api_base.py 37.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re

17
PREFIX_TENSOR_NAME = 'input_'
18 19 20 21
PREFIX_META_TENSOR_NAME = 'meta_'


class BaseAPI(object):
22

23 24 25 26 27 28 29 30 31 32 33 34
    def __init__(self, api_item_yaml):
        self.api = self.get_api_name(api_item_yaml)

        # inputs:
        #     names : [], list of input names
        #     input_info : {input_name : type}
        # attrs:
        #     names : [], list of attribute names
        #     attr_info : { attr_name : (type, default_values)}
        # outputs:
        #     names : [], list of output names
        #     types : [], list of output types
35
        #     out_size_expr : [], expression for getting size of vector<Tensor>
36
        self.inputs, self.attrs, self.outputs, self.optional_vars = self.parse_args(
37 38 39 40 41 42 43
            self.api, api_item_yaml)

        self.is_base_api = True
        if 'invoke' in api_item_yaml:
            self.is_base_api = False
            self.invoke = api_item_yaml['invoke']
        else:
44
            if 'infer_meta' in api_item_yaml:
45 46
                self.infer_meta = self.parse_infer_meta(
                    api_item_yaml['infer_meta'])
47 48
            self.kernel = self.parse_kernel(api_item_yaml['kernel'])
            self.data_transform = self.parse_data_transform(api_item_yaml)
49
            self.inplace_map, self.view_map = {}, {}
50 51 52 53

    def get_api_name(self, api_item_yaml):
        return api_item_yaml['api']

54 55 56
    def get_api_func_name(self):
        return self.api

57 58 59 60
    def get_input_tensor_args(self, inplace_flag=False):
        input_args = []
        inplace_type_map = {
            "const Tensor&": "Tensor&",
61
            "const paddle::optional<Tensor>&": "paddle::optional<Tensor>&",
62 63 64 65 66
            "const std::vector<Tensor>&": "std::vector<Tensor>&"
        }
        for name in self.inputs['names']:
            name = name.split('@')[0]
            if inplace_flag and name in self.inplace_map.values():
67 68 69
                input_args.append(
                    inplace_type_map[self.inputs['input_info'][name]] + ' ' +
                    name)
70 71 72 73 74 75 76 77 78 79 80 81
            else:
                input_args.append(self.inputs['input_info'][name] + ' ' + name)
        return input_args

    def get_declare_args(self, inplace_flag=False):
        declare_args = self.get_input_tensor_args(inplace_flag)
        for name in self.attrs['names']:
            default_value = ''
            if self.attrs['attr_info'][name][1] is not None:
                default_value = ' = ' + self.attrs['attr_info'][name][1]
            declare_args.append(self.attrs['attr_info'][name][0] + ' ' + name +
                                default_value)
82

83 84 85 86 87 88 89 90
        return ", ".join(declare_args)

    def get_define_args(self, inplace_flag=False):
        define_args = self.get_input_tensor_args(inplace_flag)
        for name in self.attrs['names']:
            define_args.append(self.attrs['attr_info'][name][0] + ' ' + name)

        return ", ".join(define_args)
91

92
    def parse_args(self, api_name, api_item_yaml):
93 94 95 96 97
        optional_vars = []
        if 'optional' in api_item_yaml:
            optional_vars = [
                item.strip() for item in api_item_yaml['optional'].split(',')
            ]
98 99 100
        inputs, attrs = self.parse_input_and_attr(api_name,
                                                  api_item_yaml['args'],
                                                  optional_vars)
101
        output_type_list, output_names, out_size_expr = self.parse_output(
102 103 104 105
            api_name, api_item_yaml['output'])
        return inputs, attrs, {
            'names': output_names,
            'types': output_type_list,
106 107
            'out_size_expr': out_size_expr
        }, optional_vars
108

109
    def parse_input_and_attr(self, api_name, args_config, optional_vars=[]):
110 111 112 113 114 115 116
        inputs = {'names': [], 'input_info': {}}
        attrs = {'names': [], 'attr_info': {}}
        args_str = args_config.strip()
        assert args_str.startswith('(') and args_str.endswith(')'), \
            f"Args declaration should start with '(' and end with ')', please check the args of {api_name} in yaml."
        args_str = args_str[1:-1]
        args_list = args_str.split(',')
Z
zyfncg 已提交
117 118 119 120
        input_types_map = {
            'Tensor': 'const Tensor&',
            'Tensor[]': 'const std::vector<Tensor>&'
        }
121
        attr_types_map = {
122
            'IntArray': 'const IntArray&',
123
            'Scalar': 'const Scalar&',
124 125 126 127
            'Scalar(int)': 'const Scalar&',
            'Scalar(int64_t)': 'const Scalar&',
            'Scalar(float)': 'const Scalar&',
            'Scalar(dobule)': 'const Scalar&',
128
            'Scalar[]': 'const std::vector<phi::Scalar>&',
129
            'int': 'int',
130 131
            'int32_t': 'int32_t',
            'int64_t': 'int64_t',
132 133 134
            'long': 'long',
            'size_t': 'size_t',
            'float': 'float',
135
            'float[]': 'const std::vector<float>&',
136 137
            'double': 'double',
            'bool': 'bool',
138
            'str': 'const std::string&',
139
            'str[]': 'const std::vector<std::string>&',
140
            'Place': 'const Place&',
141 142
            'DataLayout': 'DataLayout',
            'DataType': 'DataType',
143 144
            'int64_t[]': 'const std::vector<int64_t>&',
            'int[]': 'const std::vector<int>&'
145 146
        }
        optional_types_trans = {
147
            'Tensor': 'const paddle::optional<Tensor>&',
148 149
            'Tensor[]': 'const paddle::optional<std::vector<Tensor>>&',
            'int': 'paddle::optional<int>',
150 151
            'int32_t': 'paddle::optional<int32_t>',
            'int64_t': 'paddle::optional<int64_t>',
152 153 154
            'float': 'paddle::optional<float>',
            'double': 'paddle::optional<double>',
            'bool': 'paddle::optional<bool>',
155
            'Place': 'paddle::optional<const Place&>',
156
            'DataLayout': 'paddle::optional<DataLayout>',
157
            'DataType': 'paddle::optional<DataType>'
158 159
        }

160 161
        for item in args_list:
            item = item.strip()
Z
zyfncg 已提交
162
            type_and_name = item.split(' ')
163 164
            # match the input tensor
            has_input = False
Z
zyfncg 已提交
165 166 167
            for in_type_symbol, in_type in input_types_map.items():
                if type_and_name[0] == in_type_symbol:
                    input_name = type_and_name[1].strip()
168 169 170 171 172
                    assert len(input_name) > 0, \
                        f"The input tensor name should not be empty. Please check the args of {api_name} in yaml."
                    assert len(attrs['names']) == 0, \
                        f"The input Tensor should appear before attributes. please check the position of {api_name}:input({input_name}) in yaml"

173 174 175
                    if input_name in optional_vars:
                        in_type = optional_types_trans[in_type_symbol]

176 177 178 179 180 181 182 183
                    inputs['names'].append(input_name)
                    inputs['input_info'][input_name] = in_type
                    has_input = True
                    break
            if has_input:
                continue

            # match the attribute
Z
zyfncg 已提交
184 185 186
            for attr_type_symbol, attr_type in attr_types_map.items():
                if type_and_name[0] == attr_type_symbol:
                    attr_name = item[len(attr_type_symbol):].strip()
187 188 189 190 191 192 193 194
                    assert len(attr_name) > 0, \
                        f"The attribute name should not be empty. Please check the args of {api_name} in yaml."
                    default_value = None
                    if '=' in attr_name:
                        attr_infos = attr_name.split('=')
                        attr_name = attr_infos[0].strip()
                        default_value = attr_infos[1].strip()

195 196 197
                    if attr_name in optional_vars:
                        attr_type = optional_types_trans[attr_type_symbol]

198 199 200 201 202
                    default_value_str = "" if default_value is None else '=' + default_value
                    attrs['names'].append(attr_name)
                    attrs['attr_info'][attr_name] = (attr_type, default_value)
                    break

203
        return inputs, attrs
204 205

    def parse_output(self, api_name, output_config):
206

207
        def parse_output_item(output_item):
Z
zyfncg 已提交
208 209 210 211
            output_type_map = {
                'Tensor': 'Tensor',
                'Tensor[]': 'std::vector<Tensor>'
            }
212 213 214 215 216 217 218 219 220 221 222 223 224 225
            result = re.search(
                r"(?P<out_type>[a-zA-Z0-9_[\]]+)\s*(?P<name>\([a-zA-Z0-9_@]+\))?\s*(?P<expr>\{[^\}]+\})?",
                output_item)
            assert result is not None, f"{api_name} : the output config parse error."
            out_type = result.group('out_type')
            assert out_type in output_type_map, \
                f"{api_name} : Output type error: the output type only support Tensor and Tensor[], \
                  but now is {out_type}."

            out_name = 'out' if result.group('name') is None else result.group(
                'name')[1:-1]
            out_size_expr = None if result.group(
                'expr') is None else result.group('expr')[1:-1]
            return output_type_map[out_type], out_name, out_size_expr
226 227 228 229

        temp_list = output_config.split(',')

        if len(temp_list) == 1:
230
            out_type, out_name, size_expr = parse_output_item(temp_list[0])
231
            return [out_type], [out_name], [size_expr]
232 233 234
        else:
            out_type_list = []
            out_name_list = []
235
            out_size_expr_list = []
236
            for output_item in temp_list:
237
                out_type, out_name, size_expr = parse_output_item(output_item)
238 239
                out_type_list.append(out_type)
                out_name_list.append(out_name)
240
                out_size_expr_list.append(size_expr)
241

242
            return out_type_list, out_name_list, out_size_expr_list
243

244 245 246 247 248 249 250 251 252 253 254 255 256 257
    def parse_infer_meta(self, infer_meta_config):
        infer_meta = infer_meta_config
        if 'param' not in infer_meta_config:
            infer_meta['param'] = None

        return infer_meta

    def parse_kernel(self, kernel_config):
        # kernel :
        #    func : [], Kernel functions (example: scale, scale_sr)
        #    param : [], Input params of kernel
        #    backend : str, the names of param to choose the kernel backend, default is None
        #    layout : str, the names of param to choose the kernel layout, default is None
        #    data_type : str, the names of param to choose the kernel data_type, default is None
258
        #    dispatch : {}, the key is kernel_func, the value is type of inputs and outputs for kernel (example: {kernel_name : (['dense','sparse_coo']#input,['sparse_coo']#output)})
259 260 261 262 263
        kernel = {
            'func': [],
            'param': None,
            'backend': None,
            'layout': None,
Z
zyfncg 已提交
264
            'data_type': None,
265 266
            'use_gpudnn': 'false',
            'dispatch': {}
267 268 269 270 271 272 273 274 275
        }
        if 'backend' in kernel_config and len(kernel_config['backend']) > 0:
            kernel['backend'] = kernel_config['backend']
        if 'layout' in kernel_config and len(kernel_config['layout']) > 0:
            kernel['layout'] = kernel_config['layout']
        if 'data_type' in kernel_config and len(kernel_config['data_type']) > 0:
            kernel['data_type'] = kernel_config['data_type']
        if 'param' in kernel_config:
            kernel['param'] = kernel_config['param']
276 277 278 279
        if 'use_gpudnn' in kernel_config:
            kernel['use_gpudnn'] = kernel_config['use_gpudnn']
            if isinstance(kernel['use_gpudnn'], bool):
                kernel['use_gpudnn'] = str(kernel['use_gpudnn']).lower()
280 281 282 283 284 285 286 287 288
        kernel_funcs = re.compile(r'([a-zA-Z0-9_]+)\s*({[^}]+})?').findall(
            kernel_config['func'])

        def parse_kernel_in_out_type(in_out_str):
            if len(in_out_str) == 0:
                return None
            tmp_in_out_list = in_out_str[1:-1].split('->')
            inputs = [item.strip() for item in tmp_in_out_list[0].split(',')]
            outputs = [item.strip() for item in tmp_in_out_list[1].split(',')]
289 290 291 292 293 294 295 296 297 298 299

            # check the tensor type
            for item in inputs:
                assert item in [
                    'dense', 'selected_rows', 'sparse_coo', 'sparse_csr'
                ], f"{self.api} : Invalid input tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."
            for item in outputs:
                assert item in [
                    'dense', 'selected_rows', 'sparse_coo', 'sparse_csr'
                ], f"{self.api} : Invalid output tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."

300 301 302 303 304 305
            return (inputs, outputs)

        for func_item in kernel_funcs:
            kernel['func'].append(func_item[0])
            kernel['dispatch'][func_item[0]] = parse_kernel_in_out_type(
                func_item[1])
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

        return kernel

    def parse_data_transform(self, api_item_yaml):
        data_transform = {'skip_transform': [], 'support_trans_dtype': []}
        if 'data_transform' in api_item_yaml:
            if 'skip_transform' in api_item_yaml['data_transform']:
                data_transform['skip_transform'] = api_item_yaml[
                    'data_transform']['skip_transform']
            if 'support_trans_dtype' in api_item_yaml['data_transform']:
                data_transform['support_trans_dtype'] = api_item_yaml[
                    'data_transform']['support_trans_dtype']

        return data_transform

321
    # Override by child class
322
    def get_return_type(self, inplace_flag=False):
323 324 325
        return None

    def gene_api_declaration(self):
326 327 328 329 330
        api_declaration = ""
        api_func_name = self.get_api_func_name()
        if api_func_name[-1] != '_':
            api_declaration = f"""
PADDLE_API {self.get_return_type()} {api_func_name}({self.get_declare_args()});
331 332
"""

333 334 335
        if self.is_base_api and len(self.inplace_map) > 0:
            if api_func_name[-1] != '_':
                api_func_name += '_'
336
            api_declaration = api_declaration + f"""
337
PADDLE_API {self.get_return_type(inplace_flag=True)} {api_func_name}({self.get_declare_args(inplace_flag=True)});
338 339 340 341
"""

        return api_declaration

342 343 344 345 346 347 348 349 350
    # Backward API Override this method
    def gene_kernel_backend_select(self):
        backend_select_code = ""
        if self.kernel['backend'] is not None:
            if '>' in self.kernel['backend']:
                vars_list = self.kernel['backend'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{self.api} api: The number of params to set backend with '>' only allows 2, but received {len(vars_list)}."
351
                assert (vars_list[0].strip() in self.attrs['names']) and (self.attrs['attr_info'][vars_list[0].strip()][0] == 'const Place&'), \
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
                    f"{self.api} api: When use '>' to set kernel backend, the first param should be a attribute with Place type."
                backend_select_code = f"""
  kernel_backend = ParseBackendWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                backend_args = [
                    ele.strip() for ele in self.kernel['backend'].split(',')
                ]
                backend_select_code = f"""
  kernel_backend = ParseBackend({", ".join(backend_args)});
"""

        return backend_select_code

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
    def gene_kernel_select(self) -> str:
        api = self.api
        input_names = self.inputs['names']
        attrs = self.attrs
        kernel = self.kernel

        kernel_key_item_init = """
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
"""
        # Check the tensor options
        attr_backend_count = 0
        attr_layout_count = 0
        attr_data_type_count = 0
        for attr_name in attrs['names']:
383
            if attrs['attr_info'][attr_name][0] == 'const Place&':
384
                assert kernel['backend'] is not None, \
385
                    f"{api} api: When there is a parameter with 'Place' type in attributes, you must set backend of kernel manually."
386 387 388 389 390 391 392 393 394 395 396
                attr_backend_count = attr_backend_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataLayout':
                assert kernel['layout'] is not None, \
                    f"{api} api: When there is a parameter with 'DataLayout' type in attributes, you must set layout of kernel manually."
                attr_layout_count = attr_layout_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataType':
                assert kernel['data_type'] is not None, \
                    f"{api} api: When there is a parameter with 'DataType' type in attributes, you must set data_type of kernel manually."
                attr_data_type_count = attr_data_type_count + 1

        # preprocess kernel configures
397
        kernel_select_code = self.gene_kernel_backend_select()
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435

        if kernel['layout'] is not None:
            if '>' in kernel['layout']:
                vars_list = kernel['layout'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{api} api: The number of params to set layout with '>' only allows 2, but received {len(vars_list)}."
                assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataLayout', \
                    f"{api} api: When use '>' to set kernel layout, the first param should be a attribute with DataLayout type."
                kernel_select_code = kernel_select_code + f"""
  kernel_layout = ParseLayoutWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                vars_list = kernel['layout'].split(',')
                assert len(
                    vars_list
                ) == 1, f"{api} api: The number of params to set layout must be 1, but received {len(vars_list)}."
                kernel_select_code = kernel_select_code + f"""
  kernel_layout = ParseLayout({vars_list[0].strip()});
"""

        if kernel['data_type'] is not None:
            if '>' in kernel['data_type']:
                vars_list = kernel['data_type'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{api} api: The number of params to set data_type with '>' only allows 2, but received {len(vars_list)}."
                assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataType', \
                    f"{api} api: When use '>' to set kernel data_type, the first param should be a attribute with DataType type."
                kernel_select_code = kernel_select_code + f"""
  kernel_data_type = ParseDataTypeWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                vars_list = kernel['data_type'].split(',')
                assert len(
                    vars_list
436
                ) == 1, f"{api} api: The number of params to set data_type only allows 1, but received {len(vars_list)}."
437 438 439 440 441
                kernel_select_code = kernel_select_code + f"""
  kernel_data_type = ParseDataType({vars_list[0].strip()});
"""

        if len(input_names) == 0:
442
            assert attr_backend_count > 0 and attr_data_type_count > 0, \
443
                f"{api} api: When there is no input tensor, the args must have 'Place' and 'DataType'."
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459

        kernel_select_args = ""
        for input_name in input_names:
            kernel_select_args = kernel_select_args + input_name + ", "

        if len(kernel_select_args) > 2:
            kernel_select_args = kernel_select_args[:-2]

        kernel_select_code = kernel_key_item_init + kernel_select_code

        if len(input_names) > 0:
            kernel_select_code = kernel_select_code + f"""
  if (kernel_backend == Backend::UNDEFINED
        || kernel_layout == DataLayout::UNDEFINED
        || kernel_data_type == DataType::UNDEFINED ) {{
    auto kernel_key_set = ParseKernelKeyByInputArgs({kernel_select_args});
460
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
461 462 463 464 465 466 467 468 469 470 471 472 473
    if (kernel_backend == Backend::UNDEFINED) {{
      kernel_backend = kernel_key.backend();
    }}
    if (kernel_layout == DataLayout::UNDEFINED) {{
      kernel_layout = kernel_key.layout();
    }}
    if (kernel_data_type == DataType::UNDEFINED) {{
      kernel_data_type = kernel_key.dtype();
    }}
  }}"""

        return kernel_select_code

474
    def gene_infer_meta(self, kernel_output_names, code_indent) -> str:
475 476 477 478
        input_names = self.inputs['names']
        attr_names = self.attrs['names']
        infer_meta = self.infer_meta

479 480
        infer_meta_params = infer_meta['param'] if infer_meta[
            'param'] is not None else input_names + attr_names
481 482 483 484 485
        # generate meta tensors
        meta_tensor_code = ""
        param_code = ""
        for param in infer_meta_params:
            if param in input_names:
486 487 488 489 490
                if self.inputs['input_info'][param] == "const Tensor&":
                    param_code = param_code + "MakeMetaTensor(*" + PREFIX_TENSOR_NAME + param + "), "
                elif self.inputs['input_info'][
                        param] == "const std::vector<Tensor>&":
                    meta_tensor_code = meta_tensor_code + f"""
491
{code_indent}  auto {param}_meta_vec = MakeMetaTensor({PREFIX_TENSOR_NAME}{param});
492
{code_indent}  std::vector<const phi::MetaTensor*> {param}_metas({param}_meta_vec.size());
493 494 495 496 497 498 499
{code_indent}  for (size_t i = 0; i < {param}_meta_vec.size(); ++i) {{
{code_indent}    {param}_metas[i] = &{param}_meta_vec[i];
{code_indent}  }}
"""

                    param_code = param_code + param + "_metas, "
                elif param in self.optional_vars:
500
                    param_code = param_code + "MakeMetaTensor(" + PREFIX_TENSOR_NAME + param + "), "
501
                else:
502 503 504
                    raise ValueError(
                        f"{self.api} : Param of infer_meta error : {self.inputs['input_info'][param]} type is not supported."
                    )
505 506 507 508 509 510 511 512 513
            elif param in attr_names:
                param_code = param_code + param + ", "
            elif isinstance(param, str):
                param_code = param_code + "\"" + param + "\", "
            elif isinstance(param, bool):
                param_code = param_code + str(param).lower() + ", "
            else:
                param_code = param_code + str(param) + ", "

514 515 516 517 518 519
        for i, out_name in enumerate(kernel_output_names):
            if self.outputs['types'][i] == 'std::vector<Tensor>':
                meta_tensor_code = meta_tensor_code + f"""
{code_indent}  auto {out_name}_{PREFIX_META_TENSOR_NAME}vec = MakeMetaTensor({out_name});
{code_indent}  std::vector<phi::MetaTensor*> {out_name}_metas({out_name}_{PREFIX_META_TENSOR_NAME}vec.size());
{code_indent}  for (size_t i = 0; i < {out_name}_{PREFIX_META_TENSOR_NAME}vec.size(); ++i) {{
520
{code_indent}    {out_name}_metas[i] = {out_name}[i] ? &{out_name}_{PREFIX_META_TENSOR_NAME}vec[i] : nullptr;
521 522 523 524 525 526 527
{code_indent}  }}"""

                param_code = param_code + out_name + '_metas, '
            else:
                meta_tensor_code = meta_tensor_code + code_indent + "  phi::MetaTensor " + out_name.replace(
                    'kernel_',
                    PREFIX_META_TENSOR_NAME) + "(" + out_name + ");\n"
528 529 530 531
                if len(kernel_output_names) == 1:
                    param_code = param_code + f"&{out_name.replace('kernel_', PREFIX_META_TENSOR_NAME)}, "
                else:
                    param_code = param_code + f"{out_name} ? &{out_name.replace('kernel_', PREFIX_META_TENSOR_NAME)} : nullptr, "
532

533 534
        param_code = param_code[:-2]
        return f"""{meta_tensor_code}
535
{code_indent}  phi::{infer_meta['func']}({param_code});
536 537
"""

538 539
    def get_kernel_args(self, kernel_tensor_type=None, code_indent=''):
        dense_input_trans_map = {
540 541
            'const Tensor&':
            'const phi::DenseTensor&',
542
            'const std::vector<Tensor>&':
543
            'const std::vector<const phi::DenseTensor*>&',
H
hong 已提交
544 545
            'const paddle::optional<Tensor&>':
            'paddle::optional<const phi::DenseTensor&>',
546 547
            'const paddle::optional<Tensor>&':
            'const paddle::optional<phi::DenseTensor>&',
548 549
            'const paddle::optional<std::vector<Tensor>>&':
            'paddle::optional<const std::vector<phi::DenseTensor>&>'
550
        }
551
        dense_out_trans_map = {
552 553
            'Tensor': 'phi::DenseTensor*',
            'std::vector<Tensor>': 'std::vector<phi::DenseTensor*>&'
554
        }
555 556 557 558 559 560 561
        sr_input_trans_map = {
            'const Tensor&':
            'const phi::SelectedRows&',
            'const paddle::optional<Tensor>&':
            'const paddle::optional<phi::SelectedRows>&'
        }
        sr_out_trans_map = {'Tensor': 'phi::SelectedRows*'}
562 563 564 565 566 567 568 569 570 571 572 573 574
        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']
        kernel_args_type_list = ['const platform::DeviceContext&']

        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        input_tensor_code = ""
        for i, input_name in enumerate(input_names):
            # set input code
            if input_name in kernel_param:
575 576 577 578 579 580 581 582 583 584 585
                # input is dense tensor
                if kernel_tensor_type is None or kernel_tensor_type[0][
                        kernel_param.index(input_name)] == 'dense':
                    trans_flag = "{}"
                    if input_name in self.data_transform['skip_transform']:
                        trans_flag = "{true}"
                    elif input_name in self.data_transform[
                            'support_trans_dtype']:
                        trans_flag = "{false, true}"
                    if input_name in self.optional_vars:
                        input_tensor_code = input_tensor_code + f"""
586
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = PrepareData({input_name}, kernel.InputAt({kernel_param.index(input_name)}), {trans_flag});"""
587

588 589 590 591
                    else:
                        if self.inputs['input_info'][
                                input_name] == "const Tensor&":
                            input_tensor_code = input_tensor_code + f"""
592
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = PrepareData({input_name}, kernel.InputAt({kernel_param.index(input_name)}), {trans_flag});"""
593

594 595 596
                        elif self.inputs['input_info'][
                                input_name] == "const std::vector<Tensor>&":
                            input_tensor_code = input_tensor_code + f"""
597
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_vec = PrepareData({input_name}, kernel.InputAt({kernel_param.index(input_name)}), {trans_flag});
598 599 600 601 602
{code_indent}  std::vector<const phi::DenseTensor*> {PREFIX_TENSOR_NAME}{input_name}({PREFIX_TENSOR_NAME}{input_name}_vec->size());
{code_indent}  for (size_t i = 0; i < {PREFIX_TENSOR_NAME}{input_name}.size(); ++i) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name}[i] = &{PREFIX_TENSOR_NAME}{input_name}_vec->at(i);
{code_indent}  }}"""

603 604 605 606
                        else:
                            # do nothing
                            pass
                else:  # input is selected_rows
607
                    input_tensor_code = input_tensor_code + f"""
608 609 610 611 612 613
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = TensorToSelectedRows({input_name});"""
            else:
                if input_name in self.infer_meta['param']:
                    if input_name in self.optional_vars:
                        input_tensor_code = input_tensor_code + f"""
{code_indent}  paddle::optional<phi::TensorBase> {PREFIX_TENSOR_NAME}{input_name} = {input_name} ? paddle::optional<phi::TensorBase>(*{input_name}->impl()) : paddle::none;"""
614

615
                    else:
616 617 618 619 620 621 622
                        if self.inputs['input_info'][
                                input_name] == "const std::vector<Tensor>&":
                            input_tensor_code = input_tensor_code + f"""
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_uq_ptr = TensorToDenseTensor({input_name});
{code_indent}  const auto& {PREFIX_TENSOR_NAME}{input_name} = *{PREFIX_TENSOR_NAME}{input_name}_uq_ptr;"""
                        else:
                            input_tensor_code = input_tensor_code + f"""
623
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = {input_name}.impl();"""
624

625
        kernel_args = ["*dev_ctx"]
626 627
        for param in kernel_param:
            if param in input_names:
628
                if param in self.optional_vars:
629
                    kernel_args.append(PREFIX_TENSOR_NAME + param)
630
                else:
631
                    if self.inputs['input_info'][param] == "const Tensor&":
632
                        kernel_args.append("*" + PREFIX_TENSOR_NAME + param)
633
                    elif self.inputs['input_info'][
634
                            param] == "const std::vector<Tensor>&":
635
                        kernel_args.append(PREFIX_TENSOR_NAME + param)
636 637 638
                    else:
                        # do nothing
                        pass
639 640 641
                # input is dense tensor
                if kernel_tensor_type is None or kernel_tensor_type[0][
                        kernel_param.index(param)] == 'dense':
642
                    kernel_args_type_list.append(
643 644 645 646
                        dense_input_trans_map[input_infos[param]])
                else:  # input is selected_rows
                    kernel_args_type_list.append(
                        sr_input_trans_map[input_infos[param]])
647 648
            elif param in attr_names:
                # set attr for kernel_context
649 650 651
                if 'IntArray' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append('const phi::IntArray&')
                    param = 'phi::IntArray(' + param + ')'
652 653 654 655
                elif 'vector<phi::Scalar>' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append(
                        'const std::vector<phi::Scalar>&')
                    param = param
656
                elif 'Scalar' in self.attrs['attr_info'][param][0]:
657 658
                    kernel_args_type_list.append('const phi::Scalar&')
                    param = 'phi::Scalar(' + param + ')'
659
                else:
660 661
                    kernel_args_type_list.append(
                        self.attrs['attr_info'][param][0])
662
                kernel_args.append(param)
663
            elif isinstance(param, bool):
664
                kernel_args.append(str(param).lower())
665
            else:
666
                kernel_args.append(str(param))
667

668 669 670 671 672 673
        for i, out_type in enumerate(self.outputs['types']):
            # output is dense tensor
            if kernel_tensor_type is None or kernel_tensor_type[1][i] == 'dense':
                kernel_args_type_list.append(dense_out_trans_map[out_type])
            else:  # output is selected_rows
                kernel_args_type_list.append(sr_out_trans_map[out_type])
674 675 676

        kernel_signature = "void(*)(" + ", ".join(kernel_args_type_list) + ")"

677
        return input_tensor_code, ", ".join(kernel_args), kernel_signature
678

679 680
    # Override by child class
    def gene_return_code(self):
681
        return "return api_output;"
682

683
    # Override by child class
684
    def gene_output(self,
685 686 687
                    out_dtype_list,
                    out_tensor_type_list=None,
                    code_indent='',
688
                    inplace_flag=False):
689 690
        return None, None, None

691 692
    def gen_kernel_code(self, kernel_name, code_indent, inplace_flag=False):
        kernel_dispatch = self.kernel['dispatch'][kernel_name]
693
        input_tensors, kernel_args, kernel_signature = self.get_kernel_args(
694 695
            kernel_dispatch, code_indent)
        out_tensor_type_list = kernel_dispatch[1] if kernel_dispatch else None
696
        outputs_args, kernel_output_names, output_create = self.gene_output(
697 698
            self.outputs['types'], out_tensor_type_list, code_indent,
            inplace_flag)
699 700 701 702 703
        fallback_kernel_output_trans = ""
        for kernel_out in outputs_args:
            fallback_kernel_output_trans += (f"""
{code_indent}    TransDataBackend({kernel_out}, kernel_backend, {kernel_out});"""
                                             )
Z
zyfncg 已提交
704
        cudnn_args = '' if self.kernel[
705
            'use_gpudnn'] == 'false' else ', ' + self.kernel['use_gpudnn']
706
        return f"""
F
From00 已提交
707
{code_indent}  VLOG(6) << "{self.api} API kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
708
{code_indent}  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
709
{code_indent}      "{kernel_name}", {{kernel_backend, kernel_layout, kernel_data_type}}{cudnn_args});
710
{code_indent}  const auto& kernel = kernel_result.kernel;
711
{code_indent}  VLOG(6) << "{kernel_name} kernel: " << kernel;
712

713
{code_indent}  auto* dev_ctx = GetDeviceContextByBackend(kernel_result.has_fallback_cpu ? Backend::CPU : kernel_backend);
714 715 716 717 718 719
{input_tensors}
{output_create}
{self.gene_infer_meta(kernel_output_names, code_indent)}

{code_indent}  using kernel_signature = {kernel_signature};
{code_indent}  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
720
{code_indent}  {{
721
{code_indent}    paddle::platform::RecordEvent kernel_record_event(\"{kernel_name} compute\", paddle::platform::TracerEventType::OperatorInner, 1);
722 723 724 725
{code_indent}    (*kernel_fn)({kernel_args}, {", ".join(outputs_args)});
{code_indent}  }}
{code_indent}  if (kernel_result.has_fallback_cpu) {{
{fallback_kernel_output_trans}
726
{code_indent}  }}
727

728
{code_indent}  {self.gene_return_code()}"""
729

730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
    def get_condition_code(self, kernel_name):
        assert self.kernel['dispatch'][kernel_name], \
                f"{self.api} api: the tensor type of inputs and outputs for kernel isn't set, see also 'kernel:func' of 'scale' in api.yaml."
        input_types = self.kernel['dispatch'][kernel_name][0]
        condition_list = []
        for i, in_type in enumerate(input_types):
            if in_type == "dense":
                if self.inputs['names'][i] in self.optional_vars:
                    condition_list.append(
                        f"(!{self.inputs['names'][i]} || {self.inputs['names'][i]}->is_dense_tensor())"
                    )
                else:
                    condition_list.append(
                        f"{self.inputs['names'][i]}.is_dense_tensor()")
            else:
                if self.inputs['names'][i] in self.optional_vars:
                    condition_list.append(
                        f"(!{self.inputs['names'][i]} || {self.inputs['names'][i]}->is_selected_rows())"
                    )
                else:
                    condition_list.append(
                        f"{self.inputs['names'][i]}.is_selected_rows()")
        return " && ".join(condition_list)
753

754 755 756 757 758 759
    def gene_dispatch_code(self, kernel_name, inplace_flag=False):
        return f"""
  if ({self.get_condition_code(kernel_name)}) {{
{self.gen_kernel_code(kernel_name, '  ', inplace_flag)}
  }}
"""
760

761
    def gene_base_api_code(self, inplace_flag=False):
762 763 764
        api_func_name = self.get_api_func_name()
        if inplace_flag and api_func_name[-1] != '_':
            api_func_name += '_'
765
        api_code = f"""
766
PADDLE_API {self.get_return_type(inplace_flag)} {api_func_name}({self.get_define_args(inplace_flag)}) {{
767
{self.gene_kernel_select()}
768
"""
769

770 771 772 773 774
        if len(self.kernel['func']) > 1:
            kernel_dispatch_code = ''
            for kernel_name in self.kernel['func']:
                kernel_dispatch_code += self.gene_dispatch_code(
                    kernel_name, inplace_flag)
775
            return api_code + f"""
776 777 778
{kernel_dispatch_code}
  PADDLE_THROW(phi::errors::Unimplemented(
          "The kernel of ({self.api}) for input tensors is unimplemented, please check the type of input tensors."));
779
}}
780
"""
781
        else:
782 783
            return api_code + self.gen_kernel_code(self.kernel['func'][0], '',
                                                   inplace_flag) + """
784
}
785 786
"""

787 788
    def gene_invoke_code(self, invoke_code, params_code):
        return f"""
789
PADDLE_API {self.get_return_type()} {self.api}({params_code}) {{
790 791 792
  return {invoke_code};
}}"""

793 794 795
    def gene_api_code(self):
        if self.is_base_api:
            api_code = self.gene_base_api_code()
796
            if len(self.inplace_map) > 0:
Z
zyfncg 已提交
797 798
                if self.api[-1] == '_':
                    api_code = ""
799 800 801
                api_code = api_code + self.gene_base_api_code(inplace_flag=True)
            return api_code

802
        else:
803 804
            invoke_func_name = self.invoke.split('(')[0].strip()
            if invoke_func_name in self.attrs['names']:
805
                # Adjust the param whose name is same with api invoked.
806
                pattern = r'\W' + invoke_func_name + '[^A-Za-z0-9_(]'
807 808 809 810 811 812 813

                def adjust_name(matched):
                    matched_str = matched.group()
                    return matched_str[0:-1] + '_val' + matched_str[-1]

                invoke_code = re.sub(pattern, adjust_name, self.invoke)
                params_code = re.sub(pattern, adjust_name,
814
                                     self.get_define_args())
815 816
            else:
                invoke_code = self.invoke
817 818
                params_code = self.get_define_args()
            return self.gene_invoke_code(invoke_code, params_code)