conv_mkldnn_op.cc 37.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

15
#include <unordered_map>
Y
Yu Yang 已提交
16 17
#include "paddle/fluid/framework/data_layout_transform.h"
#include "paddle/fluid/memory/malloc.h"
18
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
20 21 22 23

namespace paddle {
namespace operators {

24 25 26 27 28 29 30 31
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

32 33
inline void GetWeightsTz(std::vector<int>& weights_tz, int groups,  // NOLINT
                         bool is_conv3d) {
Y
Yihua Xu 已提交
34
  if (groups > 1) {
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    if (is_conv3d) {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int dimension = weights_tz[2];
      int height = weights_tz[3];
      int width = weights_tz[4];
      weights_tz.resize(6);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = dimension;
      weights_tz[4] = height;
      weights_tz[5] = width;
    } else {
      int output = weights_tz[0];
      int input = weights_tz[1];
      int height = weights_tz[2];
      int width = weights_tz[3];
      weights_tz.resize(5);
      weights_tz[0] = groups;
      weights_tz[1] = output / groups;
      weights_tz[2] = input;
      weights_tz[3] = height;
      weights_tz[4] = width;
    }
Y
Yihua Xu 已提交
60 61 62
  }
}

63 64
inline MKLDNNMemoryFormat GetWeightsFormat(MKLDNNMemoryFormat format,
                                           int groups, bool is_conv3d) {
Y
Yihua Xu 已提交
65
  if (is_conv3d) {
66
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
67
  } else {
68
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
69 70 71
  }
}

72 73
static mkldnn::memory::data_type GetDstType(bool is_int8,
                                            bool force_fp32_output,
74
                                            std::string fuse_activation,
75 76 77
                                            bool fuse_residual_conn,
                                            const Tensor* residual_param) {
  auto dst_dt = mkldnn::memory::data_type::f32;  // uint8_t, int8_t, float
78 79 80 81 82 83 84
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
                 ? mkldnn::memory::data_type::u8
                 : mkldnn::memory::data_type::s8;
    if (force_fp32_output) {
      dst_dt = mkldnn::memory::data_type::f32;
    }
85 86
    if (fuse_residual_conn && residual_param) {
      auto residual_dt = framework::ToMKLDNNDataType(residual_param->type());
87
      if (dst_dt != residual_dt) dst_dt = residual_dt;
88 89 90 91 92
    }
  }
  return dst_dt;
}

93
template <typename T, typename K>
94
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
95 96 97 98
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");
99 100 101 102 103
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
    if (!is_INT8) {
      ComputeFP32(ctx);
    } else {
104
      std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
105 106 107
      bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
      auto residual_param = ctx.Input<Tensor>("ResidualData");
108
      auto dst_dt = GetDstType(true, force_fp32_output, fuse_activation,
109 110 111 112 113 114 115 116
                               fuse_residual_conn, residual_param);
      if (dst_dt == mkldnn::memory::data_type::f32) {
        ComputeINT8<float>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::u8) {
        ComputeINT8<uint8_t>(ctx);
      } else if (dst_dt == mkldnn::memory::data_type::s8) {
        ComputeINT8<int8_t>(ctx);
      }
117 118
    }
  }
119

120
  void ComputeFP32(const paddle::framework::ExecutionContext& ctx) const {
K
Krzysztof Binias 已提交
121 122
    const bool is_test = ctx.Attr<bool>("is_test");

123 124
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
125 126 127 128
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
129
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
130 131
    auto* output = ctx.Output<Tensor>("Output");

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input tensor");

    PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Filter tensor");
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Filter tensor");

    PADDLE_ENFORCE_GE(
        input->dims().size(), 4,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
    PADDLE_ENFORCE_LE(
        input->dims().size(), 5,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");

    PADDLE_ENFORCE_GE(
        filter->dims().size(), 4,
        "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
    PADDLE_ENFORCE_LE(
        filter->dims().size(), 5,
        "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");

156
    if (bias) {
157 158 159 160 161 162 163
      PADDLE_ENFORCE_EQ(bias->layout(), DataLayout::kMKLDNN,
                        "Wrong layout set for Bias tensor");
      PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::format_undef,
                        "Wrong format set for Bias tensor");

      PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                        "Bias must only have 1 dimension, i.e. X");
164
    }
165 166 167 168

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
169 170 171
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    float fuse_alpha = ctx.Attr<float>("fuse_alpha");
    float fuse_beta = ctx.Attr<float>("fuse_beta");
172
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
173
    int groups = ctx.Attr<int>("groups");
174
    bool is_conv3d = strides.size() == 3U;
175

176
    PADDLE_ENFORCE(
177 178 179 180
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
181 182 183 184 185
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

186 187
    auto src_tz = paddle::framework::vectorize<int>(input->dims());
    auto weights_tz = paddle::framework::vectorize<int>(filter->dims());
188
    int g = std::max(groups, 1);
189
    GetWeightsTz(weights_tz, g, is_conv3d);
190
    auto dst_tz = paddle::framework::vectorize<int>(output->dims());
191

192
    // Get unique name for storing MKLDNN primitives
193
    const std::string key = platform::CreateKey(
194
        src_tz, ctx.op().Input("Input") + ctx.op().Input("Filter"));
195 196 197

    std::vector<primitive> pipeline;

198
    auto src_format = input->format();
199
    MKLDNNMemoryFormat weights_format =
200 201 202 203 204 205
        GetWeightsFormat(filter->format(), g, is_conv3d);

    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
206 207 208 209 210

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
211 212 213 214
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

215
    weights_format = MKLDNNMemoryFormat::any;
216
    // Check the format for user's special output
217
    if (chosen_memory_format != MKLDNNMemoryFormat::any) {
218 219 220 221
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
222 223
    }

224
    auto src_md = platform::MKLDNNMemDesc(
225
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
226
    auto weights_md = platform::MKLDNNMemDesc(
227
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
228
    std::vector<int> bias_tz;
229
    auto dst_md = platform::MKLDNNMemDesc(
230
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
231

232 233
    platform::ConvMKLDNNHandler handler(dev_ctx, mkldnn_engine, key);

234
    // create a conv primitive descriptor and save it for usage in backward
235
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
236 237
    auto fwd_prop_kind = is_test ? mkldnn::prop_kind::forward_inference
                                 : mkldnn::prop_kind::forward_training;
238
    if (bias) {
239
      bias_tz = paddle::framework::vectorize<int>(bias->dims());
240
      auto bias_md = platform::MKLDNNMemDesc(
241
          bias_tz, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
242
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
243
          src_md, weights_md, bias_md, dst_md, strides, paddings, mkldnn_engine,
244
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn,
245
          fwd_prop_kind);
246
    } else {
247 248
      conv_pd = handler.AcquireConvolutionPrimitiveDescriptor(
          src_md, weights_md, boost::none, dst_md, strides, paddings,
249 250
          mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
          fuse_residual_conn, fwd_prop_kind);
251
    }
252

253
    // create mkldnn memory from input tensors (data/weights)
254 255
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
256
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
257
        user_weights_md, to_void_cast<T>(filter_data));
258

259 260 261 262 263
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline, is_test);
264

265
    std::shared_ptr<mkldnn::memory> dst_memory_p, user_residual_memory_p;
266

267
    if (fuse_residual_conn) {
268 269
      auto residual_param = ctx.Input<Tensor>("ResidualData");
      auto residual_param_data = residual_param->data<T>();
270

271 272
      PADDLE_ENFORCE_NE(
          residual_param_data, nullptr,
273 274 275 276
          "Provide data if you want MKLDNN conv+elementwise_add fusion");
      PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                        "Output and elementwise parameter need to have the "
                        "same dimension sizes");
277

278
      if (residual_param->format() != handler.GetDstFormat()) {
279 280
        auto output_data =
            output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
281
        auto residual_data_tz =
282
            paddle::framework::vectorize<int>(residual_param->dims());
283 284 285 286 287
        auto residual_data_type =
            paddle::framework::ToMKLDNNDataType(residual_param->type());

        auto user_residual_md = platform::MKLDNNMemDesc(
            residual_data_tz, residual_data_type, residual_param->format());
288
        user_residual_memory_p = handler.AcquireResidualDataMemory(
289
            user_residual_md, to_void_cast<T>(residual_param_data));
290 291 292

        dst_memory_p = handler.AcquireDstMemoryFromResidualDataMemory(
            user_residual_memory_p, to_void_cast<T>(output_data), pipeline);
293 294
      } else {
        output->ShareDataWith(*residual_param);
295 296 297
        auto output_data = output->mutable_data<T>(ctx.GetPlace());
        dst_memory_p =
            handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
298
      }
299
    } else {
300 301
      auto output_data =
          output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
302 303
      dst_memory_p =
          handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
304
    }
305 306

    // create convolution op primitive
307
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
308
    std::shared_ptr<mkldnn::memory> user_bias_memory_p, bias_memory_p;
309 310 311
    if (bias) {
      const T* bias_data = bias->data<T>();
      auto user_bias_md = platform::MKLDNNMemDesc(
312
          {bias_tz}, platform::MKLDNNGetDataType<T>(), MKLDNNMemoryFormat::x);
313
      user_bias_memory_p =
314 315
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

316
      bias_memory_p =
317 318 319 320 321 322 323
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
324 325

    // push primitive to stream and wait until it's executed
326
    pipeline.push_back(*conv_p);
327 328
    stream(stream::kind::eager).submit(pipeline).wait();

329 330
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
331
  }
332
  template <typename T_out>
333 334 335 336 337 338 339 340 341 342 343 344
  void ComputeINT8(const paddle::framework::ExecutionContext& ctx) const {
    const bool is_test = ctx.Attr<bool>("is_test");

    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");

345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input tensor");

    PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Filter tensor");
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Filter tensor");

    PADDLE_ENFORCE_GE(
        input->dims().size(), 4,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");
    PADDLE_ENFORCE_LE(
        input->dims().size(), 5,
        "Input must be with 4 or 5 dimensions, i.e. NCHW or NCDHW");

    PADDLE_ENFORCE_GE(
        filter->dims().size(), 4,
        "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");
    PADDLE_ENFORCE_LE(
        filter->dims().size(), 5,
        "Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW");

369
    if (bias) {
370 371 372 373 374 375 376
      PADDLE_ENFORCE_EQ(bias->layout(), DataLayout::kMKLDNN,
                        "Wrong layout set for Bias tensor");
      PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::format_undef,
                        "Wrong format set for Bias tensor");

      PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                        "Bias must only have 1 dimension, i.e. X");
377 378 379 380 381 382
    }

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
383 384 385
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    float fuse_alpha = ctx.Attr<float>("fuse_alpha");
    float fuse_beta = ctx.Attr<float>("fuse_beta");
X
xiaolil1 已提交
386
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
387
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
388 389
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
390 391 392 393

    PADDLE_ENFORCE(!fuse_residual_conn || !force_fp32_output,
                   "residual fusion does not support force output with fp32");

394 395 396 397 398 399 400
    bool is_conv3d = strides.size() == 3U;
    PADDLE_ENFORCE(
        is_conv3d
            ? dilations.size() == 3 && dilations[0] == 1 && dilations[1] == 1 &&
                  dilations[2] == 1
            : dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");
X
xiaolil1 已提交
401

L
lidanqing 已提交
402 403
    PADDLE_ENFORCE_NE(is_conv3d, true,
                      "int8 does not support conv3d currently");
404 405 406

    const T* input_data = input->data<T>();

407 408
    auto src_tz = paddle::framework::vectorize<int>(input->dims());
    auto weights_tz = paddle::framework::vectorize<int>(filter->dims());
409
    int g = std::max(groups, 1);
410 411

    GetWeightsTz(weights_tz, g, is_conv3d);
412
    auto dst_tz = paddle::framework::vectorize<int>(output->dims());
413

X
xiaolil1 已提交
414 415
    mkldnn::memory::data_type src_dt =
        paddle::framework::ToMKLDNNDataType(input->type());
416

L
lidanqing 已提交
417
    std::string key = platform::CreateKey(
418
        src_tz, src_dt, ctx.op().Input("Input") + ctx.op().Input("Filter"));
419

420 421 422
    const std::string key_conv_pd = key + "@conv_pd";

    bool need_s8_to_u8 = false;
423 424 425
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    std::shared_ptr<mkldnn::memory> src_memory_p;
    std::shared_ptr<mkldnn::memory> user_src_memory_p;
426
    std::shared_ptr<mkldnn::memory> dst_memory_p;
427
    std::vector<primitive> pipeline;
428
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
429 430 431 432 433 434 435 436 437
    std::shared_ptr<platform::ConvMKLDNNHandler> handler;

    // This is workaround for hacky implementation
    // of conv int8 mkl-dnn. Once conv fp32 and conv int8
    // are merged/unified, this will disappear
    std::string key_tid = "";
    if (platform::get_cur_mkldnn_session_id() ==
        platform::kMKLDNNSessionID_Default) {
      key_tid = "-t:" + platform::ThreadIDasStr();
L
lidanqing 已提交
438
    }
439

440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
    auto prim_key = key + key_tid + "@conv_p";
    auto dst_key = key + key_tid + "@dst_mem_p";
    auto src_key = key + key_tid + "@src_mem_p";
    auto user_src_key = key + key_tid + "@user_src_mem_p";
    auto src_reorder_key = key + key_tid + "@src_mem_preorder_p";
    auto residual_reorder_key = key + key_tid + "@residual_data_mem_preorder_p";

    conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx.GetBlob(prim_key));

    if (conv_p == nullptr || !is_test) {
      const K* filter_data = filter->data<K>();
      auto scale_in_data = ctx.Attr<float>("Scale_in");
      auto scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
      auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
      auto scale_out_data =
          force_fp32_output ? 1.0f : ctx.Attr<float>("Scale_out");
      float sum_scale =
          fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;

      bool is_multi_channel = scale_weights_data.size() > 1;

      int count = is_multi_channel ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0]
                                            : (weights_tz)[0])
                                   : 1;
      std::vector<float> output_shift_scale(count);
#pragma omp parallel for if (count > 1)
      for (int i = 0; i < count; i++) {
        if (scale_weights_data[i] == 0.0)
          output_shift_scale[i] =
              scale_out_data;  // weights data will contain 0
                               // in some models, then weights
                               // scale couldn't be calculated
        else
          output_shift_scale[i] =
              static_cast<float>(static_cast<double>(scale_out_data) /
                                 (static_cast<double>(scale_in_data) *
                                  static_cast<double>(scale_weights_data[i])));
      }
L
lidanqing 已提交
479

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
      auto user_src_md =
          platform::MKLDNNMemDesc({src_tz}, src_dt, input->format());
      auto user_weights_md = platform::MKLDNNMemDesc(
          {weights_tz}, platform::MKLDNNGetDataType<K>(),
          ((g) == 1) ? MKLDNNMemoryFormat::oihw : MKLDNNMemoryFormat::goihw);

      /* create memory descriptor for convolution without specified format
      * ('any') which lets a primitive (convolution in this case) choose
      * the memory format preferred for best performance
      */
      std::string data_format = ctx.Attr<std::string>("data_format");
      auto chosen_memory_format =
          platform::data_format_to_memory_format(data_format);

      std::vector<int> bias_tz;

      auto src_md =
          platform::MKLDNNMemDesc(src_tz, src_dt, chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, memory::data_type::s8, chosen_memory_format);
      auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);

      handler.reset(
          new platform::ConvMKLDNNHandler(dev_ctx, mkldnn_engine, key));
      // create a conv primitive descriptor and save it for usage in backward
      auto propagation = is_test ? mkldnn::prop_kind::forward_scoring
                                 : mkldnn::prop_kind::forward_training;
L
lidanqing 已提交
508

509 510 511 512 513 514 515 516 517 518 519 520 521 522
      if (bias) {
        bias_tz = paddle::framework::vectorize<int>(bias->dims());
        auto bias_md = platform::MKLDNNMemDesc(bias_tz, memory::data_type::s32,
                                               MKLDNNMemoryFormat::x);
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
            src_md, weights_md, bias_md, dst_md, strides, paddings,
            mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
      } else {
        conv_pd = handler->AcquireConvolutionPrimitiveDescriptor(
            src_md, weights_md, boost::none, dst_md, strides, paddings,
            mkldnn_engine, fuse_activation, fuse_alpha, fuse_beta,
            fuse_residual_conn, propagation, output_shift_scale, sum_scale);
      }
L
lidanqing 已提交
523

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
      // create mkldnn memory from input tensors (data/weights)
      user_src_memory_p =
          handler->AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
      auto user_weights_memory_p = handler->AcquireWeightsMemory(
          user_weights_md, to_void_cast<K>(filter_data));

      // create reorder primitive if the input format is not the preferred one
      src_memory_p =
          handler->AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);

      std::shared_ptr<mkldnn::memory> weights_memory_p;
      int mask_reorder =
          is_multi_channel ? ((g != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
      weights_memory_p = handler->AcquireWeightsMemoryFromPrimitive(
          user_weights_memory_p, pipeline, is_test, true, scale_weights_data,
          mask_reorder);

      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
        PADDLE_ENFORCE_EQ(output->dims(), residual_param->dims(),
                          "Output and elementwise parameter need to have the "
                          "same dimension sizes");
        auto residual_dt =
            paddle::framework::ToMKLDNNDataType(residual_param->type());
        if (residual_param->format() != handler->GetDstFormat()) {
          auto residual_data_tz =
              paddle::framework::vectorize<int>(residual_param->dims());
          auto user_residual_md = platform::MKLDNNMemDesc(
              residual_data_tz, residual_dt, residual_param->format());
          dst_memory_p = platform::SetDstMemory<T_out>(
              ctx, output, residual_param, user_residual_md, handler,
              &pipeline);
        } else {
          output->ShareDataWith(*residual_param);
          dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
        }
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
      } else {
        dst_memory_p = platform::SetDstMemory<T_out>(ctx, output, handler);
      }
L
lidanqing 已提交
566

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608
      // create convolution op primitive
      auto scale_bias_key = key + "@scale_bias";
      if (bias) {
        const K* bias_data = bias->data<K>();
        auto user_bias_md = platform::MKLDNNMemDesc(
            {bias_tz}, platform::MKLDNNGetDataType<K>(), MKLDNNMemoryFormat::x);
        auto user_bias_memory_p = handler->AcquireBiasMemory(
            user_bias_md, to_void_cast<K>(bias_data));
        std::shared_ptr<mkldnn::memory> bias_memory_p;
        int mask_reorder = is_multi_channel ? 1 << 0 : 1;
        int count =
            is_multi_channel
                ? (g > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
                : 1;
        std::vector<float> scale_bias_data(count);
#pragma omp parallel for if (count > 1)
        for (int i = 0; i < count; i++) {
          scale_bias_data[i] = scale_in_data * scale_weights_data[i];
        }
        bias_memory_p = handler->AcquireBiasMemoryFromPrimitive(
            user_bias_memory_p, pipeline, is_test, true, scale_bias_data,
            mask_reorder);
        conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                             bias_memory_p, dst_memory_p);
      } else {
        conv_p = handler->AcquireConvolution(src_memory_p, weights_memory_p,
                                             dst_memory_p);
      }
      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_p);
    } else {
      auto src_memory_reorder_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(src_reorder_key));
      src_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(src_key));
      if (src_memory_reorder_p) {
        user_src_memory_p = std::static_pointer_cast<mkldnn::memory>(
            dev_ctx.GetBlob(user_src_key));
        user_src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      } else if (src_memory_p) {
        src_memory_p->set_data_handle(to_void_cast<T>(input_data));
      }
X
xiaolil1 已提交
609

610 611 612 613 614 615 616 617 618
      dst_memory_p =
          std::static_pointer_cast<mkldnn::memory>(dev_ctx.GetBlob(dst_key));
      conv_pd =
          std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
              dev_ctx.GetBlob(key_conv_pd));
      if (conv_pd) {
        handler.reset(new platform::ConvMKLDNNHandler(conv_pd, dev_ctx,
                                                      mkldnn_engine, key));
      }
L
lidanqing 已提交
619

620 621
      if (fuse_residual_conn) {
        auto residual_param = ctx.Input<Tensor>("ResidualData");
L
lidanqing 已提交
622
        output->ShareDataWith(*residual_param);
623 624 625
        need_s8_to_u8 =
            (platform::MKLDNNGetDataType<T_out>() == memory::data_type::s8) &&
            unsigned_output;
X
xiaolil1 已提交
626
      }
627
      platform::SetDstMemoryHandler<T_out>(ctx, output, handler, dst_memory_p);
L
lidanqing 已提交
628

629 630 631
      if (src_memory_reorder_p) {
        pipeline.push_back(*src_memory_reorder_p);
      }
L
lidanqing 已提交
632

633 634 635 636 637 638 639
      auto residual_reorder_p = std::static_pointer_cast<mkldnn::memory>(
          dev_ctx.GetBlob(residual_reorder_key));
      if (residual_reorder_p) {
        pipeline.push_back(*residual_reorder_p);
      }
      pipeline.push_back(*conv_p);
    }
640 641
    // push primitive to stream and wait until it's executed
    stream(stream::kind::eager).submit(pipeline).wait();
642
    if (need_s8_to_u8) {
X
xiaolil1 已提交
643 644
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
645 646 647
    output->set_layout(DataLayout::kMKLDNN);
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
  }
648 649 650
};

template <typename T>
651
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
652 653 654 655 656
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

657 658
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
659 660 661 662 663 664 665 666 667
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

668 669 670 671
    PADDLE_ENFORCE_EQ(input->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Input tensor");
    PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Input tensor");
672

673 674 675 676 677 678 679 680 681 682 683 684
    PADDLE_ENFORCE_EQ(filter->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for Filter tensor");
    PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for Filter tensor");

    PADDLE_ENFORCE_EQ(output_grad->layout(), DataLayout::kMKLDNN,
                      "Wrong layout set for output_grad tensor");
    PADDLE_ENFORCE_NE(output_grad->format(), MKLDNNMemoryFormat::format_undef,
                      "Wrong format set for output_grad tensor");

    PADDLE_ENFORCE_EQ(
        ctx.Attr<bool>("is_test"), false,
685 686
        "is_test attribute should be set to False in training phase.");

687 688 689 690
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
691 692
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
693

694
    bool is_conv3d = strides.size() == 3U;
695 696 697 698 699 700
    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

701 702
    auto src_tz = paddle::framework::vectorize<int>(input->dims());
    auto weights_tz = paddle::framework::vectorize<int>(filter->dims());
703
    int g = std::max(groups, 1);
704
    GetWeightsTz(weights_tz, g, is_conv3d);
705
    auto dst_tz = paddle::framework::vectorize<int>(output_grad->dims());
706
    auto src_format = input->format();
707
    MKLDNNMemoryFormat weights_format =
Y
Yihua Xu 已提交
708
        GetWeightsFormat(filter->format(), g, is_conv3d);
709

710
    // Get an unique name from "argument" name of "input" and "Filter" variable
J
Jacek Czaja 已提交
711
    // as well as attributes of primitive to be created
712
    // This name will be used as key when saving info into device context
713
    const std::string key = platform::CreateKey(
714
        src_tz, ctx.op().Input("Input") + ctx.op().Input("Filter"));
715 716

    const std::string key_conv_pd = key + "@conv_pd";
717
    std::vector<primitive> pipeline;
718

719 720
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
721
        {src_tz}, platform::MKLDNNGetDataType<T>(), src_format);
722
    auto user_weights_md = platform::MKLDNNMemDesc(
723
        {weights_tz}, platform::MKLDNNGetDataType<T>(), weights_format);
724 725
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
726 727 728 729 730

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
731 732 733 734
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

735
    weights_format = MKLDNNMemoryFormat::any;
736
    // Check the format for user's special output
737
    if (chosen_memory_format != MKLDNNMemoryFormat::any) {
738 739 740 741
      if (is_conv3d) {
        chosen_memory_format =
            platform::MKLDNNFormatForSize(src_tz.size(), chosen_memory_format);
      }
742 743
    }

744
    auto src_md = platform::MKLDNNMemDesc(
745
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
746
    auto diff_src_md = platform::MKLDNNMemDesc(
747
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
748
    auto weights_md = platform::MKLDNNMemDesc(
749
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
750
    auto diff_weights_md = platform::MKLDNNMemDesc(
751
        weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
752
    auto diff_dst_md = platform::MKLDNNMemDesc(
753
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
754

755
    // Retrieve conv_pd from device context
756 757 758
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
759 760
    PADDLE_ENFORCE_NE(conv_pd, nullptr,
                      "Fail to find conv_pd in device context");
761

762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

J
Jacek Czaja 已提交
778 779 780
    platform::ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd,
                                        conv_bwd_weights_pd, dev_ctx,
                                        mkldnn_engine, key);
781 782 783 784 785 786 787 788 789

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));

790 791
    // create backward conv primitive for weights
    if (filter_grad) {
792 793
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
794

795 796 797 798
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

799
      const size_t size = handler.GetDiffWeightsMemorySize();
800
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);
801

802 803 804 805 806 807 808 809 810
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
811

812 813
      filter_grad->set_layout(DataLayout::kMKLDNN);
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
814 815 816
    }

    if (input_grad) {
817 818 819 820 821 822 823
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

824
      const size_t size = handler.GetDiffSourceMemorySize();
825
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);
826

827 828 829 830 831 832 833
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
834

835 836
      input_grad->set_layout(DataLayout::kMKLDNN);
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
837
    }
838
    stream(stream::kind::eager).submit(pipeline).wait();
X
xiaolil1 已提交
839
  }
840
};
841

842 843 844 845 846
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
847 848 849
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
850
                                    ops::ConvMKLDNNOpKernel<float, float>);
851 852 853

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
854
                                    ops::kConvMKLDNNINT8,
855
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
856 857 858

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
859
                                    ops::kConvMKLDNNINT8,
860
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
861 862 863 864 865

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);
866 867 868 869

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
870
                                    ops::ConvMKLDNNOpKernel<float, float>);
871 872 873 874 875

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float>);