api_base.py 35.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re

17
PREFIX_TENSOR_NAME = 'input_'
18 19 20 21
PREFIX_META_TENSOR_NAME = 'meta_'


class BaseAPI(object):
22

23 24 25 26 27 28 29 30 31 32 33 34
    def __init__(self, api_item_yaml):
        self.api = self.get_api_name(api_item_yaml)

        # inputs:
        #     names : [], list of input names
        #     input_info : {input_name : type}
        # attrs:
        #     names : [], list of attribute names
        #     attr_info : { attr_name : (type, default_values)}
        # outputs:
        #     names : [], list of output names
        #     types : [], list of output types
35
        #     out_size_expr : [], expression for getting size of vector<Tensor>
36
        self.inputs, self.attrs, self.outputs, self.optional_vars = self.parse_args(
37 38 39 40 41 42 43
            self.api, api_item_yaml)

        self.is_base_api = True
        if 'invoke' in api_item_yaml:
            self.is_base_api = False
            self.invoke = api_item_yaml['invoke']
        else:
44
            if 'infer_meta' in api_item_yaml:
45 46
                self.infer_meta = self.parse_infer_meta(
                    api_item_yaml['infer_meta'])
47 48
            self.kernel = self.parse_kernel(api_item_yaml['kernel'])
            self.data_transform = self.parse_data_transform(api_item_yaml)
49
            self.inplace_map, self.view_map = {}, {}
50 51 52 53

    def get_api_name(self, api_item_yaml):
        return api_item_yaml['api']

54 55 56
    def get_api_func_name(self):
        return self.api

57 58 59 60
    def get_input_tensor_args(self, inplace_flag=False):
        input_args = []
        inplace_type_map = {
            "const Tensor&": "Tensor&",
61
            "const paddle::optional<Tensor>&": "paddle::optional<Tensor>&",
62 63 64 65 66
            "const std::vector<Tensor>&": "std::vector<Tensor>&"
        }
        for name in self.inputs['names']:
            name = name.split('@')[0]
            if inplace_flag and name in self.inplace_map.values():
67 68 69
                input_args.append(
                    inplace_type_map[self.inputs['input_info'][name]] + ' ' +
                    name)
70 71 72 73 74 75 76 77 78 79 80 81
            else:
                input_args.append(self.inputs['input_info'][name] + ' ' + name)
        return input_args

    def get_declare_args(self, inplace_flag=False):
        declare_args = self.get_input_tensor_args(inplace_flag)
        for name in self.attrs['names']:
            default_value = ''
            if self.attrs['attr_info'][name][1] is not None:
                default_value = ' = ' + self.attrs['attr_info'][name][1]
            declare_args.append(self.attrs['attr_info'][name][0] + ' ' + name +
                                default_value)
82

83 84 85 86 87 88 89 90
        return ", ".join(declare_args)

    def get_define_args(self, inplace_flag=False):
        define_args = self.get_input_tensor_args(inplace_flag)
        for name in self.attrs['names']:
            define_args.append(self.attrs['attr_info'][name][0] + ' ' + name)

        return ", ".join(define_args)
91

92
    def parse_args(self, api_name, api_item_yaml):
93 94 95 96 97
        optional_vars = []
        if 'optional' in api_item_yaml:
            optional_vars = [
                item.strip() for item in api_item_yaml['optional'].split(',')
            ]
98 99 100
        inputs, attrs = self.parse_input_and_attr(api_name,
                                                  api_item_yaml['args'],
                                                  optional_vars)
101
        output_type_list, output_names, out_size_expr = self.parse_output(
102 103 104 105
            api_name, api_item_yaml['output'])
        return inputs, attrs, {
            'names': output_names,
            'types': output_type_list,
106 107
            'out_size_expr': out_size_expr
        }, optional_vars
108

109
    def parse_input_and_attr(self, api_name, args_config, optional_vars=[]):
110 111 112 113 114 115 116
        inputs = {'names': [], 'input_info': {}}
        attrs = {'names': [], 'attr_info': {}}
        args_str = args_config.strip()
        assert args_str.startswith('(') and args_str.endswith(')'), \
            f"Args declaration should start with '(' and end with ')', please check the args of {api_name} in yaml."
        args_str = args_str[1:-1]
        args_list = args_str.split(',')
Z
zyfncg 已提交
117 118 119 120
        input_types_map = {
            'Tensor': 'const Tensor&',
            'Tensor[]': 'const std::vector<Tensor>&'
        }
121
        attr_types_map = {
122
            'IntArray': 'const IntArray&',
123
            'Scalar': 'const Scalar&',
124 125 126 127
            'Scalar(int)': 'const Scalar&',
            'Scalar(int64_t)': 'const Scalar&',
            'Scalar(float)': 'const Scalar&',
            'Scalar(dobule)': 'const Scalar&',
128
            'int': 'int',
129 130
            'int32_t': 'int32_t',
            'int64_t': 'int64_t',
131 132 133
            'long': 'long',
            'size_t': 'size_t',
            'float': 'float',
134
            'float[]': 'const std::vector<float>&',
135 136
            'double': 'double',
            'bool': 'bool',
137
            'str': 'const std::string&',
138
            'str[]': 'const std::vector<std::string>&',
139
            'Place': 'const Place&',
140 141
            'DataLayout': 'DataLayout',
            'DataType': 'DataType',
142 143
            'int64_t[]': 'const std::vector<int64_t>&',
            'int[]': 'const std::vector<int>&'
144 145
        }
        optional_types_trans = {
146
            'Tensor': 'const paddle::optional<Tensor>&',
147 148
            'Tensor[]': 'const paddle::optional<std::vector<Tensor>>&',
            'int': 'paddle::optional<int>',
149 150
            'int32_t': 'paddle::optional<int32_t>',
            'int64_t': 'paddle::optional<int64_t>',
151 152 153
            'float': 'paddle::optional<float>',
            'double': 'paddle::optional<double>',
            'bool': 'paddle::optional<bool>',
154
            'Place': 'paddle::optional<const Place&>',
155
            'DataLayout': 'paddle::optional<DataLayout>',
156
            'DataType': 'paddle::optional<DataType>'
157 158
        }

159 160
        for item in args_list:
            item = item.strip()
Z
zyfncg 已提交
161
            type_and_name = item.split(' ')
162 163
            # match the input tensor
            has_input = False
Z
zyfncg 已提交
164 165 166
            for in_type_symbol, in_type in input_types_map.items():
                if type_and_name[0] == in_type_symbol:
                    input_name = type_and_name[1].strip()
167 168 169 170 171
                    assert len(input_name) > 0, \
                        f"The input tensor name should not be empty. Please check the args of {api_name} in yaml."
                    assert len(attrs['names']) == 0, \
                        f"The input Tensor should appear before attributes. please check the position of {api_name}:input({input_name}) in yaml"

172 173 174
                    if input_name in optional_vars:
                        in_type = optional_types_trans[in_type_symbol]

175 176 177 178 179 180 181 182
                    inputs['names'].append(input_name)
                    inputs['input_info'][input_name] = in_type
                    has_input = True
                    break
            if has_input:
                continue

            # match the attribute
Z
zyfncg 已提交
183 184 185
            for attr_type_symbol, attr_type in attr_types_map.items():
                if type_and_name[0] == attr_type_symbol:
                    attr_name = item[len(attr_type_symbol):].strip()
186 187 188 189 190 191 192 193
                    assert len(attr_name) > 0, \
                        f"The attribute name should not be empty. Please check the args of {api_name} in yaml."
                    default_value = None
                    if '=' in attr_name:
                        attr_infos = attr_name.split('=')
                        attr_name = attr_infos[0].strip()
                        default_value = attr_infos[1].strip()

194 195 196
                    if attr_name in optional_vars:
                        attr_type = optional_types_trans[attr_type_symbol]

197 198 199 200 201
                    default_value_str = "" if default_value is None else '=' + default_value
                    attrs['names'].append(attr_name)
                    attrs['attr_info'][attr_name] = (attr_type, default_value)
                    break

202
        return inputs, attrs
203 204

    def parse_output(self, api_name, output_config):
205

206
        def parse_output_item(output_item):
Z
zyfncg 已提交
207 208 209 210
            output_type_map = {
                'Tensor': 'Tensor',
                'Tensor[]': 'std::vector<Tensor>'
            }
211 212 213 214 215 216 217 218 219 220 221 222 223 224
            result = re.search(
                r"(?P<out_type>[a-zA-Z0-9_[\]]+)\s*(?P<name>\([a-zA-Z0-9_@]+\))?\s*(?P<expr>\{[^\}]+\})?",
                output_item)
            assert result is not None, f"{api_name} : the output config parse error."
            out_type = result.group('out_type')
            assert out_type in output_type_map, \
                f"{api_name} : Output type error: the output type only support Tensor and Tensor[], \
                  but now is {out_type}."

            out_name = 'out' if result.group('name') is None else result.group(
                'name')[1:-1]
            out_size_expr = None if result.group(
                'expr') is None else result.group('expr')[1:-1]
            return output_type_map[out_type], out_name, out_size_expr
225 226 227 228

        temp_list = output_config.split(',')

        if len(temp_list) == 1:
229
            out_type, out_name, size_expr = parse_output_item(temp_list[0])
230
            return [out_type], [out_name], [size_expr]
231 232 233
        else:
            out_type_list = []
            out_name_list = []
234
            out_size_expr_list = []
235
            for output_item in temp_list:
236
                out_type, out_name, size_expr = parse_output_item(output_item)
237 238
                out_type_list.append(out_type)
                out_name_list.append(out_name)
239
                out_size_expr_list.append(size_expr)
240

241
            return out_type_list, out_name_list, out_size_expr_list
242

243 244 245 246 247 248 249 250 251 252 253 254 255 256
    def parse_infer_meta(self, infer_meta_config):
        infer_meta = infer_meta_config
        if 'param' not in infer_meta_config:
            infer_meta['param'] = None

        return infer_meta

    def parse_kernel(self, kernel_config):
        # kernel :
        #    func : [], Kernel functions (example: scale, scale_sr)
        #    param : [], Input params of kernel
        #    backend : str, the names of param to choose the kernel backend, default is None
        #    layout : str, the names of param to choose the kernel layout, default is None
        #    data_type : str, the names of param to choose the kernel data_type, default is None
257
        #    dispatch : {}, the key is kernel_func, the value is type of inputs and outputs for kernel (example: {kernel_name : (['dense','sparse_coo']#input,['sparse_coo']#output)})
258 259 260 261 262
        kernel = {
            'func': [],
            'param': None,
            'backend': None,
            'layout': None,
Z
zyfncg 已提交
263
            'data_type': None,
264 265
            'use_gpudnn': 'false',
            'dispatch': {}
266 267 268 269 270 271 272 273 274
        }
        if 'backend' in kernel_config and len(kernel_config['backend']) > 0:
            kernel['backend'] = kernel_config['backend']
        if 'layout' in kernel_config and len(kernel_config['layout']) > 0:
            kernel['layout'] = kernel_config['layout']
        if 'data_type' in kernel_config and len(kernel_config['data_type']) > 0:
            kernel['data_type'] = kernel_config['data_type']
        if 'param' in kernel_config:
            kernel['param'] = kernel_config['param']
275 276 277 278
        if 'use_gpudnn' in kernel_config:
            kernel['use_gpudnn'] = kernel_config['use_gpudnn']
            if isinstance(kernel['use_gpudnn'], bool):
                kernel['use_gpudnn'] = str(kernel['use_gpudnn']).lower()
279 280 281 282 283 284 285 286 287
        kernel_funcs = re.compile(r'([a-zA-Z0-9_]+)\s*({[^}]+})?').findall(
            kernel_config['func'])

        def parse_kernel_in_out_type(in_out_str):
            if len(in_out_str) == 0:
                return None
            tmp_in_out_list = in_out_str[1:-1].split('->')
            inputs = [item.strip() for item in tmp_in_out_list[0].split(',')]
            outputs = [item.strip() for item in tmp_in_out_list[1].split(',')]
288 289 290 291 292 293 294 295 296 297 298

            # check the tensor type
            for item in inputs:
                assert item in [
                    'dense', 'selected_rows', 'sparse_coo', 'sparse_csr'
                ], f"{self.api} : Invalid input tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."
            for item in outputs:
                assert item in [
                    'dense', 'selected_rows', 'sparse_coo', 'sparse_csr'
                ], f"{self.api} : Invalid output tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."

299 300 301 302 303 304
            return (inputs, outputs)

        for func_item in kernel_funcs:
            kernel['func'].append(func_item[0])
            kernel['dispatch'][func_item[0]] = parse_kernel_in_out_type(
                func_item[1])
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

        return kernel

    def parse_data_transform(self, api_item_yaml):
        data_transform = {'skip_transform': [], 'support_trans_dtype': []}
        if 'data_transform' in api_item_yaml:
            if 'skip_transform' in api_item_yaml['data_transform']:
                data_transform['skip_transform'] = api_item_yaml[
                    'data_transform']['skip_transform']
            if 'support_trans_dtype' in api_item_yaml['data_transform']:
                data_transform['support_trans_dtype'] = api_item_yaml[
                    'data_transform']['support_trans_dtype']

        return data_transform

320
    # Override by child class
321
    def get_return_type(self, inplace_flag=False):
322 323 324
        return None

    def gene_api_declaration(self):
325 326 327 328 329
        api_declaration = ""
        api_func_name = self.get_api_func_name()
        if api_func_name[-1] != '_':
            api_declaration = f"""
PADDLE_API {self.get_return_type()} {api_func_name}({self.get_declare_args()});
330 331
"""

332 333 334
        if self.is_base_api and len(self.inplace_map) > 0:
            if api_func_name[-1] != '_':
                api_func_name += '_'
335
            api_declaration = api_declaration + f"""
336
PADDLE_API {self.get_return_type(inplace_flag=True)} {api_func_name}({self.get_declare_args(inplace_flag=True)});
337 338 339 340
"""

        return api_declaration

341 342 343 344 345 346 347 348 349
    # Backward API Override this method
    def gene_kernel_backend_select(self):
        backend_select_code = ""
        if self.kernel['backend'] is not None:
            if '>' in self.kernel['backend']:
                vars_list = self.kernel['backend'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{self.api} api: The number of params to set backend with '>' only allows 2, but received {len(vars_list)}."
350
                assert (vars_list[0].strip() in self.attrs['names']) and (self.attrs['attr_info'][vars_list[0].strip()][0] == 'const Place&'), \
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
                    f"{self.api} api: When use '>' to set kernel backend, the first param should be a attribute with Place type."
                backend_select_code = f"""
  kernel_backend = ParseBackendWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                backend_args = [
                    ele.strip() for ele in self.kernel['backend'].split(',')
                ]
                backend_select_code = f"""
  kernel_backend = ParseBackend({", ".join(backend_args)});
"""

        return backend_select_code

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
    def gene_kernel_select(self) -> str:
        api = self.api
        input_names = self.inputs['names']
        attrs = self.attrs
        kernel = self.kernel

        kernel_key_item_init = """
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
"""
        # Check the tensor options
        attr_backend_count = 0
        attr_layout_count = 0
        attr_data_type_count = 0
        for attr_name in attrs['names']:
382
            if attrs['attr_info'][attr_name][0] == 'const Place&':
383
                assert kernel['backend'] is not None, \
384
                    f"{api} api: When there is a parameter with 'Place' type in attributes, you must set backend of kernel manually."
385 386 387 388 389 390 391 392 393 394 395
                attr_backend_count = attr_backend_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataLayout':
                assert kernel['layout'] is not None, \
                    f"{api} api: When there is a parameter with 'DataLayout' type in attributes, you must set layout of kernel manually."
                attr_layout_count = attr_layout_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataType':
                assert kernel['data_type'] is not None, \
                    f"{api} api: When there is a parameter with 'DataType' type in attributes, you must set data_type of kernel manually."
                attr_data_type_count = attr_data_type_count + 1

        # preprocess kernel configures
396
        kernel_select_code = self.gene_kernel_backend_select()
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434

        if kernel['layout'] is not None:
            if '>' in kernel['layout']:
                vars_list = kernel['layout'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{api} api: The number of params to set layout with '>' only allows 2, but received {len(vars_list)}."
                assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataLayout', \
                    f"{api} api: When use '>' to set kernel layout, the first param should be a attribute with DataLayout type."
                kernel_select_code = kernel_select_code + f"""
  kernel_layout = ParseLayoutWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                vars_list = kernel['layout'].split(',')
                assert len(
                    vars_list
                ) == 1, f"{api} api: The number of params to set layout must be 1, but received {len(vars_list)}."
                kernel_select_code = kernel_select_code + f"""
  kernel_layout = ParseLayout({vars_list[0].strip()});
"""

        if kernel['data_type'] is not None:
            if '>' in kernel['data_type']:
                vars_list = kernel['data_type'].split('>')
                assert len(
                    vars_list
                ) == 2, f"{api} api: The number of params to set data_type with '>' only allows 2, but received {len(vars_list)}."
                assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataType', \
                    f"{api} api: When use '>' to set kernel data_type, the first param should be a attribute with DataType type."
                kernel_select_code = kernel_select_code + f"""
  kernel_data_type = ParseDataTypeWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                vars_list = kernel['data_type'].split(',')
                assert len(
                    vars_list
435
                ) == 1, f"{api} api: The number of params to set data_type only allows 1, but received {len(vars_list)}."
436 437 438 439 440
                kernel_select_code = kernel_select_code + f"""
  kernel_data_type = ParseDataType({vars_list[0].strip()});
"""

        if len(input_names) == 0:
441
            assert attr_backend_count > 0 and attr_data_type_count > 0, \
442
                f"{api} api: When there is no input tensor, the args must have 'Place' and 'DataType'."
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458

        kernel_select_args = ""
        for input_name in input_names:
            kernel_select_args = kernel_select_args + input_name + ", "

        if len(kernel_select_args) > 2:
            kernel_select_args = kernel_select_args[:-2]

        kernel_select_code = kernel_key_item_init + kernel_select_code

        if len(input_names) > 0:
            kernel_select_code = kernel_select_code + f"""
  if (kernel_backend == Backend::UNDEFINED
        || kernel_layout == DataLayout::UNDEFINED
        || kernel_data_type == DataType::UNDEFINED ) {{
    auto kernel_key_set = ParseKernelKeyByInputArgs({kernel_select_args});
459
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
460 461 462 463 464 465 466 467 468 469 470 471 472
    if (kernel_backend == Backend::UNDEFINED) {{
      kernel_backend = kernel_key.backend();
    }}
    if (kernel_layout == DataLayout::UNDEFINED) {{
      kernel_layout = kernel_key.layout();
    }}
    if (kernel_data_type == DataType::UNDEFINED) {{
      kernel_data_type = kernel_key.dtype();
    }}
  }}"""

        return kernel_select_code

473
    def gene_infer_meta(self, kernel_output_names, code_indent) -> str:
474 475 476 477
        input_names = self.inputs['names']
        attr_names = self.attrs['names']
        infer_meta = self.infer_meta

478 479
        infer_meta_params = infer_meta['param'] if infer_meta[
            'param'] is not None else input_names + attr_names
480 481 482 483 484
        # generate meta tensors
        meta_tensor_code = ""
        param_code = ""
        for param in infer_meta_params:
            if param in input_names:
485 486 487 488 489
                if self.inputs['input_info'][param] == "const Tensor&":
                    param_code = param_code + "MakeMetaTensor(*" + PREFIX_TENSOR_NAME + param + "), "
                elif self.inputs['input_info'][
                        param] == "const std::vector<Tensor>&":
                    meta_tensor_code = meta_tensor_code + f"""
490
{code_indent}  auto {param}_meta_vec = MakeMetaTensor({PREFIX_TENSOR_NAME}{param});
491
{code_indent}  std::vector<const phi::MetaTensor*> {param}_metas({param}_meta_vec.size());
492 493 494 495 496 497 498
{code_indent}  for (size_t i = 0; i < {param}_meta_vec.size(); ++i) {{
{code_indent}    {param}_metas[i] = &{param}_meta_vec[i];
{code_indent}  }}
"""

                    param_code = param_code + param + "_metas, "
                elif param in self.optional_vars:
499
                    param_code = param_code + "MakeMetaTensor(" + PREFIX_TENSOR_NAME + param + "), "
500
                else:
501 502 503
                    raise ValueError(
                        f"{self.api} : Param of infer_meta error : {self.inputs['input_info'][param]} type is not supported."
                    )
504 505 506 507 508 509 510 511 512
            elif param in attr_names:
                param_code = param_code + param + ", "
            elif isinstance(param, str):
                param_code = param_code + "\"" + param + "\", "
            elif isinstance(param, bool):
                param_code = param_code + str(param).lower() + ", "
            else:
                param_code = param_code + str(param) + ", "

513 514 515 516 517 518
        for i, out_name in enumerate(kernel_output_names):
            if self.outputs['types'][i] == 'std::vector<Tensor>':
                meta_tensor_code = meta_tensor_code + f"""
{code_indent}  auto {out_name}_{PREFIX_META_TENSOR_NAME}vec = MakeMetaTensor({out_name});
{code_indent}  std::vector<phi::MetaTensor*> {out_name}_metas({out_name}_{PREFIX_META_TENSOR_NAME}vec.size());
{code_indent}  for (size_t i = 0; i < {out_name}_{PREFIX_META_TENSOR_NAME}vec.size(); ++i) {{
519
{code_indent}    {out_name}_metas[i] = {out_name}[i] ? &{out_name}_{PREFIX_META_TENSOR_NAME}vec[i] : nullptr;
520 521 522 523 524 525 526
{code_indent}  }}"""

                param_code = param_code + out_name + '_metas, '
            else:
                meta_tensor_code = meta_tensor_code + code_indent + "  phi::MetaTensor " + out_name.replace(
                    'kernel_',
                    PREFIX_META_TENSOR_NAME) + "(" + out_name + ");\n"
527 528 529 530
                if len(kernel_output_names) == 1:
                    param_code = param_code + f"&{out_name.replace('kernel_', PREFIX_META_TENSOR_NAME)}, "
                else:
                    param_code = param_code + f"{out_name} ? &{out_name.replace('kernel_', PREFIX_META_TENSOR_NAME)} : nullptr, "
531

532 533
        param_code = param_code[:-2]
        return f"""{meta_tensor_code}
534
{code_indent}  phi::{infer_meta['func']}({param_code});
535 536
"""

537 538
    def get_kernel_args(self, kernel_tensor_type=None, code_indent=''):
        dense_input_trans_map = {
539 540
            'const Tensor&':
            'const phi::DenseTensor&',
541
            'const std::vector<Tensor>&':
542
            'const std::vector<const phi::DenseTensor*>&',
H
hong 已提交
543 544
            'const paddle::optional<Tensor&>':
            'paddle::optional<const phi::DenseTensor&>',
545 546
            'const paddle::optional<Tensor>&':
            'const paddle::optional<phi::DenseTensor>&',
547 548
            'const paddle::optional<std::vector<Tensor>>&':
            'paddle::optional<const std::vector<phi::DenseTensor>&>'
549
        }
550
        dense_out_trans_map = {
551 552
            'Tensor': 'phi::DenseTensor*',
            'std::vector<Tensor>': 'std::vector<phi::DenseTensor*>&'
553
        }
554 555 556 557 558 559 560
        sr_input_trans_map = {
            'const Tensor&':
            'const phi::SelectedRows&',
            'const paddle::optional<Tensor>&':
            'const paddle::optional<phi::SelectedRows>&'
        }
        sr_out_trans_map = {'Tensor': 'phi::SelectedRows*'}
561 562 563 564 565 566 567 568 569 570 571 572 573
        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']
        kernel_args_type_list = ['const platform::DeviceContext&']

        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        input_tensor_code = ""
        for i, input_name in enumerate(input_names):
            # set input code
            if input_name in kernel_param:
574 575 576 577 578 579 580 581 582 583 584
                # input is dense tensor
                if kernel_tensor_type is None or kernel_tensor_type[0][
                        kernel_param.index(input_name)] == 'dense':
                    trans_flag = "{}"
                    if input_name in self.data_transform['skip_transform']:
                        trans_flag = "{true}"
                    elif input_name in self.data_transform[
                            'support_trans_dtype']:
                        trans_flag = "{false, true}"
                    if input_name in self.optional_vars:
                        input_tensor_code = input_tensor_code + f"""
585
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = PrepareData({input_name}, kernel.InputAt({i}), {trans_flag});"""
586

587 588 589 590
                    else:
                        if self.inputs['input_info'][
                                input_name] == "const Tensor&":
                            input_tensor_code = input_tensor_code + f"""
591
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = PrepareData({input_name}, kernel.InputAt({i}), {trans_flag});"""
592

593 594 595
                        elif self.inputs['input_info'][
                                input_name] == "const std::vector<Tensor>&":
                            input_tensor_code = input_tensor_code + f"""
596 597 598 599 600 601
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_vec = PrepareData({input_name}, kernel.InputAt({i}), {trans_flag});
{code_indent}  std::vector<const phi::DenseTensor*> {PREFIX_TENSOR_NAME}{input_name}({PREFIX_TENSOR_NAME}{input_name}_vec->size());
{code_indent}  for (size_t i = 0; i < {PREFIX_TENSOR_NAME}{input_name}.size(); ++i) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name}[i] = &{PREFIX_TENSOR_NAME}{input_name}_vec->at(i);
{code_indent}  }}"""

602 603 604 605
                        else:
                            # do nothing
                            pass
                else:  # input is selected_rows
606
                    input_tensor_code = input_tensor_code + f"""
607 608 609 610 611 612
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = TensorToSelectedRows({input_name});"""
            else:
                if input_name in self.infer_meta['param']:
                    if input_name in self.optional_vars:
                        input_tensor_code = input_tensor_code + f"""
{code_indent}  paddle::optional<phi::TensorBase> {PREFIX_TENSOR_NAME}{input_name} = {input_name} ? paddle::optional<phi::TensorBase>(*{input_name}->impl()) : paddle::none;"""
613

614 615 616
                    else:
                        input_tensor_code = input_tensor_code + f"""
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = {input_name}.impl();"""
617

618
        kernel_args = ["*dev_ctx"]
619 620
        for param in kernel_param:
            if param in input_names:
621
                if param in self.optional_vars:
622
                    kernel_args.append(PREFIX_TENSOR_NAME + param)
623
                else:
624
                    if self.inputs['input_info'][param] == "const Tensor&":
625
                        kernel_args.append("*" + PREFIX_TENSOR_NAME + param)
626
                    elif self.inputs['input_info'][
627
                            param] == "const std::vector<Tensor>&":
628
                        kernel_args.append(PREFIX_TENSOR_NAME + param)
629 630 631
                    else:
                        # do nothing
                        pass
632 633 634
                # input is dense tensor
                if kernel_tensor_type is None or kernel_tensor_type[0][
                        kernel_param.index(param)] == 'dense':
635
                    kernel_args_type_list.append(
636 637 638 639
                        dense_input_trans_map[input_infos[param]])
                else:  # input is selected_rows
                    kernel_args_type_list.append(
                        sr_input_trans_map[input_infos[param]])
640 641
            elif param in attr_names:
                # set attr for kernel_context
642 643 644
                if 'IntArray' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append('const phi::IntArray&')
                    param = 'phi::IntArray(' + param + ')'
645
                elif 'Scalar' in self.attrs['attr_info'][param][0]:
646 647
                    kernel_args_type_list.append('const phi::Scalar&')
                    param = 'phi::Scalar(' + param + ')'
648
                else:
649 650
                    kernel_args_type_list.append(
                        self.attrs['attr_info'][param][0])
651
                kernel_args.append(param)
652
            elif isinstance(param, bool):
653
                kernel_args.append(str(param).lower())
654
            else:
655
                kernel_args.append(str(param))
656

657 658 659 660 661 662
        for i, out_type in enumerate(self.outputs['types']):
            # output is dense tensor
            if kernel_tensor_type is None or kernel_tensor_type[1][i] == 'dense':
                kernel_args_type_list.append(dense_out_trans_map[out_type])
            else:  # output is selected_rows
                kernel_args_type_list.append(sr_out_trans_map[out_type])
663 664 665

        kernel_signature = "void(*)(" + ", ".join(kernel_args_type_list) + ")"

666
        return input_tensor_code, ", ".join(kernel_args), kernel_signature
667

668 669
    # Override by child class
    def gene_return_code(self):
670
        return "return api_output;"
671

672
    # Override by child class
673
    def gene_output(self,
674 675 676
                    out_dtype_list,
                    out_tensor_type_list=None,
                    code_indent='',
677
                    inplace_flag=False):
678 679
        return None, None, None

680 681
    def gen_kernel_code(self, kernel_name, code_indent, inplace_flag=False):
        kernel_dispatch = self.kernel['dispatch'][kernel_name]
682
        input_tensors, kernel_args, kernel_signature = self.get_kernel_args(
683 684
            kernel_dispatch, code_indent)
        out_tensor_type_list = kernel_dispatch[1] if kernel_dispatch else None
685
        outputs_args, kernel_output_names, output_create = self.gene_output(
686 687
            self.outputs['types'], out_tensor_type_list, code_indent,
            inplace_flag)
Z
zyfncg 已提交
688
        cudnn_args = '' if self.kernel[
689
            'use_gpudnn'] == 'false' else ', ' + self.kernel['use_gpudnn']
690
        return f"""
F
From00 已提交
691
{code_indent}  VLOG(6) << "{self.api} API kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
692
{code_indent}  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
693 694
{code_indent}      "{kernel_name}", {{kernel_backend, kernel_layout, kernel_data_type}}{cudnn_args});
{code_indent}  VLOG(6) << "{kernel_name} kernel: " << kernel;
695 696 697 698 699 700 701 702

{code_indent}  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);
{input_tensors}
{output_create}
{self.gene_infer_meta(kernel_output_names, code_indent)}

{code_indent}  using kernel_signature = {kernel_signature};
{code_indent}  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
703
{code_indent}  {{
704
{code_indent}    paddle::platform::RecordEvent kernel_record_event(\"{kernel_name} compute\", paddle::platform::TracerEventType::OperatorInner, 1);
705 706
{code_indent}    (*kernel_fn)({kernel_args}, {outputs_args});
{code_indent}  }}
707

708
{code_indent}  {self.gene_return_code()}"""
709

710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
    def get_condition_code(self, kernel_name):
        assert self.kernel['dispatch'][kernel_name], \
                f"{self.api} api: the tensor type of inputs and outputs for kernel isn't set, see also 'kernel:func' of 'scale' in api.yaml."
        input_types = self.kernel['dispatch'][kernel_name][0]
        condition_list = []
        for i, in_type in enumerate(input_types):
            if in_type == "dense":
                if self.inputs['names'][i] in self.optional_vars:
                    condition_list.append(
                        f"(!{self.inputs['names'][i]} || {self.inputs['names'][i]}->is_dense_tensor())"
                    )
                else:
                    condition_list.append(
                        f"{self.inputs['names'][i]}.is_dense_tensor()")
            else:
                if self.inputs['names'][i] in self.optional_vars:
                    condition_list.append(
                        f"(!{self.inputs['names'][i]} || {self.inputs['names'][i]}->is_selected_rows())"
                    )
                else:
                    condition_list.append(
                        f"{self.inputs['names'][i]}.is_selected_rows()")
        return " && ".join(condition_list)
733

734 735 736 737 738 739
    def gene_dispatch_code(self, kernel_name, inplace_flag=False):
        return f"""
  if ({self.get_condition_code(kernel_name)}) {{
{self.gen_kernel_code(kernel_name, '  ', inplace_flag)}
  }}
"""
740

741
    def gene_base_api_code(self, inplace_flag=False):
742 743 744
        api_func_name = self.get_api_func_name()
        if inplace_flag and api_func_name[-1] != '_':
            api_func_name += '_'
745
        api_code = f"""
746
PADDLE_API {self.get_return_type(inplace_flag)} {api_func_name}({self.get_define_args(inplace_flag)}) {{
747
{self.gene_kernel_select()}
748
"""
749

750 751 752 753 754
        if len(self.kernel['func']) > 1:
            kernel_dispatch_code = ''
            for kernel_name in self.kernel['func']:
                kernel_dispatch_code += self.gene_dispatch_code(
                    kernel_name, inplace_flag)
755
            return api_code + f"""
756 757 758
{kernel_dispatch_code}
  PADDLE_THROW(phi::errors::Unimplemented(
          "The kernel of ({self.api}) for input tensors is unimplemented, please check the type of input tensors."));
759
}}
760
"""
761
        else:
762 763
            return api_code + self.gen_kernel_code(self.kernel['func'][0], '',
                                                   inplace_flag) + """
764
}
765 766
"""

767 768
    def gene_invoke_code(self, invoke_code, params_code):
        return f"""
769
PADDLE_API {self.get_return_type()} {self.api}({params_code}) {{
770 771 772
  return {invoke_code};
}}"""

773 774 775
    def gene_api_code(self):
        if self.is_base_api:
            api_code = self.gene_base_api_code()
776
            if len(self.inplace_map) > 0:
Z
zyfncg 已提交
777 778
                if self.api[-1] == '_':
                    api_code = ""
779 780 781
                api_code = api_code + self.gene_base_api_code(inplace_flag=True)
            return api_code

782
        else:
783 784
            invoke_func_name = self.invoke.split('(')[0].strip()
            if invoke_func_name in self.attrs['names']:
785
                # Adjust the param whose name is same with api invoked.
786
                pattern = r'\W' + invoke_func_name + '[^A-Za-z0-9_(]'
787 788 789 790 791 792 793

                def adjust_name(matched):
                    matched_str = matched.group()
                    return matched_str[0:-1] + '_val' + matched_str[-1]

                invoke_code = re.sub(pattern, adjust_name, self.invoke)
                params_code = re.sub(pattern, adjust_name,
794
                                     self.get_define_args())
795 796
            else:
                invoke_code = self.invoke
797 798
                params_code = self.get_define_args()
            return self.gene_invoke_code(invoke_code, params_code)