNNINT8,
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    depthwise_conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNGradOpKernel<paddle::platform::bfloat16, float>);

1050 1051 1052
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1053
                                    ops::ConvMKLDNNOpKernel<float, float>);
1054 1055 1056 1057

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1058
                                    ops::ConvMKLDNNGradOpKernel<float, float>);