conv_mkldnn_op.cc 46.5 KB
Newer Older
A
Adam Osewski 已提交
1
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

A
Adam Osewski 已提交
15 16
#include <tuple>

17
#include "paddle/fluid/operators/conv_op.h"
J
Jacek Czaja 已提交
18
#include "paddle/fluid/platform/cpu_info.h"
A
Adam Osewski 已提交
19
#include "paddle/fluid/platform/mkldnn_helper.h"
J
Jacek Czaja 已提交
20
#include "paddle/fluid/platform/mkldnn_reuse.h"
21 22 23

namespace paddle {
namespace operators {
A
Adam Osewski 已提交
24
namespace {
25

26 27 28
inline MKLDNNMemoryFormat GetWeightsFormat(const MKLDNNMemoryFormat format,
                                           const int groups,
                                           const bool is_conv3d) {
Y
Yihua Xu 已提交
29
  if (is_conv3d) {
30
    return (groups == 1) ? format : MKLDNNMemoryFormat::goidhw;
Y
Yihua Xu 已提交
31
  } else {
32
    return (groups == 1) ? format : MKLDNNMemoryFormat::goihw;
Y
Yihua Xu 已提交
33 34 35
  }
}

36 37 38 39 40 41
static dnnl::memory::data_type GetDstType(bool is_int8, bool is_bfloat16,
                                          bool force_fp32_output,
                                          std::string fuse_activation,
                                          bool fuse_residual_conn,
                                          const Tensor* residual_param) {
  auto dst_dt = dnnl::memory::data_type::f32;
42 43
  if (is_int8) {
    dst_dt = (fuse_activation == "relu" || fuse_activation == "relu6")
44 45
                 ? dnnl::memory::data_type::u8
                 : dnnl::memory::data_type::s8;
46
    if (force_fp32_output) {
47
      dst_dt = dnnl::memory::data_type::f32;
48
    }
49 50
    if (fuse_residual_conn && residual_param) {
      auto residual_dt = framework::ToMKLDNNDataType(residual_param->type());
51
      if (dst_dt != residual_dt) dst_dt = residual_dt;
52
    }
53 54
  } else {
    if (!force_fp32_output && is_bfloat16) {
55
      dst_dt = dnnl::memory::data_type::bf16;
56 57 58 59
      if (fuse_residual_conn && residual_param) {
        dst_dt = framework::ToMKLDNNDataType(residual_param->type());
      }
    }
60 61 62 63
  }
  return dst_dt;
}

64
template <typename T, typename K, typename T_out>
65
class ConvMKLDNNHandlerT
66 67 68
    : public platform::MKLDNNHandlerT<T, dnnl::convolution_forward,
                                      dnnl::convolution_backward_data,
                                      dnnl::convolution_backward_weights> {
69
 public:
A
Adam Osewski 已提交
70
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
71
                     const platform::MKLDNNDeviceContext& dev_ctx,
72
                     const dnnl::engine mkldnn_engine,
73 74 75
                     platform::Place cpu_place, const Tensor* input,
                     const Tensor* filter, const Tensor* bias, Tensor* output,
                     const std::string& unique_name)
76 77 78
      : platform::MKLDNNHandlerT<T, dnnl::convolution_forward,
                                 dnnl::convolution_backward_data,
                                 dnnl::convolution_backward_weights>(
79
            dev_ctx, mkldnn_engine, cpu_place,
80
            platform::CreateKey(dev_ctx, framework::vectorize(input->dims()),
81
                                unique_name)) {
82
    if (!this->isCached()) {
83
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
84
          input->layout(), framework::DataLayout::kMKLDNN,
85 86
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
87
              framework::DataLayout::kMKLDNN, input->layout()));
88 89 90
      PADDLE_ENFORCE_NE(input->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Input tensor"));
91

92
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
93
          filter->layout(), framework::DataLayout::kMKLDNN,
94 95
          platform::errors::InvalidArgument(
              "The Filter tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
96
              framework::DataLayout::kMKLDNN, filter->layout()));
97 98 99
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for Filter tensor"));
K
Krzysztof Binias 已提交
100

101 102 103 104 105 106 107 108 109 110 111 112
      PADDLE_ENFORCE_GE(
          input->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
      PADDLE_ENFORCE_LE(
          input->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Input must be with 4 or 5 dimensions, i.e. NCHW or "
              "NCDHW, but got dimension = %d .",
              input->dims().size()));
113

114 115 116 117 118 119 120 121 122 123 124 125
      PADDLE_ENFORCE_GE(
          filter->dims().size(), 4,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
      PADDLE_ENFORCE_LE(
          filter->dims().size(), 5,
          platform::errors::InvalidArgument(
              "Filter must be with 4 or 5 dimensions, i.e. OIHW or "
              "OIDHW, but got dimension = %d .",
              filter->dims().size()));
126

127 128
      if (bias) {
        PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
129
            bias->layout(), framework::DataLayout::kMKLDNN,
130 131
            platform::errors::InvalidArgument(
                "The Bias tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
132
                framework::DataLayout::kMKLDNN, bias->layout()));
133 134 135
        PADDLE_ENFORCE_NE(bias->format(), MKLDNNMemoryFormat::undef,
                          platform::errors::InvalidArgument(
                              "Got wrong format for Bias tensor."));
136

137 138 139 140 141 142
        PADDLE_ENFORCE_EQ(bias->dims().size(), 1,
                          platform::errors::InvalidArgument(
                              "Bias must only have 1 dimension, "
                              "i.e. X, but got dimension = %d .",
                              bias->dims().size()));
      }
F
FDInSky 已提交
143

144 145 146 147 148 149 150 151 152
      const std::string fuse_activation =
          ctx.Attr<std::string>("fuse_activation");
      const float fuse_alpha = ctx.Attr<float>("fuse_alpha");
      const float fuse_beta = ctx.Attr<float>("fuse_beta");
      const bool fuse_residual_conn =
          ctx.Attr<bool>("fuse_residual_connection");
      const int groups = ctx.Attr<int>("groups");
      const std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
F
FDInSky 已提交
153

154 155 156 157 158 159
      const auto input_dims = input->dims();
      const auto data_dims =
          framework::slice_ddim(input_dims, 2, input_dims.size());
      const auto filter_dims = filter->dims();
      const auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
160

161
      const auto ksize = framework::vectorize(filter_data_dims);
162
      const bool is_test = ctx.Attr<bool>("is_test");
163

164 165
      auto strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));
166

167 168
      auto paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));
A
Adam 已提交
169

170 171 172
      auto dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));
A
Adam 已提交
173

174 175
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);
A
Adam 已提交
176

177 178
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
179

A
Adam Osewski 已提交
180
      const auto src_tz = framework::vectorize(input->dims());
181

A
Adam Osewski 已提交
182
      auto weights_tz = framework::vectorize(filter->dims());
183
      platform::GetGroupConvWeightsTz(weights_tz, groups);
184

A
Adam Osewski 已提交
185
      const auto dst_tz = framework::vectorize(output->dims());
186

187
      const dnnl::memory::dims stride_dims = strides;
188
      const auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
189
      const dnnl::memory::dims dilations_dims = dilations;
A
Adam 已提交
190

191 192 193 194
      /* create memory descriptor for convolution without specified format
       * ('any') which lets a primitive (convolution in this case) choose
       * the memory format preferred for best performance
       */
195
      auto chosen_memory_format = MKLDNNMemoryFormat::any;
196
      auto data_type = dnnl::memory::data_type::f32;
197 198
      if (ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16" ||
          std::is_same<T_out, platform::bfloat16>::value)
199
        data_type = dnnl::memory::data_type::bf16;
200

201
      dnnl::memory::desc src_md, weights_md;
A
Adam Osewski 已提交
202 203 204 205 206
      if (platform::is_int8<T>()) {
        src_md = platform::MKLDNNMemDesc(
            src_tz, framework::ToMKLDNNDataType(input->type()),
            chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(
207
            weights_tz, dnnl::memory::data_type::s8, chosen_memory_format);
A
Adam Osewski 已提交
208 209 210 211 212 213 214
      } else {
        src_md =
            platform::MKLDNNMemDesc(src_tz, data_type, chosen_memory_format);
        weights_md = platform::MKLDNNMemDesc(weights_tz, data_type,
                                             MKLDNNMemoryFormat::any);
      }

215
      const auto dst_md = platform::MKLDNNMemDesc(
216
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
217 218
      const auto fwd_prop_kind = is_test ? dnnl::prop_kind::forward_inference
                                         : dnnl::prop_kind::forward_training;
219

J
jakpiase 已提交
220
      float sum_scale = 1.0f;
221
      float activation_scale = 1.0f;
A
Adam Osewski 已提交
222
      std::vector<float> output_shift_scale;
J
jakpiase 已提交
223
      if (platform::is_int8<T>())
224 225
        std::tie(sum_scale, output_shift_scale, activation_scale) =
            get_int8_scales(ctx);
A
Adam Osewski 已提交
226

227
      const dnnl::primitive_attr conv_attr = CreatePostOps(
A
Adam Osewski 已提交
228
          fuse_activation, fuse_alpha, fuse_beta, fuse_residual_conn,
229
          output_shift_scale, sum_scale, activation_scale);  // for INT8 only!
A
Adam 已提交
230

231 232
      if (bias) {
        auto bias_tz = framework::vectorize(bias->dims());
233
        dnnl::memory::desc bias_md;
A
Adam Osewski 已提交
234 235
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
236
              bias_tz, dnnl::memory::data_type::s32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
237 238 239 240
        } else {
          bias_md = platform::MKLDNNMemDesc(bias_tz, data_type,
                                            MKLDNNMemoryFormat::x);
        }
241

242
        this->AcquireForwardPrimitiveDescriptor(
243
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
244
            src_md, weights_md, bias_md, dst_md, stride_dims, dilations_dims,
245 246
            mkldnn_paddings[0], mkldnn_paddings[1]);
      } else {
247
        this->AcquireForwardPrimitiveDescriptor(
248
            conv_attr, fwd_prop_kind, dnnl::algorithm::convolution_direct,
249 250
            src_md, weights_md, dst_md, stride_dims, dilations_dims,
            mkldnn_paddings[0], mkldnn_paddings[1]);
251 252 253
      }
    }
  }
254

255 256 257 258 259 260
  ConvMKLDNNHandlerT(const framework::ExecutionContext& ctx,
                     const platform::MKLDNNDeviceContext& dev_ctx,
                     platform::Place cpu_place, const Tensor* in,
                     const Tensor* filter, const Tensor* bias,
                     const Tensor* out_grad, Tensor* filter_grad,
                     Tensor* in_x_grad, const std::string& unique_name)
261 262 263
      : platform::MKLDNNHandlerT<T, dnnl::convolution_forward,
                                 dnnl::convolution_backward_data,
                                 dnnl::convolution_backward_weights>(
264 265
            dev_ctx, dev_ctx.GetEngine(), cpu_place,
            platform::CreateKey(dev_ctx, framework::vectorize(in->dims()),
266
                                unique_name)) {
267 268
    if (!this->isBwdCached()) {
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
269
          in->layout(), framework::DataLayout::kMKLDNN,
270 271
          platform::errors::InvalidArgument(
              "The input tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
272
              framework::DataLayout::kMKLDNN, in->layout()));
273 274 275 276 277
      PADDLE_ENFORCE_NE(in->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Got wrong format for Input tensor."));

      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
278
          filter->layout(), framework::DataLayout::kMKLDNN,
279 280
          platform::errors::InvalidArgument(
              "The filter tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
281
              framework::DataLayout::kMKLDNN, filter->layout()));
282 283 284 285 286
      PADDLE_ENFORCE_NE(filter->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Got wrong format for Filter tensor."));

      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
287
          out_grad->layout(), framework::DataLayout::kMKLDNN,
288 289
          platform::errors::InvalidArgument(
              "The output_grad tensor's layout should be %d, but got %d.",
A
Adam Osewski 已提交
290
              framework::DataLayout::kMKLDNN, out_grad->layout()));
291 292 293 294 295
      PADDLE_ENFORCE_NE(out_grad->format(), MKLDNNMemoryFormat::undef,
                        platform::errors::InvalidArgument(
                            "Wrong format set for output_grad tensor"));

      PADDLE_ENFORCE_EQ(
296
          ctx.Attr<bool>("is_test"), false,
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
          platform::errors::InvalidArgument(
              "is_test attribute should be set to False in training phase."));

      std::vector<int> strides_temp = ctx.Attr<std::vector<int>>("strides");
      std::vector<int64_t> strides(begin(strides_temp), end(strides_temp));

      std::vector<int> paddings_temp = ctx.Attr<std::vector<int>>("paddings");
      std::vector<int64_t> paddings(begin(paddings_temp), end(paddings_temp));

      std::vector<int> dilations_temp = ctx.Attr<std::vector<int>>("dilations");
      std::vector<int64_t> dilations(begin(dilations_temp),
                                     end(dilations_temp));

      auto input_dims = in->dims();
      auto data_dims = framework::slice_ddim(input_dims, 2, input_dims.size());
      auto filter_dims = filter->dims();
      auto filter_data_dims =
          framework::slice_ddim(filter_dims, 2, filter_dims.size());
      auto ksize = framework::vectorize(filter_data_dims);

A
Adam Osewski 已提交
317 318
      std::string padding_algorithm =
          ctx.Attr<std::string>("padding_algorithm");
319 320 321 322 323 324
      UpdatePaddingAndDilation(&paddings, &dilations, padding_algorithm,
                               data_dims, strides, ksize);

      auto src_tz = framework::vectorize(in->dims());
      auto weights_tz = framework::vectorize(filter->dims());

A
Adam Osewski 已提交
325
      int groups = ctx.Attr<int>("groups");
326 327
      int g = std::max(groups, 1);
      platform::GetGroupConvWeightsTz(weights_tz, g);
A
Adam Osewski 已提交
328
      auto dst_tz = framework::vectorize(out_grad->dims());
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352

      /* create memory descriptor for conv backward without specified format
       * ('any') which lets a primitive (conv backward in this case) choose
       * the memory format preferred for best performance
       */
      const auto chosen_memory_format = MKLDNNMemoryFormat::any;
      const auto weights_format = MKLDNNMemoryFormat::any;

      auto src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      const auto dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T_out>(), chosen_memory_format);
      auto diff_src_md = platform::MKLDNNMemDesc(
          src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
      auto weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_weights_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(), weights_format);
      auto diff_dst_md = platform::MKLDNNMemDesc(
          dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);

      auto mkldnn_paddings = platform::ToMkldnnPadding(paddings);
      std::transform(dilations.begin(), dilations.end(), dilations.begin(),
                     [](int64_t i) { return i - 1; });
353
      const dnnl::memory::dims dilations_dims = dilations;
354

355
      const dnnl::memory::dims stride_dims = strides;
356
      // Recreating FWD PD. For training there are no post ops in convolution
357
      dnnl::primitive_attr conv_attr;
358 359
      if (bias) {
        auto bias_tz = framework::vectorize(bias->dims());
360
        dnnl::memory::desc bias_md;
A
Adam Osewski 已提交
361 362
        if (platform::is_int8<T>()) {
          bias_md = platform::MKLDNNMemDesc(
363
              bias_tz, dnnl::memory::data_type::s32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
364 365
        } else {
          bias_md = platform::MKLDNNMemDesc(
366
              bias_tz, dnnl::memory::data_type::f32, MKLDNNMemoryFormat::x);
A
Adam Osewski 已提交
367
        }
368

369
        this->AcquireForwardPrimitiveDescriptor(
370
            conv_attr, dnnl::prop_kind::forward_training,
371 372 373 374
            dnnl::algorithm::convolution_direct, src_md, weights_md, bias_md,
            dst_md, stride_dims, dilations_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      } else {
375
        this->AcquireForwardPrimitiveDescriptor(
376
            conv_attr, dnnl::prop_kind::forward_training,
377 378 379 380 381
            dnnl::algorithm::convolution_direct, src_md, weights_md, dst_md,
            stride_dims, dilations_dims, mkldnn_paddings[0],
            mkldnn_paddings[1]);
      }

382
      this->AcquireBackwardPrimitiveDescriptor(
383
          dnnl::algorithm::convolution_direct, diff_src_md, weights_md,
384 385 386
          diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
          mkldnn_paddings[1]);

387
      this->AcquireBackwardWeightsPrimitiveDescriptor(
388
          dnnl::algorithm::convolution_direct, src_md, diff_weights_md,
389 390 391 392 393
          diff_dst_md, strides, dilations_dims, mkldnn_paddings[0],
          mkldnn_paddings[1]);
    }
  }

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
  std::shared_ptr<std::tuple<float, std::vector<float>>> get_int8_bias_scales(
      const framework::ExecutionContext& ctx) {
    // Get scales int8 bias key
    const std::string key_bs = this->key_ + "@bs";

    // Scales for int8 bias are to be cached to avoid
    // computing them each iteration
    auto bias_scale_tuple =
        std::static_pointer_cast<std::tuple<float, std::vector<float>>>(
            this->dev_ctx_.GetBlob(key_bs));
    if (bias_scale_tuple) return bias_scale_tuple;

    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto& weights_tz = framework::vectorize(filter->dims());
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const auto& scale_in_data = ctx.Attr<float>("Scale_in");

    bool is_multi_channel = scale_weights_data.size() > 1;
    int mask_reorder = is_multi_channel ? 1 << 0 : 1;

    int count = 1;
    if (is_multi_channel) {
      count *= weights_tz[0];
      if (groups > 1) {
        count *= weights_tz[1];
      }
    }

    bias_scale_tuple =
        std::make_shared<std::tuple<float, std::vector<float>>>(std::make_tuple(
            static_cast<float>(mask_reorder), std::vector<float>(count)));
    for (int i = 0; i < count; i++) {
      std::get<1>(*bias_scale_tuple)[i] = scale_in_data * scale_weights_data[i];
    }

    this->dev_ctx_.SetBlob(key_bs, bias_scale_tuple);

    return bias_scale_tuple;
  }

437
  std::tuple<float, std::vector<float>, float> get_int8_scales(
A
Adam Osewski 已提交
438 439 440 441 442 443 444 445 446 447 448 449
      const framework::ExecutionContext& ctx) const {
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto& weights_tz = framework::vectorize(filter->dims());

    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const int groups = std::max(ctx.Attr<int>("groups"), 1);

    const auto& scale_in_data = ctx.Attr<float>("Scale_in");
    const auto& scale_in_eltwise_data = ctx.Attr<float>("Scale_in_eltwise");
    auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
    bool is_multi_channel = scale_weights_data.size() > 1;
450 451 452 453
    bool has_activation = !ctx.Attr<std::string>("fuse_activation").empty();
    float activation_scale =
        force_fp32_output ? 1.0f : has_activation ? ctx.Attr<float>("Scale_out")
                                                  : 1.0f;
A
Adam Osewski 已提交
454
    auto scale_out_data =
455 456 457
        force_fp32_output ? 1.0f : has_activation
                                       ? 1.0f
                                       : ctx.Attr<float>("Scale_out");
A
Adam Osewski 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
    float sum_scale =
        fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
    int count =
        is_multi_channel
            ? (groups > 1 ? (weights_tz)[1] * (weights_tz)[0] : (weights_tz)[0])
            : 1;
    std::vector<float> output_shift_scale(count);

#pragma omp parallel for if (count > 50)
    for (int i = 0; i < count; i++) {
      if (scale_weights_data[i] == 0.0)
        // weights data will contain 0 in some models, then weights
        // scale couldn't be calculated
        output_shift_scale[i] = scale_out_data;
      else
        output_shift_scale[i] =
            static_cast<float>(static_cast<double>(scale_out_data) /
                               (static_cast<double>(scale_in_data) *
                                static_cast<double>(scale_weights_data[i])));
    }

479
    return std::make_tuple(sum_scale, output_shift_scale, activation_scale);
A
Adam Osewski 已提交
480 481
  }

482
  dnnl::primitive_attr CreatePostOps(
483 484
      std::string fuse_activation, float fuse_alpha, float fuse_beta,
      bool fuse_residual_conn, const std::vector<float> output_shift_scale = {},
485
      float sum_scale = 1.0f, float activation_scale = 1.0f) {
486 487
    dnnl::primitive_attr conv_attr;
    dnnl::post_ops post_operations;
488 489 490 491
    if (output_shift_scale.size() > 0) {
      int mask = output_shift_scale.size() > 1 ? 1 << 1 : 0;
      conv_attr.set_output_scales(mask, output_shift_scale);
    }
492

493 494 495 496 497 498 499 500 501 502 503
    // Fusion with Elementwise layer relies on adding a sum post-operation with
    // the scale parameter. It is assumed that when fuse_residual_connection is
    // true, the output tensor contains the data coming from residual
    // connection. The result of this post_op is:
    // Output = scale * Output + Conv_Out.
    if (fuse_residual_conn) {
      post_operations.append_sum(sum_scale);
    }
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    if (fuse_activation == "relu" || fuse_activation == "leaky_relu") {
504 505 506
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_relu, fuse_alpha,
                                     fuse_beta);
507
    } else if (fuse_activation == "relu6") {
508 509
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_bounded_relu,
510
                                     fuse_alpha, fuse_beta);
511 512 513 514
    } else if (fuse_activation == "swish") {
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_swish, fuse_alpha,
                                     fuse_beta);
J
jakpiase 已提交
515
    } else if (fuse_activation == "hard_swish") {
516 517
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_hardswish,
518
                                     fuse_alpha, fuse_beta);
519
    } else if (fuse_activation == "hard_sigmoid") {
520 521
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_linear,
522
                                     fuse_alpha, fuse_beta);
523 524
      post_operations.append_eltwise(activation_scale,
                                     dnnl::algorithm::eltwise_clip, 0.0f, 1.0f);
B
baoachun 已提交
525
    } else if (fuse_activation == "gelu_tanh") {
526 527
      post_operations.append_eltwise(
          activation_scale, dnnl::algorithm::eltwise_gelu_tanh, 0.0f, 0.0f);
B
baoachun 已提交
528
    } else if (fuse_activation == "gelu_erf") {
529 530
      post_operations.append_eltwise(
          activation_scale, dnnl::algorithm::eltwise_gelu_erf, 0.0f, 0.0f);
531 532 533 534
    }
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }
535

536
  std::shared_ptr<dnnl::memory>
537 538 539 540 541 542 543 544 545 546 547 548
  AcquireWeightsMemoryWithReorderFromDataPrimitive(
      const framework::Tensor* filter, const int groups, const bool is_conv3d) {
    const K* filter_data = filter->data<K>();
    auto weights_tz = framework::vectorize(filter->dims());
    platform::GetGroupConvWeightsTz(weights_tz, groups);

    auto user_src_md = platform::MKLDNNMemDesc(
        weights_tz, platform::MKLDNNGetDataType<K>(),
        GetWeightsFormat(filter->format(), groups, is_conv3d));

    return this->AcquireMemoryWithReorder(
        user_src_md, this->bwd_pd_->weights_desc(),
A
Adam Osewski 已提交
549
        platform::to_void_cast<K>(filter_data), "@weights_mem_d_p", false);
550 551
  }

552
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorder(
553
      const framework::Tensor* input) {
554 555 556 557
    return this->AcquireMemoryWithReorderPrimitive(
        input, "@src_mem_p_user", "@src_mem_p_target", "@src_mem_p",
        this->fwd_pd_->src_desc());
  }
558

559
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorderFromWeightsPrimitive(
560 561 562 563 564 565
      const framework::Tensor* input) {
    return this->AcquireMemoryWithReorderPrimitive(
        input, "@src_mem_w_p_user", "@src_mem_w_p_target", "@src_mem_w_p",
        this->bwd_w_pd_->src_desc());
  }

566
  std::shared_ptr<dnnl::memory>
567 568 569 570 571 572 573
  AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad, "@diff_dst_mem_w_p_user", "@diff_dst_mem_w_p_target",
        "@diff_dst_mem_w_p", this->bwd_w_pd_->diff_dst_desc());
  }

574
  std::shared_ptr<dnnl::memory>
575 576 577 578 579 580 581
  AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
      const framework::Tensor* out_grad) {
    return this->AcquireMemoryWithReorderPrimitive(
        out_grad, "@diff_dst_mem_p_user", "@diff_dst_mem_p_target",
        "@diff_dst_mem_p", this->bwd_pd_->diff_dst_desc());
  }

582
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorderPrimitive(
583 584
      const framework::Tensor* in_mem, const char* key_mem_user,
      const char* key_mem_target, const char* key_mem,
585
      const dnnl::memory::desc& mem_md) {
586 587 588 589 590 591 592 593
    const T* in_mem_data = in_mem->data<T>();
    const std::string user_key_suffix{key_mem_user};
    auto user_mem_p = this->AcquireMemory(user_key_suffix);

    if (!user_mem_p) {
      auto user_mem_md = platform::MKLDNNMemDesc(
          framework::vectorize(in_mem->dims()),
          platform::MKLDNNGetDataType<T>(), in_mem->format());
594
      return this->AcquireMemoryWithReorder(
595
          user_mem_md, mem_md, platform::to_void_cast<T>(in_mem_data), key_mem);
596
    } else {
597 598
      const std::string target_key_suffix{key_mem_target};
      const auto target_mem_p = this->AcquireMemory(target_key_suffix);
A
Adam Osewski 已提交
599
      user_mem_p->set_data_handle(platform::to_void_cast<T>(in_mem_data));
600
      if (user_mem_p != target_mem_p) {
601
        this->AcquireReorder(user_mem_p, target_mem_p);
602
      }
603
      return target_mem_p;
604
    }
605 606
  }

607
  std::shared_ptr<dnnl::memory> AcquireWeightsMemoryWithReorder(
608
      const framework::Tensor* filter, const int groups, const bool is_conv3d,
609 610
      const bool is_test, const std::vector<float>& scale_data = {1.0f},
      int mask = 0) {
611 612 613
    // This is workaround to make execution faster, delete
    // if statement after including md inside Tensor
    auto weights_mem_p = this->AcquireMemory("@weights_mem_p_target");
614
    if (is_test && weights_mem_p) {
615
      return weights_mem_p;
616
    } else if (is_test) {
617
      const K* filter_data = filter->data<K>();
618
      auto weights_tz = framework::vectorize(filter->dims());
619
      platform::GetGroupConvWeightsTz(weights_tz, groups);
620 621

      auto user_src_md = platform::MKLDNNMemDesc(
622
          weights_tz, platform::MKLDNNGetDataType<K>(),
623 624 625 626
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
627 628
          platform::to_void_cast<K>(filter_data), "@weights_mem_p", is_test, {},
          scale_data, mask);
629 630 631 632 633 634 635 636 637 638 639 640 641
    } else {
      const T* filter_data = filter->data<T>();
      auto weights_tz = framework::vectorize(filter->dims());
      platform::GetGroupConvWeightsTz(weights_tz, groups);

      auto user_src_md = platform::MKLDNNMemDesc(
          weights_tz, platform::MKLDNNGetDataType<T>(),
          GetWeightsFormat(filter->format(), groups, is_conv3d));

      return this->AcquireMemoryWithReorder(
          user_src_md, this->fwd_pd_->weights_desc(),
          platform::to_void_cast<T>(filter_data), "@weights_mem_p", is_test, {},
          scale_data, mask);
642
    }
643
  }
644

645
  std::shared_ptr<dnnl::memory> AcquireBiasMemoryWithReorder(
646
      const framework::Tensor* bias, const bool is_test,
A
Adam Osewski 已提交
647
      const std::vector<float>& scale_data = {1.0f}, int mask = 0) {
648
    auto bias_mem_p = this->AcquireMemory("@bias_mem_p_target");
649
    if (is_test && bias_mem_p) {
650 651 652 653 654 655 656 657
      return bias_mem_p;
    } else {
      const K* bias_data = bias->data<K>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          framework::vectorize(bias->dims()), platform::MKLDNNGetDataType<K>(),
          MKLDNNMemoryFormat::x);

      return this->AcquireMemoryWithReorder(
A
Adam Osewski 已提交
658
          user_bias_md, this->fwd_pd_->bias_desc(),
659
          platform::to_void_cast<K>(bias_data), "@bias_mem_p", is_test, {},
A
Adam Osewski 已提交
660
          scale_data, mask);
661
    }
662
  }
663

664
  std::shared_ptr<dnnl::memory> AcquireResidualMemory(
665
      const framework::Tensor* residual_param) {
666 667
    void* residual_data =
        residual_param->type() == framework::DataTypeTrait<T_out>::DataType()
A
Adam Osewski 已提交
668 669
            ? platform::to_void_cast<T_out>(residual_param->data<T_out>())
            : platform::to_void_cast<T>(residual_param->data<T>());
670 671 672 673 674 675 676 677 678
    auto residual_mem_p = this->AcquireMemory("@user_residual_data_mem_p");
    if (residual_mem_p) {
      residual_mem_p->set_data_handle(residual_data);
      return residual_mem_p;
    } else {
      auto user_residual_md = platform::MKLDNNMemDesc(
          framework::vectorize(residual_param->dims()),
          framework::ToMKLDNNDataType(residual_param->type()),
          residual_param->format());
679

680 681 682
      return this->AcquireMemoryFromPrimitive(user_residual_md, residual_data,
                                              "@user_residual_data_mem_p");
    }
683 684
  }

685
  std::shared_ptr<dnnl::memory> AcquireDstMemoryWithResidual(
686 687 688 689 690
      framework::Tensor* output, const framework::Tensor* residual_param) {
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (residual_param->format() !=
        platform::GetMKLDNNFormat(this->fwd_pd_->dst_desc())) {
      auto residual_memory_p = this->AcquireResidualMemory(residual_param);
691
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
692
      this->AcquireReorder(residual_memory_p, dst_memory_p);
693 694 695 696 697
    } else {
      // Changing ShareDataWith to TensorCopy results in performance drop
      // on ResNet architectures
      // (https://github.com/PaddlePaddle/Paddle/issues/22964)
      output->ShareDataWith(*residual_param);
698
      dst_memory_p = this->template AcquireDstMemory<T_out>(output);
699 700 701 702 703
    }
    return dst_memory_p;
  }
};

A
Adam Osewski 已提交
704 705
}  // anonymous namespace

706
template <typename T, typename K>
A
Adam Osewski 已提交
707
class ConvMKLDNNOpKernel : public framework::OpKernel<T> {
708
 public:
A
Adam Osewski 已提交
709
  void Compute(const framework::ExecutionContext& ctx) const override {
710
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
A
Adam Osewski 已提交
711
                      platform::errors::PreconditionNotMet(
712 713 714
                          "Operator DNNL Conv must use CPUPlace"));
    bool is_INT8 =
        std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value;
715 716 717 718 719 720 721 722
    bool is_BFLOAT16 = ctx.Attr<std::string>("mkldnn_data_type") == "bfloat16";
    auto residual_param = ctx.Input<Tensor>("ResidualData");
    bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    std::string fuse_activation = ctx.Attr<std::string>("fuse_activation");
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    auto dst_dt =
        GetDstType(is_INT8, is_BFLOAT16, force_fp32_output, fuse_activation,
                   fuse_residual_conn, residual_param);
723
    if (!is_INT8) {
724
      if (dst_dt == dnnl::memory::data_type::f32) {
725
        ComputeFP32<float>(ctx);
726
      } else if (dst_dt == dnnl::memory::data_type::bf16) {
727 728
        ComputeFP32<platform::bfloat16>(ctx);
      }
729
    } else {
730
      if (dst_dt == dnnl::memory::data_type::f32) {
731
        ComputeINT8<float>(ctx);
732
      } else if (dst_dt == dnnl::memory::data_type::u8) {
733
        ComputeINT8<uint8_t>(ctx);
734
      } else if (dst_dt == dnnl::memory::data_type::s8) {
735 736
        ComputeINT8<int8_t>(ctx);
      }
737
    }
738
  }
739

740
  template <typename T_out>
A
Adam Osewski 已提交
741
  void ComputeFP32(const framework::ExecutionContext& ctx) const {
742
    auto& dev_ctx =
A
Adam Osewski 已提交
743
        ctx.template device_context<platform::MKLDNNDeviceContext>();
744
    const auto& mkldnn_engine = dev_ctx.GetEngine();
745

746
    const bool is_test = ctx.Attr<bool>("is_test");
747 748
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
    const bool fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
749

750 751 752 753 754
    const auto* input = ctx.Input<Tensor>("Input");
    const auto* filter = ctx.Input<Tensor>("Filter");
    const auto* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
755

756
    ConvMKLDNNHandlerT<T, K, T_out> handler(
757 758
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
759

760
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
761

762
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
763
        filter, ctx.Attr<int>("groups"), is_conv3d, is_test);
764

765 766 767
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
768
      dst_memory_p =
769 770
          handler.AcquireDstMemoryWithResidual(output, residual_param);
    } else {
771
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
772
    }
773

774
    auto conv_p = handler.AcquireForwardPrimitive();
A
Adam 已提交
775

776
    std::unordered_map<int, dnnl::memory> args = {
777 778 779
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};
A
Adam 已提交
780

781
    if (bias) {
782
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(bias, is_test);
783
      args.insert({DNNL_ARG_BIAS, *bias_memory_p});
784
    }
785

786
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
787
    conv_p->execute(astream, args);
A
Adam 已提交
788
    astream.wait();
789

A
Adam Osewski 已提交
790 791
    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
792
  }
793

794
  template <typename T_out>
A
Adam Osewski 已提交
795
  void ComputeINT8(const framework::ExecutionContext& ctx) const {
796
    auto& dev_ctx =
A
Adam Osewski 已提交
797
        ctx.template device_context<platform::MKLDNNDeviceContext>();
798 799
    const auto& mkldnn_engine = dev_ctx.GetEngine();

A
Adam Osewski 已提交
800 801 802 803 804
    const std::string& fuse_activation =
        ctx.Attr<std::string>("fuse_activation");
    const bool& fuse_residual_conn = ctx.Attr<bool>("fuse_residual_connection");
    const bool& force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    const bool is_conv3d = ctx.Attr<std::vector<int>>("strides").size() == 3U;
805

806 807
    bool unsigned_output =
        (fuse_activation == "relu" || fuse_activation == "relu6");
808 809
    bool need_s8_to_u8 = false;

A
Adam Osewski 已提交
810 811 812 813 814 815 816 817
    PADDLE_ENFORCE_NE(
        is_conv3d, true,
        platform::errors::Unimplemented(
            "OneDNN int8 convolution does not support 3D inputs currently"));
    PADDLE_ENFORCE_EQ(
        fuse_residual_conn && force_fp32_output, false,
        platform::errors::Unimplemented(
            "residual fusion does not support force output with fp32"));
A
Adam 已提交
818

A
Adam Osewski 已提交
819 820 821 822
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
    auto* output = ctx.Output<Tensor>("Output");
823

A
Adam Osewski 已提交
824 825 826
    ConvMKLDNNHandlerT<T, K, T_out> handler(
        ctx, dev_ctx, mkldnn_engine, ctx.GetPlace(), input, filter, bias,
        output, ctx.InputName("Input") + ctx.InputName("Filter"));
827

A
Adam Osewski 已提交
828
    auto src_memory_p = handler.AcquireSrcMemoryWithReorder(input);
F
FDInSky 已提交
829

A
Adam Osewski 已提交
830 831 832 833 834 835 836
    const auto& scale_weights_data =
        ctx.Attr<std::vector<float>>("Scale_weights");
    const bool is_multi_channel = scale_weights_data.size() > 1;
    const int& groups = ctx.Attr<int>("groups");
    int mask_reorder =
        is_multi_channel ? ((groups != 1) ? (1 << 1) + (1 << 0) : 1 << 0) : 0;
    auto weights_memory_p = handler.AcquireWeightsMemoryWithReorder(
837
        filter, groups, false, true, scale_weights_data, mask_reorder);
838

A
Adam Osewski 已提交
839 840 841
    std::shared_ptr<dnnl::memory> dst_memory_p;
    if (fuse_residual_conn) {
      auto* residual_param = ctx.Input<Tensor>("ResidualData");
842
      PADDLE_ENFORCE_EQ(
A
Adam Osewski 已提交
843 844 845 846 847 848
          output->dims(), residual_param->dims(),
          platform::errors::InvalidArgument(
              "Output and elementwise parameter need to have the "
              "same dimension sizes, but got output's dimension = %d"
              " and residual param's dimension =%d .",
              output->dims().size(), residual_param->dims().size()));
849
      dst_memory_p =
A
Adam Osewski 已提交
850 851
          handler.AcquireDstMemoryWithResidual(output, residual_param);
      need_s8_to_u8 = (platform::MKLDNNGetDataType<T_out>() ==
852
                       dnnl::memory::data_type::s8) &&
A
Adam Osewski 已提交
853 854 855 856
                      unsigned_output;
    } else {
      dst_memory_p = handler.template AcquireDstMemory<T_out>(output);
    }
L
lidanqing 已提交
857

A
Adam Osewski 已提交
858 859 860
    auto conv_p = handler.AcquireForwardPrimitive();

    std::unordered_map<int, dnnl::memory> args = {
861 862 863
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};
A
Adam 已提交
864

A
Adam Osewski 已提交
865
    if (bias) {
866
      auto p_scales_tuple = handler.get_int8_bias_scales(ctx);
A
Adam 已提交
867

A
Adam Osewski 已提交
868
      auto bias_memory_p = handler.AcquireBiasMemoryWithReorder(
869
          bias, true, std::get<1>(*p_scales_tuple),
870
          std::get<0>(*p_scales_tuple));
871
      args.insert({DNNL_ARG_BIAS, *bias_memory_p});
872
    }
A
Adam Osewski 已提交
873 874 875

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    conv_p->execute(astream, args);
A
Adam 已提交
876
    astream.wait();
A
Adam Osewski 已提交
877

878
    if (need_s8_to_u8) {
X
xiaolil1 已提交
879 880
      output->mutable_data<uint8_t>(ctx.GetPlace());
    }
A
Adam Osewski 已提交
881 882 883

    output->set_layout(framework::DataLayout::kMKLDNN);
    output->set_format(platform::GetMKLDNNFormat(*dst_memory_p));
884
  }
885 886
};

887
template <typename T, typename K>
A
Adam Osewski 已提交
888
class ConvMKLDNNGradOpKernel : public framework::OpKernel<T> {
889
 public:
A
Adam Osewski 已提交
890
  void Compute(const framework::ExecutionContext& ctx) const override {
891
    PADDLE_ENFORCE_EQ(platform::is_cpu_place(ctx.GetPlace()), true,
A
Adam Osewski 已提交
892
                      platform::errors::PreconditionNotMet(
893
                          "Operator DNNL ConvGrad must use CPUPlace"));
894 895
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
896 897 898 899
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
900 901
    const Tensor* bias =
        ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
902 903 904 905 906 907 908
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    if (!input_grad && !filter_grad) return;

909 910 911 912 913
    // TODO(jczaja): Are all tensors really needed?
    ConvMKLDNNHandlerT<T, K, T> handler(
        ctx, dev_ctx, ctx.GetPlace(), input, filter, bias, output_grad,
        filter_grad, input_grad,
        ctx.InputName("Input") + ctx.InputName("Filter"));
914 915

    // create mkldnn memory from input tensors (data/weights)
916
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
917

918 919 920 921 922 923
    if (filter_grad) {
      auto src_memory_p =
          handler.AcquireSrcMemoryWithReorderFromWeightsPrimitive(input);
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderFromWeightsPrimitive(
              output_grad);
924

925 926
      // For convoluition with groups write filter grad into
      // oneDNN buffer and then we reorder it into filter_grad tensor
927
      int g = std::max(ctx.Attr<int>("groups"), 1);
928
      auto diff_weights_memory_p =
929 930
          g > 1 ? handler.AcquireDiffWeightsMemory()
                : handler.AcquireDiffWeightsMemory(filter_grad);
931

932
      auto conv_bwd_weights_p = handler.AcquireBackwardWeightsPrimitive();
933

A
Adam 已提交
934 935
      // TODO(grygielski) why no bias_diff?
      conv_bwd_weights_p->execute(
936 937 938
          astream, {{DNNL_ARG_SRC, *src_memory_p},
                    {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
                    {DNNL_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}});
A
Adam 已提交
939
      astream.wait();
940

A
Adam Osewski 已提交
941
      filter_grad->set_layout(framework::DataLayout::kMKLDNN);
942 943
      // in OneDNN groups in convolution are treated as separate dimension
      // which is not the case in paddlepaddle
A
Adam Osewski 已提交
944
      auto filter_fmt = platform::GetMKLDNNFormat(*diff_weights_memory_p);
945 946 947 948

      // For convolution with groups convert from blocked to NCHW
      // otherwise there will be problems in next operators working on this data
      if (g > 1) {
949
        dnnl::memory::data_type in_type =
A
Adam Osewski 已提交
950
            framework::ToMKLDNNDataType(filter->type());
951 952
        // for 3d conv with groups (six dimensional data reorder to goidhw)
        // for 2d conv with groups (five dimensional data reorder to goihw)
A
Adam Osewski 已提交
953
        // auto weights_tz = framework::vectorize(filter->dims());
954 955

        auto weights_tz = diff_weights_memory_p->get_desc().dims();
956 957 958
        dnnl::memory::format_tag out_format =
            weights_tz.size() == 6 ? dnnl::memory::format_tag::goidhw
                                   : dnnl::memory::format_tag::goihw;
959 960
        platform::ReorderMKLDNNHandler handler(weights_tz, filter->type(),
                                               in_type, mkldnn_engine);
961 962 963 964 965 966
        auto reorder_dst_memory_p =
            handler.AcquireDstMemory(filter_grad, out_format, ctx.GetPlace());

        auto reorder_p =
            handler.AcquireReorder(reorder_dst_memory_p, diff_weights_memory_p);

967 968 969 970 971 972 973
        {
          platform::RecordEvent record_reorder("int_reorder",
                                               platform::EventRole::kUniqueOp);
          reorder_p->execute(astream, *diff_weights_memory_p,
                             *reorder_dst_memory_p);
          astream.wait();
        }
974 975 976 977

        // So here we have a data in goihw , which can be interpreted as OIHW
        // (OIDHW for conv3d)
        // because filter_grad shape is set for OIHW (OIDHW for conv3d)
978 979 980
        dnnl::memory::format_tag target_format =
            weights_tz.size() == 6 ? dnnl::memory::format_tag::oidhw
                                   : dnnl::memory::format_tag::oihw;
981 982 983 984
        filter_grad->set_format(target_format);
      } else {
        filter_grad->set_format(filter_fmt);
      }
985 986
    }
    if (input_grad) {
987 988 989 990
      auto weights_memory_p =
          handler.AcquireWeightsMemoryWithReorderFromDataPrimitive(
              filter, ctx.Attr<int>("groups"),
              ctx.Attr<std::vector<int>>("strides").size() == 3U);
991

992 993 994 995
      auto diff_dst_memory_p =
          handler.AcquireDiffDstMemoryWithReorderMemoryFromDataPrimitive(
              output_grad);
      auto diff_src_memory_p = handler.AcquireDiffSrcMemory(input_grad);
996

997
      auto conv_bwd_data_p = handler.AcquireBackwardPrimitive();
998

A
Adam 已提交
999
      conv_bwd_data_p->execute(astream,
1000 1001 1002
                               {{DNNL_ARG_WEIGHTS, *weights_memory_p},
                                {DNNL_ARG_DIFF_DST, *diff_dst_memory_p},
                                {DNNL_ARG_DIFF_SRC, *diff_src_memory_p}});
A
Adam 已提交
1003
      astream.wait();
1004

A
Adam Osewski 已提交
1005 1006
      input_grad->set_layout(framework::DataLayout::kMKLDNN);
      input_grad->set_format(platform::GetMKLDNNFormat(*diff_src_memory_p));
1007
    }
X
xiaolil1 已提交
1008
  }
1009
};
1010

1011 1012 1013 1014 1015
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

X
Xin Pan 已提交
1016 1017 1018
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1019
                                    ops::ConvMKLDNNOpKernel<float, float>);
1020

1021 1022 1023 1024
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16, ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

1025 1026
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
1027
                                    ops::kConvMKLDNNINT8,
1028
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);
1029 1030 1031

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
1032
                                    ops::kConvMKLDNNINT8,
1033
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);
X
Xin Pan 已提交
1034 1035 1036 1037

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1038
                                    ops::ConvMKLDNNGradOpKernel<float, float>);
1039

1040 1041 1042
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kConvMKLDNNFP32,
1043 1044
    ops::ConvMKLDNNGradOpKernel<paddle::platform::bfloat16,
                                paddle::platform::bfloat16>);
1045

1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    depthwise_conv2d, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNOpKernel<paddle::platform::bfloat16, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, U8,
                                    ops::kConvMKLDNNINT8,
                                    ops::ConvMKLDNNOpKernel<uint8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d, MKLDNN,
                                    ::paddle::platform::CPUPlace, S8,
                                    ops::kConvMKLDNNINT8,
                                    ops::ConvMKLDNNOpKernel<int8_t, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(depthwise_conv2d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
                                    ops::ConvMKLDNNGradOpKernel<float, float>);

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(
    depthwise_conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace, BF16,
    ops::kConvMKLDNNFP32,
    ops::ConvMKLDNNGradOpKernel<paddle::platform::bfloat16, float>);

1076 1077 1078
REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1079
                                    ops::ConvMKLDNNOpKernel<float, float>);
1080 1081 1082 1083

REGISTER_OP_KERNEL_WITH_CUSTOM_TYPE(conv3d_grad, MKLDNN,
                                    ::paddle::platform::CPUPlace, FP32,
                                    ops::kConvMKLDNNFP32,
1084
                                    ops::ConvMKLDNNGradOpKernel<float, float>);