api_base.py 54.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import collections
16
import re
17

18
PREFIX_TENSOR_NAME = 'input_'
19 20 21
PREFIX_META_TENSOR_NAME = 'meta_'


22
class BaseAPI:
23 24 25 26 27 28 29 30 31 32 33 34
    def __init__(self, api_item_yaml):
        self.api = self.get_api_name(api_item_yaml)

        # inputs:
        #     names : [], list of input names
        #     input_info : {input_name : type}
        # attrs:
        #     names : [], list of attribute names
        #     attr_info : { attr_name : (type, default_values)}
        # outputs:
        #     names : [], list of output names
        #     types : [], list of output types
35
        #     out_size_expr : [], expression for getting size of vector<Tensor>
36 37 38 39 40 41
        (
            self.inputs,
            self.attrs,
            self.outputs,
            self.optional_vars,
        ) = self.parse_args(self.api, api_item_yaml)
42 43 44 45 46 47

        self.is_base_api = True
        if 'invoke' in api_item_yaml:
            self.is_base_api = False
            self.invoke = api_item_yaml['invoke']
        else:
48
            if 'infer_meta' in api_item_yaml:
49
                self.infer_meta = self.parse_infer_meta(
50 51
                    api_item_yaml['infer_meta']
                )
52 53
            self.kernel = self.parse_kernel(api_item_yaml['kernel'])
            self.data_transform = self.parse_data_transform(api_item_yaml)
54
            self.inplace_map, self.view_map = {}, {}
55

Y
YuanRisheng 已提交
56 57 58
        self.gene_input_func = {
            "const Tensor&": {
                "dense": self.gene_dense_input,
59
                "selected_rows": self.gene_selected_rows_input,
Y
YuanRisheng 已提交
60 61 62
            },
            "const paddle::optional<Tensor>&": {
                "dense": self.gene_dense_input,
63
                "selected_rows": self.gene_selected_rows_input,
Y
YuanRisheng 已提交
64
            },
65
            "const std::vector<Tensor>&": {"dense": self.gene_vec_dense_input},
Y
YuanRisheng 已提交
66 67
            "const paddle::optional<std::vector<Tensor>>&": {
                "dense": self.gene_optional_vec_dense_input
68
            },
Y
YuanRisheng 已提交
69 70
        }

71
    def get_api_name(self, api_item_yaml):
72
        return api_item_yaml['op']
73

74 75 76
    def get_api_func_name(self):
        return self.api

77 78 79
    def get_input_tensor_args(self, inplace_flag=False):
        input_args = []
        inplace_type_map = {
80 81 82 83
            "const Tensor&": "Tensor&",
            "const paddle::optional<Tensor>&": "paddle::optional<Tensor>&",
            "const std::vector<Tensor>&": "std::vector<Tensor>&",
            "const paddle::optional<std::vector<Tensor>>&": "paddle::optional<std::vector<Tensor>>&",
84 85 86 87
        }
        for name in self.inputs['names']:
            name = name.split('@')[0]
            if inplace_flag and name in self.inplace_map.values():
88
                input_args.append(
89 90 91 92
                    inplace_type_map[self.inputs['input_info'][name]]
                    + ' '
                    + name
                )
93 94 95 96 97 98 99 100 101 102
            else:
                input_args.append(self.inputs['input_info'][name] + ' ' + name)
        return input_args

    def get_declare_args(self, inplace_flag=False):
        declare_args = self.get_input_tensor_args(inplace_flag)
        for name in self.attrs['names']:
            default_value = ''
            if self.attrs['attr_info'][name][1] is not None:
                default_value = ' = ' + self.attrs['attr_info'][name][1]
103 104 105
            declare_args.append(
                self.attrs['attr_info'][name][0] + ' ' + name + default_value
            )
106

107 108 109 110 111 112 113 114
        return ", ".join(declare_args)

    def get_define_args(self, inplace_flag=False):
        define_args = self.get_input_tensor_args(inplace_flag)
        for name in self.attrs['names']:
            define_args.append(self.attrs['attr_info'][name][0] + ' ' + name)

        return ", ".join(define_args)
115

116
    def parse_args(self, api_name, api_item_yaml):
117 118 119 120 121
        optional_vars = []
        if 'optional' in api_item_yaml:
            optional_vars = [
                item.strip() for item in api_item_yaml['optional'].split(',')
            ]
122 123 124
        inputs, attrs = self.parse_input_and_attr(
            api_name, api_item_yaml['args'], optional_vars
        )
125
        output_type_list, output_names, out_size_expr = self.parse_output(
126 127 128 129 130 131 132 133 134 135 136 137
            api_name, api_item_yaml['output']
        )
        return (
            inputs,
            attrs,
            {
                'names': output_names,
                'types': output_type_list,
                'out_size_expr': out_size_expr,
            },
            optional_vars,
        )
138

139
    def parse_input_and_attr(self, api_name, args_config, optional_vars=[]):
140 141 142
        inputs = {'names': [], 'input_info': {}}
        attrs = {'names': [], 'attr_info': {}}
        args_str = args_config.strip()
143 144 145
        assert args_str.startswith('(') and args_str.endswith(
            ')'
        ), f"Args declaration should start with '(' and end with ')', please check the args of {api_name} in yaml."
146 147
        args_str = args_str[1:-1]
        args_list = args_str.split(',')
Z
zyfncg 已提交
148 149
        input_types_map = {
            'Tensor': 'const Tensor&',
150
            'Tensor[]': 'const std::vector<Tensor>&',
Z
zyfncg 已提交
151
        }
152
        attr_types_map = {
153
            'IntArray': 'const IntArray&',
154
            'Scalar': 'const Scalar&',
155 156 157 158
            'Scalar(int)': 'const Scalar&',
            'Scalar(int64_t)': 'const Scalar&',
            'Scalar(float)': 'const Scalar&',
            'Scalar(dobule)': 'const Scalar&',
159
            'Scalar[]': 'const std::vector<phi::Scalar>&',
160
            'int': 'int',
161 162
            'int32_t': 'int32_t',
            'int64_t': 'int64_t',
163 164 165
            'long': 'long',
            'size_t': 'size_t',
            'float': 'float',
166
            'float[]': 'const std::vector<float>&',
167 168
            'double': 'double',
            'bool': 'bool',
169
            'bool[]': 'const std::vector<bool>&',
170
            'str': 'const std::string&',
171
            'str[]': 'const std::vector<std::string>&',
172
            'Place': 'const Place&',
173 174
            'DataLayout': 'DataLayout',
            'DataType': 'DataType',
175
            'int64_t[]': 'const std::vector<int64_t>&',
Z
zhiboniu 已提交
176
            'int[]': 'const std::vector<int>&',
177 178
        }
        optional_types_trans = {
179
            'Tensor': 'const paddle::optional<Tensor>&',
180 181
            'Tensor[]': 'const paddle::optional<std::vector<Tensor>>&',
            'int': 'paddle::optional<int>',
182 183
            'int32_t': 'paddle::optional<int32_t>',
            'int64_t': 'paddle::optional<int64_t>',
184 185 186
            'float': 'paddle::optional<float>',
            'double': 'paddle::optional<double>',
            'bool': 'paddle::optional<bool>',
187
            'Place': 'paddle::optional<const Place&>',
188
            'DataLayout': 'paddle::optional<DataLayout>',
189
            'DataType': 'paddle::optional<DataType>',
190 191
        }

192 193
        for item in args_list:
            item = item.strip()
Z
zyfncg 已提交
194
            type_and_name = item.split(' ')
195 196
            # match the input tensor
            has_input = False
Z
zyfncg 已提交
197 198 199
            for in_type_symbol, in_type in input_types_map.items():
                if type_and_name[0] == in_type_symbol:
                    input_name = type_and_name[1].strip()
200 201 202 203 204 205
                    assert (
                        len(input_name) > 0
                    ), f"The input tensor name should not be empty. Please check the args of {api_name} in yaml."
                    assert (
                        len(attrs['names']) == 0
                    ), f"The input Tensor should appear before attributes. please check the position of {api_name}:input({input_name}) in yaml"
206

207 208 209
                    if input_name in optional_vars:
                        in_type = optional_types_trans[in_type_symbol]

210 211 212 213 214 215 216 217
                    inputs['names'].append(input_name)
                    inputs['input_info'][input_name] = in_type
                    has_input = True
                    break
            if has_input:
                continue

            # match the attribute
Z
zyfncg 已提交
218 219
            for attr_type_symbol, attr_type in attr_types_map.items():
                if type_and_name[0] == attr_type_symbol:
220 221 222 223
                    attr_name = item[len(attr_type_symbol) :].strip()
                    assert (
                        len(attr_name) > 0
                    ), f"The attribute name should not be empty. Please check the args of {api_name} in yaml."
224 225 226 227 228 229
                    default_value = None
                    if '=' in attr_name:
                        attr_infos = attr_name.split('=')
                        attr_name = attr_infos[0].strip()
                        default_value = attr_infos[1].strip()

230 231 232
                    if attr_name in optional_vars:
                        attr_type = optional_types_trans[attr_type_symbol]

233 234 235
                    default_value_str = (
                        "" if default_value is None else '=' + default_value
                    )
236 237 238 239
                    attrs['names'].append(attr_name)
                    attrs['attr_info'][attr_name] = (attr_type, default_value)
                    break

240
        return inputs, attrs
241 242 243

    def parse_output(self, api_name, output_config):
        def parse_output_item(output_item):
Z
zyfncg 已提交
244 245
            output_type_map = {
                'Tensor': 'Tensor',
246
                'Tensor[]': 'std::vector<Tensor>',
Z
zyfncg 已提交
247
            }
248 249
            result = re.search(
                r"(?P<out_type>[a-zA-Z0-9_[\]]+)\s*(?P<name>\([a-zA-Z0-9_@]+\))?\s*(?P<expr>\{[^\}]+\})?",
250 251 252 253 254
                output_item,
            )
            assert (
                result is not None
            ), f"{api_name} : the output config parse error."
255
            out_type = result.group('out_type')
256 257 258
            assert (
                out_type in output_type_map
            ), f"{api_name} : Output type error: the output type only support Tensor and Tensor[], \
259 260
                  but now is {out_type}."

261 262 263 264 265 266 267 268 269 270
            out_name = (
                'out'
                if result.group('name') is None
                else result.group('name')[1:-1]
            )
            out_size_expr = (
                None
                if result.group('expr') is None
                else result.group('expr')[1:-1]
            )
271
            return output_type_map[out_type], out_name, out_size_expr
272 273 274 275

        temp_list = output_config.split(',')

        if len(temp_list) == 1:
276
            out_type, out_name, size_expr = parse_output_item(temp_list[0])
277
            return [out_type], [out_name], [size_expr]
278 279 280
        else:
            out_type_list = []
            out_name_list = []
281
            out_size_expr_list = []
282
            for output_item in temp_list:
283
                out_type, out_name, size_expr = parse_output_item(output_item)
284 285
                out_type_list.append(out_type)
                out_name_list.append(out_name)
286
                out_size_expr_list.append(size_expr)
287

288
            return out_type_list, out_name_list, out_size_expr_list
289

290 291 292 293 294 295 296 297 298 299 300 301 302 303
    def parse_infer_meta(self, infer_meta_config):
        infer_meta = infer_meta_config
        if 'param' not in infer_meta_config:
            infer_meta['param'] = None

        return infer_meta

    def parse_kernel(self, kernel_config):
        # kernel :
        #    func : [], Kernel functions (example: scale, scale_sr)
        #    param : [], Input params of kernel
        #    backend : str, the names of param to choose the kernel backend, default is None
        #    layout : str, the names of param to choose the kernel layout, default is None
        #    data_type : str, the names of param to choose the kernel data_type, default is None
304
        #    dispatch : {}, the key is kernel_func, the value is type of inputs and outputs for kernel (example: {kernel_name : (['dense','sparse_coo']#input,['sparse_coo']#output)})
305 306 307 308 309
        kernel = {
            'func': [],
            'param': None,
            'backend': None,
            'layout': None,
Z
zyfncg 已提交
310
            'data_type': None,
311
            'dispatch': {},
312 313 314 315 316 317 318 319 320
        }
        if 'backend' in kernel_config and len(kernel_config['backend']) > 0:
            kernel['backend'] = kernel_config['backend']
        if 'layout' in kernel_config and len(kernel_config['layout']) > 0:
            kernel['layout'] = kernel_config['layout']
        if 'data_type' in kernel_config and len(kernel_config['data_type']) > 0:
            kernel['data_type'] = kernel_config['data_type']
        if 'param' in kernel_config:
            kernel['param'] = kernel_config['param']
321
        kernel_funcs = re.compile(r'([a-zA-Z0-9_]+)\s*({[^}]+})?').findall(
322 323
            kernel_config['func']
        )
324 325 326 327 328 329 330

        def parse_kernel_in_out_type(in_out_str):
            if len(in_out_str) == 0:
                return None
            tmp_in_out_list = in_out_str[1:-1].split('->')
            inputs = [item.strip() for item in tmp_in_out_list[0].split(',')]
            outputs = [item.strip() for item in tmp_in_out_list[1].split(',')]
331 332 333 334

            # check the tensor type
            for item in inputs:
                assert item in [
335 336 337 338
                    'dense',
                    'selected_rows',
                    'sparse_coo',
                    'sparse_csr',
339 340 341
                ], f"{self.api} : Invalid input tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."
            for item in outputs:
                assert item in [
342 343 344 345
                    'dense',
                    'selected_rows',
                    'sparse_coo',
                    'sparse_csr',
346 347
                ], f"{self.api} : Invalid output tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."

348 349 350 351 352
            return (inputs, outputs)

        for func_item in kernel_funcs:
            kernel['func'].append(func_item[0])
            kernel['dispatch'][func_item[0]] = parse_kernel_in_out_type(
353 354
                func_item[1]
            )
355 356 357 358 359 360 361 362

        return kernel

    def parse_data_transform(self, api_item_yaml):
        data_transform = {'skip_transform': [], 'support_trans_dtype': []}
        if 'data_transform' in api_item_yaml:
            if 'skip_transform' in api_item_yaml['data_transform']:
                data_transform['skip_transform'] = api_item_yaml[
363 364
                    'data_transform'
                ]['skip_transform']
365 366
            if 'support_trans_dtype' in api_item_yaml['data_transform']:
                data_transform['support_trans_dtype'] = api_item_yaml[
367 368
                    'data_transform'
                ]['support_trans_dtype']
369 370 371

        return data_transform

372
    # Override by child class
373
    def get_return_type(self, inplace_flag=False):
374 375 376
        return None

    def gene_api_declaration(self):
377 378 379 380 381
        api_declaration = ""
        api_func_name = self.get_api_func_name()
        if api_func_name[-1] != '_':
            api_declaration = f"""
PADDLE_API {self.get_return_type()} {api_func_name}({self.get_declare_args()});
382 383
"""

384 385 386
        if self.is_base_api and len(self.inplace_map) > 0:
            if api_func_name[-1] != '_':
                api_func_name += '_'
387 388 389
            api_declaration = (
                api_declaration
                + f"""
390
PADDLE_API {self.get_return_type(inplace_flag=True)} {api_func_name}({self.get_declare_args(inplace_flag=True)});
391
"""
392
            )
393 394 395

        return api_declaration

396 397 398 399 400 401
    # Backward API Override this method
    def gene_kernel_backend_select(self):
        backend_select_code = ""
        if self.kernel['backend'] is not None:
            if '>' in self.kernel['backend']:
                vars_list = self.kernel['backend'].split('>')
402 403 404 405 406 407 408
                assert (
                    len(vars_list) == 2
                ), f"{self.api} api: The number of params to set backend with '>' only allows 2, but received {len(vars_list)}."
                assert (vars_list[0].strip() in self.attrs['names']) and (
                    self.attrs['attr_info'][vars_list[0].strip()][0]
                    == 'const Place&'
                ), f"{self.api} api: When use '>' to set kernel backend, the first param should be a attribute with Place type."
409 410 411 412 413 414 415 416 417 418 419 420 421 422
                backend_select_code = f"""
  kernel_backend = ParseBackendWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                backend_args = [
                    ele.strip() for ele in self.kernel['backend'].split(',')
                ]
                backend_select_code = f"""
  kernel_backend = ParseBackend({", ".join(backend_args)});
"""

        return backend_select_code

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
    def gene_kernel_select(self) -> str:
        api = self.api
        input_names = self.inputs['names']
        attrs = self.attrs
        kernel = self.kernel

        kernel_key_item_init = """
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
"""
        # Check the tensor options
        attr_backend_count = 0
        attr_layout_count = 0
        attr_data_type_count = 0
        for attr_name in attrs['names']:
439
            if attrs['attr_info'][attr_name][0] == 'const Place&':
440 441 442
                assert (
                    kernel['backend'] is not None
                ), f"{api} api: When there is a parameter with 'Place' type in attributes, you must set backend of kernel manually."
443 444
                attr_backend_count = attr_backend_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataLayout':
445 446 447
                assert (
                    kernel['layout'] is not None
                ), f"{api} api: When there is a parameter with 'DataLayout' type in attributes, you must set layout of kernel manually."
448 449
                attr_layout_count = attr_layout_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataType':
450 451 452
                assert (
                    kernel['data_type'] is not None
                ), f"{api} api: When there is a parameter with 'DataType' type in attributes, you must set data_type of kernel manually."
453 454 455
                attr_data_type_count = attr_data_type_count + 1

        # preprocess kernel configures
456
        kernel_select_code = self.gene_kernel_backend_select()
457 458 459 460

        if kernel['layout'] is not None:
            if '>' in kernel['layout']:
                vars_list = kernel['layout'].split('>')
461 462 463 464 465 466 467 468 469 470 471
                assert (
                    len(vars_list) == 2
                ), f"{api} api: The number of params to set layout with '>' only allows 2, but received {len(vars_list)}."
                assert (
                    vars_list[0].strip() in attrs['names']
                    and attrs['attr_info'][vars_list[0].strip()][0]
                    == 'DataLayout'
                ), f"{api} api: When use '>' to set kernel layout, the first param should be a attribute with DataLayout type."
                kernel_select_code = (
                    kernel_select_code
                    + f"""
472 473
  kernel_layout = ParseLayoutWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""
474
                )
475 476 477

            else:
                vars_list = kernel['layout'].split(',')
478 479 480 481 482 483
                assert (
                    len(vars_list) == 1
                ), f"{api} api: The number of params to set layout must be 1, but received {len(vars_list)}."
                kernel_select_code = (
                    kernel_select_code
                    + f"""
484 485
  kernel_layout = ParseLayout({vars_list[0].strip()});
"""
486
                )
487 488 489 490

        if kernel['data_type'] is not None:
            if '>' in kernel['data_type']:
                vars_list = kernel['data_type'].split('>')
491 492 493 494 495 496 497 498 499 500 501
                assert (
                    len(vars_list) == 2
                ), f"{api} api: The number of params to set data_type with '>' only allows 2, but received {len(vars_list)}."
                assert (
                    vars_list[0].strip() in attrs['names']
                    and attrs['attr_info'][vars_list[0].strip()][0]
                    == 'DataType'
                ), f"{api} api: When use '>' to set kernel data_type, the first param should be a attribute with DataType type."
                kernel_select_code = (
                    kernel_select_code
                    + f"""
502 503
  kernel_data_type = ParseDataTypeWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""
504
                )
505 506 507

            else:
                vars_list = kernel['data_type'].split(',')
508 509 510 511 512 513
                assert (
                    len(vars_list) == 1
                ), f"{api} api: The number of params to set data_type only allows 1, but received {len(vars_list)}."
                kernel_select_code = (
                    kernel_select_code
                    + f"""
514 515
  kernel_data_type = ParseDataType({vars_list[0].strip()});
"""
516
                )
517 518

        if len(input_names) == 0:
519 520 521
            assert (
                attr_backend_count > 0 and attr_data_type_count > 0
            ), f"{api} api: When there is no input tensor, the args must have 'Place' and 'DataType'."
522 523 524 525 526 527 528 529 530 531 532

        kernel_select_args = ""
        for input_name in input_names:
            kernel_select_args = kernel_select_args + input_name + ", "

        if len(kernel_select_args) > 2:
            kernel_select_args = kernel_select_args[:-2]

        kernel_select_code = kernel_key_item_init + kernel_select_code

        if len(input_names) > 0:
533 534 535
            kernel_select_code = (
                kernel_select_code
                + f"""
536 537 538 539
  if (kernel_backend == Backend::UNDEFINED
        || kernel_layout == DataLayout::UNDEFINED
        || kernel_data_type == DataType::UNDEFINED ) {{
    auto kernel_key_set = ParseKernelKeyByInputArgs({kernel_select_args});
540
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
541 542 543 544 545 546 547 548 549 550
    if (kernel_backend == Backend::UNDEFINED) {{
      kernel_backend = kernel_key.backend();
    }}
    if (kernel_layout == DataLayout::UNDEFINED) {{
      kernel_layout = kernel_key.layout();
    }}
    if (kernel_data_type == DataType::UNDEFINED) {{
      kernel_data_type = kernel_key.dtype();
    }}
  }}"""
551
            )
552 553 554

        return kernel_select_code

555
    def gene_infer_meta(self, kernel_output_names, code_indent) -> str:
556 557 558 559
        input_names = self.inputs['names']
        attr_names = self.attrs['names']
        infer_meta = self.infer_meta

560 561 562 563 564
        infer_meta_params = (
            infer_meta['param']
            if infer_meta['param'] is not None
            else input_names + attr_names
        )
565 566 567 568 569
        # generate meta tensors
        meta_tensor_code = ""
        param_code = ""
        for param in infer_meta_params:
            if param in input_names:
570
                if self.inputs['input_info'][param] == "const Tensor&":
571 572 573 574 575 576 577 578 579 580 581 582 583 584
                    param_code = (
                        param_code
                        + "MakeMetaTensor(*"
                        + PREFIX_TENSOR_NAME
                        + param
                        + "), "
                    )
                elif (
                    self.inputs['input_info'][param]
                    == "const std::vector<Tensor>&"
                ):
                    meta_tensor_code = (
                        meta_tensor_code
                        + f"""
585
{code_indent}  auto {param}_meta_vec = MakeMetaTensor({PREFIX_TENSOR_NAME}{param});
586
{code_indent}  std::vector<const phi::MetaTensor*> {param}_metas({param}_meta_vec.size());
587 588 589 590
{code_indent}  for (size_t i = 0; i < {param}_meta_vec.size(); ++i) {{
{code_indent}    {param}_metas[i] = &{param}_meta_vec[i];
{code_indent}  }}
"""
591
                    )
592
                    param_code = param_code + param + "_metas, "
593 594 595 596 597 598 599
                elif (
                    self.inputs['input_info'][param]
                    == "const paddle::optional<std::vector<Tensor>>&"
                ):
                    meta_tensor_code = (
                        meta_tensor_code
                        + f"""
600 601 602 603 604 605
{code_indent}  auto {param}_meta_vec = MakeMetaTensor({PREFIX_TENSOR_NAME}{param});
{code_indent}  paddle::optional<std::vector<const phi::MetaTensor*>> {param}_metas({param}_meta_vec.size());
{code_indent}  for (size_t i = 0; i < {param}_meta_vec.size(); ++i) {{
{code_indent}    {param}_metas->at(i) = &{param}_meta_vec[i];
{code_indent}  }}
"""
606
                    )
607 608
                    param_code = param_code + param + "_metas, "
                elif param in self.optional_vars:
609 610 611 612 613 614 615
                    param_code = (
                        param_code
                        + "MakeMetaTensor("
                        + PREFIX_TENSOR_NAME
                        + param
                        + "), "
                    )
616
                else:
617 618 619
                    raise ValueError(
                        f"{self.api} : Param of infer_meta error : {self.inputs['input_info'][param]} type is not supported."
                    )
620 621 622 623 624 625 626 627 628
            elif param in attr_names:
                param_code = param_code + param + ", "
            elif isinstance(param, str):
                param_code = param_code + "\"" + param + "\", "
            elif isinstance(param, bool):
                param_code = param_code + str(param).lower() + ", "
            else:
                param_code = param_code + str(param) + ", "

629 630
        for i, out_name in enumerate(kernel_output_names):
            if self.outputs['types'][i] == 'std::vector<Tensor>':
631 632 633
                meta_tensor_code = (
                    meta_tensor_code
                    + f"""
634 635 636
{code_indent}  auto {out_name}_{PREFIX_META_TENSOR_NAME}vec = MakeMetaTensor({out_name});
{code_indent}  std::vector<phi::MetaTensor*> {out_name}_metas({out_name}_{PREFIX_META_TENSOR_NAME}vec.size());
{code_indent}  for (size_t i = 0; i < {out_name}_{PREFIX_META_TENSOR_NAME}vec.size(); ++i) {{
637
{code_indent}    {out_name}_metas[i] = {out_name}[i] ? &{out_name}_{PREFIX_META_TENSOR_NAME}vec[i] : nullptr;
638
{code_indent}  }}"""
639
                )
640 641 642

                param_code = param_code + out_name + '_metas, '
            else:
643 644 645 646 647 648 649 650 651
                meta_tensor_code = (
                    meta_tensor_code
                    + code_indent
                    + "  phi::MetaTensor "
                    + out_name.replace('kernel_', PREFIX_META_TENSOR_NAME)
                    + "("
                    + out_name
                    + ");\n"
                )
652
                if len(kernel_output_names) == 1:
653 654 655 656
                    param_code = (
                        param_code
                        + f"&{out_name.replace('kernel_', PREFIX_META_TENSOR_NAME)}, "
                    )
657
                else:
658 659 660 661
                    param_code = (
                        param_code
                        + f"{out_name} ? &{out_name.replace('kernel_', PREFIX_META_TENSOR_NAME)} : nullptr, "
                    )
662

663 664
        param_code = param_code[:-2]
        return f"""{meta_tensor_code}
665
{code_indent}  phi::{infer_meta['func']}({param_code});
666 667
"""

Y
YuanRisheng 已提交
668 669 670 671 672 673 674 675
    def gene_trans_flag(self, input_name):
        trans_flag = "{}"
        if input_name in self.data_transform['skip_transform']:
            trans_flag = "{true}"
        elif input_name in self.data_transform['support_trans_dtype']:
            trans_flag = "{false, true}"
        return trans_flag

676 677 678
    def gene_dense_input(
        self, input_name, input_name_tensor_map, code_indent=''
    ):
Y
YuanRisheng 已提交
679 680
        input_tensor_code = ""
        trans_flag = self.gene_trans_flag(input_name)
681
        input_names = self.inputs['names']
Y
YuanRisheng 已提交
682 683 684 685 686 687
        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        input_name_tensor_map[input_name].append(
688 689 690 691 692
            (f"{PREFIX_TENSOR_NAME}{input_name}", False)
        )
        input_tensor_code = (
            input_tensor_code
            + f"""
Y
YuanRisheng 已提交
693
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = PrepareData({input_name}, kernel.InputAt({kernel_param.index(input_name)}), {trans_flag});"""
694
        )
Y
YuanRisheng 已提交
695
        return input_tensor_code
696

697 698 699
    def gene_selected_rows_input(
        self, input_name, input_name_tensor_map, code_indent=''
    ):
Y
YuanRisheng 已提交
700 701 702
        input_tensor_code = ""
        trans_flag = self.gene_trans_flag(input_name)
        input_names = self.inputs['names']
703 704 705 706 707
        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

Y
YuanRisheng 已提交
708
        input_name_tensor_map[input_name].append(
709 710 711 712 713
            (f"{PREFIX_TENSOR_NAME}{input_name}", False)
        )
        input_tensor_code = (
            input_tensor_code
            + f"""
714
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = PrepareDataForSelectedRows({input_name}, kernel.InputAt({kernel_param.index(input_name)}), {trans_flag});
Y
YuanRisheng 已提交
715
"""
716
        )
Y
YuanRisheng 已提交
717 718
        return input_tensor_code

719 720 721
    def gene_optional_vec_dense_input(
        self, input_name, input_name_tensor_map, code_indent=''
    ):
722
        input_tensor_code = ""
Y
YuanRisheng 已提交
723 724 725 726 727 728 729 730
        trans_flag = self.gene_trans_flag(input_name)
        input_names = self.inputs['names']
        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names
        if input_name in self.inplace_map.values():
            input_name_tensor_map[input_name].append(
731 732 733 734 735
                (f"{PREFIX_TENSOR_NAME}{input_name}", True)
            )
            input_tensor_code = (
                input_tensor_code
                + f"""
736
{code_indent}  paddle::optional<std::vector<const phi::DenseTensor*>> {PREFIX_TENSOR_NAME}{input_name} = TensorToConstDenseTensorPtr({input_name});"""
737
            )
Y
YuanRisheng 已提交
738 739
        else:
            input_name_tensor_map[input_name].append(
740 741 742 743 744
                (f"{PREFIX_TENSOR_NAME}{input_name}_vec", True)
            )
            input_tensor_code = (
                input_tensor_code
                + f"""
745 746 747 748 749 750 751 752
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_vec = PrepareData({input_name}, kernel.InputAt({kernel_param.index(input_name)}), {trans_flag});
{code_indent}  paddle::optional<std::vector<const phi::DenseTensor*>> {PREFIX_TENSOR_NAME}{input_name};
{code_indent}  if ({PREFIX_TENSOR_NAME}{input_name}_vec){{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name} = paddle::optional<std::vector<const phi::DenseTensor*>>({PREFIX_TENSOR_NAME}{input_name}_vec->size());
{code_indent}    for (size_t i = 0; i < {PREFIX_TENSOR_NAME}{input_name}_vec->size(); ++i) {{
{code_indent}      {PREFIX_TENSOR_NAME}{input_name}->at(i) = &{PREFIX_TENSOR_NAME}{input_name}_vec->at(i);
{code_indent}    }}
{code_indent}  }}"""
753
            )
Y
YuanRisheng 已提交
754
        return input_tensor_code
755

756 757 758
    def gene_vec_dense_input(
        self, input_name, input_name_tensor_map, code_indent=''
    ):
Y
YuanRisheng 已提交
759 760 761 762 763 764 765
        input_tensor_code = ""
        trans_flag = self.gene_trans_flag(input_name)
        input_names = self.inputs['names']
        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names
766

Y
YuanRisheng 已提交
767 768
        if input_name in self.inplace_map.values():
            input_name_tensor_map[input_name].append(
769 770 771 772 773
                (f"{PREFIX_TENSOR_NAME}{input_name}", True)
            )
            input_tensor_code = (
                input_tensor_code
                + f"""
774
{code_indent}  std::vector<const phi::DenseTensor*> {PREFIX_TENSOR_NAME}{input_name} = TensorToConstDenseTensorPtr({input_name});"""
775
            )
Y
YuanRisheng 已提交
776 777
        else:
            input_name_tensor_map[input_name].append(
778 779 780 781 782
                (f"{PREFIX_TENSOR_NAME}{input_name}_vec", True)
            )
            input_tensor_code = (
                input_tensor_code
                + f"""
783
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_vec = PrepareData({input_name}, kernel.InputAt({kernel_param.index(input_name)}), {trans_flag});
784 785 786 787
{code_indent}  std::vector<const phi::DenseTensor*> {PREFIX_TENSOR_NAME}{input_name}({PREFIX_TENSOR_NAME}{input_name}_vec->size());
{code_indent}  for (size_t i = 0; i < {PREFIX_TENSOR_NAME}{input_name}.size(); ++i) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name}[i] = &{PREFIX_TENSOR_NAME}{input_name}_vec->at(i);
{code_indent}  }}"""
788
            )
Y
YuanRisheng 已提交
789
        return input_tensor_code
790

Y
YuanRisheng 已提交
791 792 793 794 795 796 797 798 799 800 801 802 803
    def gene_input(self, kernel_tensor_type=None, code_indent=''):
        input_names = self.inputs['names']
        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names
        input_name_tensor_map = collections.defaultdict(list)
        input_tensor_code = ""
        for i, input_name in enumerate(input_names):
            # set input code
            if input_name in kernel_param:
                # input is dense tensor
                api_tensor_type = self.inputs['input_info'][input_name]
804 805 806 807 808
                phi_tensor_type = (
                    'dense'
                    if kernel_tensor_type is None
                    else kernel_tensor_type[0][kernel_param.index(input_name)]
                )
Y
YuanRisheng 已提交
809 810
                if api_tensor_type in self.gene_input_func.keys():
                    input_tensor_code += self.gene_input_func[api_tensor_type][
811 812
                        phi_tensor_type
                    ](input_name, input_name_tensor_map, code_indent)
Y
YuanRisheng 已提交
813 814 815
                else:
                    # do nothing
                    pass
816 817 818
            else:
                if input_name in self.infer_meta['param']:
                    if input_name in self.optional_vars:
819 820 821
                        input_tensor_code = (
                            input_tensor_code
                            + f"""
822
{code_indent}  paddle::optional<phi::TensorBase> {PREFIX_TENSOR_NAME}{input_name} = {input_name} ? paddle::optional<phi::TensorBase>(*{input_name}->impl()) : paddle::none;"""
823
                        )
824

825
                    else:
826 827 828 829 830 831 832
                        if (
                            self.inputs['input_info'][input_name]
                            == "const std::vector<Tensor>&"
                        ):
                            input_tensor_code = (
                                input_tensor_code
                                + f"""
833 834
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_uq_ptr = TensorToDenseTensor({input_name});
{code_indent}  const auto& {PREFIX_TENSOR_NAME}{input_name} = *{PREFIX_TENSOR_NAME}{input_name}_uq_ptr;"""
835
                            )
836
                        else:
837 838 839
                            input_tensor_code = (
                                input_tensor_code
                                + f"""
840
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = {input_name}.impl();"""
841
                            )
Y
YuanRisheng 已提交
842 843 844 845 846

        return input_name_tensor_map, input_tensor_code

    def get_kernel_args(self, kernel_tensor_type=None, code_indent=''):
        dense_input_trans_map = {
847 848 849 850 851
            'const Tensor&': 'const phi::DenseTensor&',
            'const std::vector<Tensor>&': 'const std::vector<const phi::DenseTensor*>&',
            'const paddle::optional<Tensor&>': 'paddle::optional<const phi::DenseTensor&>',
            'const paddle::optional<Tensor>&': 'const paddle::optional<phi::DenseTensor>&',
            'const paddle::optional<std::vector<Tensor>>&': 'const paddle::optional<std::vector<const phi::DenseTensor*>>&',
Y
YuanRisheng 已提交
852 853 854
        }
        dense_out_trans_map = {
            'Tensor': 'phi::DenseTensor*',
855
            'std::vector<Tensor>': 'std::vector<phi::DenseTensor*>&',
Y
YuanRisheng 已提交
856 857
        }
        sr_input_trans_map = {
858 859
            'const Tensor&': 'const phi::SelectedRows&',
            'const paddle::optional<Tensor>&': 'const paddle::optional<phi::SelectedRows>&',
Y
YuanRisheng 已提交
860 861 862 863 864 865 866 867 868 869 870 871
        }
        sr_out_trans_map = {'Tensor': 'phi::SelectedRows*'}
        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']
        kernel_args_type_list = ['const platform::DeviceContext&']

        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        input_name_tensor_map, input_tensor_code = self.gene_input(
872 873
            kernel_tensor_type, code_indent
        )
Y
YuanRisheng 已提交
874

875 876 877
        input_tensor_code = (
            input_tensor_code
            + f"""
878
{code_indent}  if(platform::RecordOpInfoSupplement::IsEnabled()){{"""
879
        )
880 881 882 883 884 885 886 887 888 889 890 891
        single_tensor_names = []
        list_tensor_names = []
        for input_name, input_tensors in input_name_tensor_map.items():
            has_vector_tensor = False
            for input_tensor, is_vector in input_tensors:
                if is_vector is True:
                    has_vector_tensor = True
            if has_vector_tensor is False:
                single_tensor_names.append(input_name)
            else:
                list_tensor_names.append(input_name)
        if not single_tensor_names:
892 893 894
            input_tensor_code = (
                input_tensor_code
                + f"""
895
{code_indent}     std::vector<std::pair<const char*, std::vector<phi::DDim>>> input_shapes;"""
896
            )
897
        else:
898 899 900
            for input_name in single_tensor_names:
                if input_name in self.optional_vars:
                    input_tensors = input_name_tensor_map[input_name]
901 902 903
                    input_tensor_code = (
                        input_tensor_code
                        + f"""
904
{code_indent}     std::vector<phi::DDim> {input_name}_record_shapes;"""
905
                    )
906
                    for input_tensor, _ in input_tensors:
907 908 909
                        input_tensor_code = (
                            input_tensor_code
                            + f"""
910 911 912
{code_indent}     if({input_tensor}){{
{code_indent}       {input_name}_record_shapes.push_back((*{input_tensor}).dims());
{code_indent}     }}"""
913
                        )
914

915 916 917
            input_tensor_code = (
                input_tensor_code
                + f"""
918
{code_indent}     std::vector<std::pair<const char*, std::vector<phi::DDim>>> input_shapes{{"""
919
            )
920
            for input_name in single_tensor_names[:-1]:
921
                if input_name in self.optional_vars:
922 923 924
                    input_tensor_code = (
                        input_tensor_code
                        + f"""
925
{code_indent}     {{"{input_name}", {input_name}_record_shapes}},"""
926
                    )
927
                else:
928 929 930
                    input_tensor_code = (
                        input_tensor_code
                        + f"""
931
{code_indent}     {{"{input_name}", {{"""
932
                    )
933 934
                    input_tensors = input_name_tensor_map[input_name]
                    for input_tensor, _ in input_tensors[:-1]:
935 936 937
                        input_tensor_code = (
                            input_tensor_code
                            + f"""
938
{code_indent}     (*{input_tensor}).dims(),"""
939 940 941 942
                        )
                    input_tensor_code = (
                        input_tensor_code
                        + f"""
943
{code_indent}     (*{input_tensors[-1][0]}).dims()}}}},"""
944
                    )
945
            if single_tensor_names[-1] in self.optional_vars:
946 947 948
                input_tensor_code = (
                    input_tensor_code
                    + f"""
949
{code_indent}     {{"{single_tensor_names[-1]}",
950
{code_indent}     {single_tensor_names[-1]}_record_shapes}}}};"""
951
                )
952
            else:
953 954 955
                input_tensor_code = (
                    input_tensor_code
                    + f"""
956
{code_indent}     {{"{single_tensor_names[-1]}", {{"""
957
                )
958 959
                input_tensors = input_name_tensor_map[single_tensor_names[-1]]
                for input_tensor, _ in input_tensors[:-1]:
960 961 962
                    input_tensor_code = (
                        input_tensor_code
                        + f"""
963
{code_indent}     (*{input_tensor}).dims(),"""
964 965 966 967
                    )
                input_tensor_code = (
                    input_tensor_code
                    + f"""
968
{code_indent}     (*{input_tensors[-1][0]}).dims()}}}}}};"""
969
                )
970
        if list_tensor_names:
971 972 973
            input_tensor_code = (
                input_tensor_code
                + f"""
974
{code_indent}     std::vector<phi::DDim> ddims_vec;"""
975
            )
976
        for input_name in list_tensor_names:
977 978 979
            input_tensor_code = (
                input_tensor_code
                + f"""
980
{code_indent}     ddims_vec.clear();"""
981
            )
982 983
            for input_tensor, is_vector in input_name_tensor_map[input_name]:
                if is_vector:
984 985 986 987
                    input_tensor_truncate = input_tensor[:-4]
                    if input_name in self.inplace_map.values():
                        input_tensor_truncate = input_tensor

988
                    if input_name in self.optional_vars:
989 990 991
                        input_tensor_code = (
                            input_tensor_code
                            + f"""
992 993 994 995
{code_indent}     if ({input_tensor_truncate}){{
{code_indent}       ddims_vec.reserve({input_tensor_truncate}->size());
{code_indent}       for (size_t i = 0; i < {input_tensor_truncate}->size(); ++i) {{
{code_indent}         ddims_vec.emplace_back((*{input_tensor_truncate}->at(i)).dims());
996 997
{code_indent}       }}
{code_indent}     }}"""
998
                        )
999
                    else:
1000 1001 1002
                        input_tensor_code = (
                            input_tensor_code
                            + f"""
1003 1004 1005
{code_indent}     ddims_vec.reserve({input_tensor_truncate}.size());
{code_indent}     for (size_t i = 0; i < {input_tensor_truncate}.size(); ++i) {{
{code_indent}       ddims_vec.emplace_back((*{input_tensor_truncate}[i]).dims());
1006
{code_indent}     }}"""
1007
                        )
1008
                else:
1009 1010 1011
                    input_tensor_code = (
                        input_tensor_code
                        + f"""
1012 1013
                  ddims_vec.emplace_back((*{input_tensor}).dims());
{code_indent}     """
1014 1015 1016 1017
                    )
            input_tensor_code = (
                input_tensor_code
                + f"""
1018
{code_indent}     input_shapes.emplace_back("{input_name}", ddims_vec);"""
1019
            )
1020

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
        input_tensor_code += f"""
{code_indent}     framework::AttributeMap attrs;"""

        for attr_name in self.attrs['names']:
            if 'IntArray' in self.attrs['attr_info'][attr_name][0]:
                input_tensor_code += f"""
{code_indent}     attrs["{attr_name}"] = {attr_name}.GetData();"""
            elif 'vector<phi::Scalar>' in self.attrs['attr_info'][attr_name][0]:
                input_tensor_code += f"""
{code_indent}     attrs["{attr_name}"] = "";"""  # TODO(kuizhiqing)
            elif 'Scalar' in self.attrs['attr_info'][attr_name][0]:
                input_tensor_code += f"""
{code_indent}    switch ({attr_name}.dtype()) {{
{code_indent}      case DataType::FLOAT32:
{code_indent}          attrs["{attr_name}"] = static_cast<float>({attr_name}.to<float>());
{code_indent}          break;
{code_indent}      case DataType::FLOAT64:
{code_indent}          attrs["{attr_name}"] = static_cast<double>({attr_name}.to<double>());
{code_indent}          break;
{code_indent}      case DataType::FLOAT16:
{code_indent}          attrs["{attr_name}"] = static_cast<float>({attr_name}.to<float16>());
{code_indent}          break;
{code_indent}      case DataType::BFLOAT16:
{code_indent}          attrs["{attr_name}"] = static_cast<float>({attr_name}.to<bfloat16>());
{code_indent}          break;
{code_indent}      case DataType::INT32:
{code_indent}          attrs["{attr_name}"] = static_cast<int32_t>({attr_name}.to<int32_t>());
{code_indent}          break;
{code_indent}      case DataType::INT64:
{code_indent}          attrs["{attr_name}"] = static_cast<int64_t>({attr_name}.to<int64_t>());
{code_indent}          break;
{code_indent}      case DataType::INT16:
{code_indent}          attrs["{attr_name}"] = static_cast<int16_t>({attr_name}.to<int16_t>());
{code_indent}          break;
{code_indent}      case DataType::INT8:
{code_indent}          attrs["{attr_name}"] = static_cast<int8_t>({attr_name}.to<int8_t>());
{code_indent}          break;
{code_indent}      case DataType::UINT16:
{code_indent}          attrs["{attr_name}"] = static_cast<uint16_t>({attr_name}.to<uint16_t>());
{code_indent}          break;
{code_indent}      case DataType::UINT8:
{code_indent}          attrs["{attr_name}"] = static_cast<uint8_t>({attr_name}.to<uint8_t>());
{code_indent}          break;
{code_indent}      case DataType::BOOL:
{code_indent}          attrs["{attr_name}"] = static_cast<bool>({attr_name}.to<bool>());
{code_indent}          break;
{code_indent}      case DataType::COMPLEX64:
{code_indent}          attrs["{attr_name}"] = static_cast<float>({attr_name}.to<complex64>());
{code_indent}          break;
{code_indent}      case DataType::COMPLEX128:
{code_indent}          attrs["{attr_name}"] = static_cast<double>({attr_name}.to<complex128>());
{code_indent}          break;
{code_indent}      default:
{code_indent}          attrs["{attr_name}"] = "";
{code_indent}          break;
{code_indent}    }}"""
            elif 'DataType' in self.attrs['attr_info'][attr_name][0]:
                pass  # no need
            elif 'Place' in self.attrs['attr_info'][attr_name][0]:
                pass  # no need
            else:
                input_tensor_code += f"""
{code_indent}     attrs["{attr_name}"] = {attr_name};"""

1085 1086 1087
        input_tensor_code = (
            input_tensor_code
            + f"""
1088
{code_indent}     platform::RecordOpInfoSupplement("{self.api}", input_shapes, attrs);
1089
{code_indent}  }}"""
1090
        )
1091
        kernel_args = ["*dev_ctx"]
1092 1093
        for param in kernel_param:
            if param in input_names:
1094
                if param in self.optional_vars:
1095
                    kernel_args.append(PREFIX_TENSOR_NAME + param)
1096
                else:
1097
                    if self.inputs['input_info'][param] == "const Tensor&":
1098
                        kernel_args.append("*" + PREFIX_TENSOR_NAME + param)
1099 1100 1101 1102
                    elif (
                        self.inputs['input_info'][param]
                        == "const std::vector<Tensor>&"
                    ):
1103
                        kernel_args.append(PREFIX_TENSOR_NAME + param)
1104 1105 1106
                    else:
                        # do nothing
                        pass
1107
                # input is dense tensor
1108 1109 1110 1111 1112
                if (
                    kernel_tensor_type is None
                    or kernel_tensor_type[0][kernel_param.index(param)]
                    == 'dense'
                ):
1113
                    kernel_args_type_list.append(
1114 1115
                        dense_input_trans_map[input_infos[param]]
                    )
1116 1117
                else:  # input is selected_rows
                    kernel_args_type_list.append(
1118 1119
                        sr_input_trans_map[input_infos[param]]
                    )
1120 1121
            elif param in attr_names:
                # set attr for kernel_context
1122 1123 1124
                if 'IntArray' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append('const phi::IntArray&')
                    param = 'phi::IntArray(' + param + ')'
1125 1126
                elif 'vector<phi::Scalar>' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append(
1127 1128
                        'const std::vector<phi::Scalar>&'
                    )
1129
                    param = param
1130
                elif 'Scalar' in self.attrs['attr_info'][param][0]:
1131 1132
                    kernel_args_type_list.append('const phi::Scalar&')
                    param = 'phi::Scalar(' + param + ')'
1133
                else:
1134
                    kernel_args_type_list.append(
1135 1136
                        self.attrs['attr_info'][param][0]
                    )
1137
                kernel_args.append(param)
1138
            elif isinstance(param, bool):
1139
                kernel_args.append(str(param).lower())
1140
            else:
1141
                kernel_args.append(str(param))
1142

1143 1144
        for i, out_type in enumerate(self.outputs['types']):
            # output is dense tensor
1145 1146 1147 1148
            if (
                kernel_tensor_type is None
                or kernel_tensor_type[1][i] == 'dense'
            ):
1149 1150 1151
                kernel_args_type_list.append(dense_out_trans_map[out_type])
            else:  # output is selected_rows
                kernel_args_type_list.append(sr_out_trans_map[out_type])
1152 1153 1154

        kernel_signature = "void(*)(" + ", ".join(kernel_args_type_list) + ")"

1155
        return input_tensor_code, ", ".join(kernel_args), kernel_signature
1156

1157 1158
    # Override by child class
    def gene_return_code(self):
1159
        return "return api_output;"
1160

1161
    # Override by child class
1162 1163 1164 1165 1166 1167 1168
    def gene_output(
        self,
        out_dtype_list,
        out_tensor_type_list=None,
        code_indent='',
        inplace_flag=False,
    ):
1169 1170
        return None, None, None

1171 1172
    def gen_kernel_code(self, kernel_name, code_indent, inplace_flag=False):
        kernel_dispatch = self.kernel['dispatch'][kernel_name]
1173
        input_tensors, kernel_args, kernel_signature = self.get_kernel_args(
1174 1175
            kernel_dispatch, code_indent
        )
1176
        out_tensor_type_list = kernel_dispatch[1] if kernel_dispatch else None
1177
        outputs_args, kernel_output_names, output_create = self.gene_output(
1178 1179 1180 1181 1182
            self.outputs['types'],
            out_tensor_type_list,
            code_indent,
            inplace_flag,
        )
1183 1184
        fallback_kernel_output_trans = ""
        for kernel_out in outputs_args:
1185
            fallback_kernel_output_trans += f"""
1186
{code_indent}    TransDataBackend({kernel_out}, kernel_backend, {kernel_out});"""
1187
        return f"""
F
From00 已提交
1188
{code_indent}  VLOG(6) << "{self.api} API kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
1189
{code_indent}  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
1190
{code_indent}      "{kernel_name}", {{kernel_backend, kernel_layout, kernel_data_type}});
1191
{code_indent}  const auto& kernel = kernel_result.kernel;
1192
{code_indent}  VLOG(6) << "{kernel_name} kernel: " << kernel;
1193
{code_indent}  auto* dev_ctx = GetDeviceContextByBackend(kernel_result.has_fallback_cpu ? Backend::CPU : kernel_backend);
1194 1195
{input_tensors}
{output_create}
1196 1197 1198 1199
{code_indent}  paddle::platform::RecordEvent *infer_shape_record_event = nullptr;
{code_indent}  if(paddle::platform::RecordEvent::IsEnabled()){{
{code_indent}    infer_shape_record_event = new paddle::platform::RecordEvent(\"{self.api} infer_meta\", paddle::platform::TracerEventType::OperatorInner, 1);
{code_indent}  }}
1200
{self.gene_infer_meta(kernel_output_names, code_indent)}
1201 1202 1203
{code_indent}  if(infer_shape_record_event != nullptr){{
{code_indent}    delete infer_shape_record_event;
{code_indent}  }}
1204 1205
{code_indent}  using kernel_signature = {kernel_signature};
{code_indent}  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
1206 1207 1208 1209
{code_indent}  paddle::platform::RecordEvent* kernel_record_event = nullptr;
{code_indent}  if(paddle::platform::RecordEvent::IsEnabled()){{
{code_indent}    kernel_record_event = new paddle::platform::RecordEvent(\"{self.api} compute\", paddle::platform::TracerEventType::OperatorInner, 1);
{code_indent}  }}
1210
{code_indent}    (*kernel_fn)({kernel_args}, {", ".join(outputs_args)});
1211 1212
{code_indent}  if(kernel_record_event != nullptr){{
{code_indent}    delete kernel_record_event;
1213 1214 1215
{code_indent}  }}
{code_indent}  if (kernel_result.has_fallback_cpu) {{
{fallback_kernel_output_trans}
1216
{code_indent}  }}
1217
{code_indent}  {self.gene_return_code()}"""
1218

1219
    def get_condition_code(self, kernel_name):
1220 1221 1222
        assert self.kernel['dispatch'][
            kernel_name
        ], f"{self.api} api: the tensor type of inputs and outputs for kernel isn't set, see also 'kernel:func' of 'scale' in ops.yaml."
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
        input_types = self.kernel['dispatch'][kernel_name][0]
        condition_list = []
        for i, in_type in enumerate(input_types):
            if in_type == "dense":
                if self.inputs['names'][i] in self.optional_vars:
                    condition_list.append(
                        f"(!{self.inputs['names'][i]} || {self.inputs['names'][i]}->is_dense_tensor())"
                    )
                else:
                    condition_list.append(
1233 1234
                        f"{self.inputs['names'][i]}.is_dense_tensor()"
                    )
1235 1236 1237 1238 1239 1240 1241
            else:
                if self.inputs['names'][i] in self.optional_vars:
                    condition_list.append(
                        f"(!{self.inputs['names'][i]} || {self.inputs['names'][i]}->is_selected_rows())"
                    )
                else:
                    condition_list.append(
1242 1243
                        f"{self.inputs['names'][i]}.is_selected_rows()"
                    )
1244
        return " && ".join(condition_list)
1245

1246 1247 1248 1249 1250 1251
    def gene_dispatch_code(self, kernel_name, inplace_flag=False):
        return f"""
  if ({self.get_condition_code(kernel_name)}) {{
{self.gen_kernel_code(kernel_name, '  ', inplace_flag)}
  }}
"""
1252

1253
    def gene_base_api_code(self, inplace_flag=False):
1254 1255 1256
        api_func_name = self.get_api_func_name()
        if inplace_flag and api_func_name[-1] != '_':
            api_func_name += '_'
1257
        api_code = f"""
1258
PADDLE_API {self.get_return_type(inplace_flag)} {api_func_name}({self.get_define_args(inplace_flag)}) {{
1259
{self.gene_kernel_select()}
1260
"""
1261

1262 1263 1264 1265
        if len(self.kernel['func']) > 1:
            kernel_dispatch_code = ''
            for kernel_name in self.kernel['func']:
                kernel_dispatch_code += self.gene_dispatch_code(
1266 1267 1268 1269 1270
                    kernel_name, inplace_flag
                )
            return (
                api_code
                + f"""
1271 1272 1273
{kernel_dispatch_code}
  PADDLE_THROW(phi::errors::Unimplemented(
          "The kernel of ({self.api}) for input tensors is unimplemented, please check the type of input tensors."));
1274
}}
1275
"""
1276
            )
1277
        else:
1278 1279 1280 1281
            return (
                api_code
                + self.gen_kernel_code(self.kernel['func'][0], '', inplace_flag)
                + """
1282
}
1283
"""
1284
            )
1285

1286 1287
    def gene_invoke_code(self, invoke_code, params_code):
        return f"""
1288
PADDLE_API {self.get_return_type()} {self.api}({params_code}) {{
1289 1290 1291
  return {invoke_code};
}}"""

1292 1293 1294
    def gene_api_code(self):
        if self.is_base_api:
            api_code = self.gene_base_api_code()
1295
            if len(self.inplace_map) > 0:
Z
zyfncg 已提交
1296 1297
                if self.api[-1] == '_':
                    api_code = ""
1298 1299 1300
                api_code = api_code + self.gene_base_api_code(inplace_flag=True)
            return api_code

1301
        else:
1302 1303
            invoke_func_name = self.invoke.split('(')[0].strip()
            if invoke_func_name in self.attrs['names']:
1304
                # Adjust the param whose name is same with api invoked.
1305
                pattern = r'\W' + invoke_func_name + '[^A-Za-z0-9_(]'
1306 1307 1308 1309 1310 1311

                def adjust_name(matched):
                    matched_str = matched.group()
                    return matched_str[0:-1] + '_val' + matched_str[-1]

                invoke_code = re.sub(pattern, adjust_name, self.invoke)
1312 1313 1314
                params_code = re.sub(
                    pattern, adjust_name, self.get_define_args()
                )
1315 1316
            else:
                invoke_code = self.invoke
1317 1318
                params_code = self.get_define_args()
            return self.gene_invoke_code(invoke_code, params_code)