api_base.py 54.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re
16
import collections
17

18
PREFIX_TENSOR_NAME = 'input_'
19 20 21
PREFIX_META_TENSOR_NAME = 'meta_'


22
class BaseAPI:
23 24 25 26 27 28 29 30 31 32 33 34
    def __init__(self, api_item_yaml):
        self.api = self.get_api_name(api_item_yaml)

        # inputs:
        #     names : [], list of input names
        #     input_info : {input_name : type}
        # attrs:
        #     names : [], list of attribute names
        #     attr_info : { attr_name : (type, default_values)}
        # outputs:
        #     names : [], list of output names
        #     types : [], list of output types
35
        #     out_size_expr : [], expression for getting size of vector<Tensor>
36 37 38 39 40 41
        (
            self.inputs,
            self.attrs,
            self.outputs,
            self.optional_vars,
        ) = self.parse_args(self.api, api_item_yaml)
42 43 44 45 46 47

        self.is_base_api = True
        if 'invoke' in api_item_yaml:
            self.is_base_api = False
            self.invoke = api_item_yaml['invoke']
        else:
48
            if 'infer_meta' in api_item_yaml:
49
                self.infer_meta = self.parse_infer_meta(
50 51
                    api_item_yaml['infer_meta']
                )
52 53
            self.kernel = self.parse_kernel(api_item_yaml['kernel'])
            self.data_transform = self.parse_data_transform(api_item_yaml)
54
            self.inplace_map, self.view_map = {}, {}
55

Y
YuanRisheng 已提交
56 57 58
        self.gene_input_func = {
            "const Tensor&": {
                "dense": self.gene_dense_input,
59
                "selected_rows": self.gene_selected_rows_input,
Y
YuanRisheng 已提交
60 61 62
            },
            "const paddle::optional<Tensor>&": {
                "dense": self.gene_dense_input,
63
                "selected_rows": self.gene_selected_rows_input,
Y
YuanRisheng 已提交
64
            },
65
            "const std::vector<Tensor>&": {"dense": self.gene_vec_dense_input},
Y
YuanRisheng 已提交
66 67
            "const paddle::optional<std::vector<Tensor>>&": {
                "dense": self.gene_optional_vec_dense_input
68
            },
Y
YuanRisheng 已提交
69 70
        }

71
    def get_api_name(self, api_item_yaml):
72
        return api_item_yaml['op']
73

74 75 76
    def get_api_func_name(self):
        return self.api

77 78 79
    def get_input_tensor_args(self, inplace_flag=False):
        input_args = []
        inplace_type_map = {
80 81 82 83
            "const Tensor&": "Tensor&",
            "const paddle::optional<Tensor>&": "paddle::optional<Tensor>&",
            "const std::vector<Tensor>&": "std::vector<Tensor>&",
            "const paddle::optional<std::vector<Tensor>>&": "paddle::optional<std::vector<Tensor>>&",
84 85 86 87
        }
        for name in self.inputs['names']:
            name = name.split('@')[0]
            if inplace_flag and name in self.inplace_map.values():
88
                input_args.append(
89 90 91 92
                    inplace_type_map[self.inputs['input_info'][name]]
                    + ' '
                    + name
                )
93 94 95 96 97 98 99 100 101 102
            else:
                input_args.append(self.inputs['input_info'][name] + ' ' + name)
        return input_args

    def get_declare_args(self, inplace_flag=False):
        declare_args = self.get_input_tensor_args(inplace_flag)
        for name in self.attrs['names']:
            default_value = ''
            if self.attrs['attr_info'][name][1] is not None:
                default_value = ' = ' + self.attrs['attr_info'][name][1]
103 104 105
            declare_args.append(
                self.attrs['attr_info'][name][0] + ' ' + name + default_value
            )
106

107 108 109 110 111 112 113 114
        return ", ".join(declare_args)

    def get_define_args(self, inplace_flag=False):
        define_args = self.get_input_tensor_args(inplace_flag)
        for name in self.attrs['names']:
            define_args.append(self.attrs['attr_info'][name][0] + ' ' + name)

        return ", ".join(define_args)
115

116
    def parse_args(self, api_name, api_item_yaml):
117 118 119 120 121
        optional_vars = []
        if 'optional' in api_item_yaml:
            optional_vars = [
                item.strip() for item in api_item_yaml['optional'].split(',')
            ]
122 123 124
        inputs, attrs = self.parse_input_and_attr(
            api_name, api_item_yaml['args'], optional_vars
        )
125
        output_type_list, output_names, out_size_expr = self.parse_output(
126 127 128 129 130 131 132 133 134 135 136 137
            api_name, api_item_yaml['output']
        )
        return (
            inputs,
            attrs,
            {
                'names': output_names,
                'types': output_type_list,
                'out_size_expr': out_size_expr,
            },
            optional_vars,
        )
138

139
    def parse_input_and_attr(self, api_name, args_config, optional_vars=[]):
140 141 142
        inputs = {'names': [], 'input_info': {}}
        attrs = {'names': [], 'attr_info': {}}
        args_str = args_config.strip()
143 144 145
        assert args_str.startswith('(') and args_str.endswith(
            ')'
        ), f"Args declaration should start with '(' and end with ')', please check the args of {api_name} in yaml."
146 147
        args_str = args_str[1:-1]
        args_list = args_str.split(',')
Z
zyfncg 已提交
148 149
        input_types_map = {
            'Tensor': 'const Tensor&',
150
            'Tensor[]': 'const std::vector<Tensor>&',
Z
zyfncg 已提交
151
        }
152
        attr_types_map = {
153
            'IntArray': 'const IntArray&',
154
            'Scalar': 'const Scalar&',
155 156 157 158
            'Scalar(int)': 'const Scalar&',
            'Scalar(int64_t)': 'const Scalar&',
            'Scalar(float)': 'const Scalar&',
            'Scalar(dobule)': 'const Scalar&',
159
            'Scalar[]': 'const std::vector<phi::Scalar>&',
160
            'int': 'int',
161 162
            'int32_t': 'int32_t',
            'int64_t': 'int64_t',
163 164 165
            'long': 'long',
            'size_t': 'size_t',
            'float': 'float',
166
            'float[]': 'const std::vector<float>&',
167 168
            'double': 'double',
            'bool': 'bool',
169
            'str': 'const std::string&',
170
            'str[]': 'const std::vector<std::string>&',
171
            'Place': 'const Place&',
172 173
            'DataLayout': 'DataLayout',
            'DataType': 'DataType',
174
            'int64_t[]': 'const std::vector<int64_t>&',
Z
zhiboniu 已提交
175
            'int[]': 'const std::vector<int>&',
176 177
        }
        optional_types_trans = {
178
            'Tensor': 'const paddle::optional<Tensor>&',
179 180
            'Tensor[]': 'const paddle::optional<std::vector<Tensor>>&',
            'int': 'paddle::optional<int>',
181 182
            'int32_t': 'paddle::optional<int32_t>',
            'int64_t': 'paddle::optional<int64_t>',
183 184 185
            'float': 'paddle::optional<float>',
            'double': 'paddle::optional<double>',
            'bool': 'paddle::optional<bool>',
186
            'Place': 'paddle::optional<const Place&>',
187
            'DataLayout': 'paddle::optional<DataLayout>',
188
            'DataType': 'paddle::optional<DataType>',
189 190
        }

191 192
        for item in args_list:
            item = item.strip()
Z
zyfncg 已提交
193
            type_and_name = item.split(' ')
194 195
            # match the input tensor
            has_input = False
Z
zyfncg 已提交
196 197 198
            for in_type_symbol, in_type in input_types_map.items():
                if type_and_name[0] == in_type_symbol:
                    input_name = type_and_name[1].strip()
199 200 201 202 203 204
                    assert (
                        len(input_name) > 0
                    ), f"The input tensor name should not be empty. Please check the args of {api_name} in yaml."
                    assert (
                        len(attrs['names']) == 0
                    ), f"The input Tensor should appear before attributes. please check the position of {api_name}:input({input_name}) in yaml"
205

206 207 208
                    if input_name in optional_vars:
                        in_type = optional_types_trans[in_type_symbol]

209 210 211 212 213 214 215 216
                    inputs['names'].append(input_name)
                    inputs['input_info'][input_name] = in_type
                    has_input = True
                    break
            if has_input:
                continue

            # match the attribute
Z
zyfncg 已提交
217 218
            for attr_type_symbol, attr_type in attr_types_map.items():
                if type_and_name[0] == attr_type_symbol:
219 220 221 222
                    attr_name = item[len(attr_type_symbol) :].strip()
                    assert (
                        len(attr_name) > 0
                    ), f"The attribute name should not be empty. Please check the args of {api_name} in yaml."
223 224 225 226 227 228
                    default_value = None
                    if '=' in attr_name:
                        attr_infos = attr_name.split('=')
                        attr_name = attr_infos[0].strip()
                        default_value = attr_infos[1].strip()

229 230 231
                    if attr_name in optional_vars:
                        attr_type = optional_types_trans[attr_type_symbol]

232 233 234
                    default_value_str = (
                        "" if default_value is None else '=' + default_value
                    )
235 236 237 238
                    attrs['names'].append(attr_name)
                    attrs['attr_info'][attr_name] = (attr_type, default_value)
                    break

239
        return inputs, attrs
240 241 242

    def parse_output(self, api_name, output_config):
        def parse_output_item(output_item):
Z
zyfncg 已提交
243 244
            output_type_map = {
                'Tensor': 'Tensor',
245
                'Tensor[]': 'std::vector<Tensor>',
Z
zyfncg 已提交
246
            }
247 248
            result = re.search(
                r"(?P<out_type>[a-zA-Z0-9_[\]]+)\s*(?P<name>\([a-zA-Z0-9_@]+\))?\s*(?P<expr>\{[^\}]+\})?",
249 250 251 252 253
                output_item,
            )
            assert (
                result is not None
            ), f"{api_name} : the output config parse error."
254
            out_type = result.group('out_type')
255 256 257
            assert (
                out_type in output_type_map
            ), f"{api_name} : Output type error: the output type only support Tensor and Tensor[], \
258 259
                  but now is {out_type}."

260 261 262 263 264 265 266 267 268 269
            out_name = (
                'out'
                if result.group('name') is None
                else result.group('name')[1:-1]
            )
            out_size_expr = (
                None
                if result.group('expr') is None
                else result.group('expr')[1:-1]
            )
270
            return output_type_map[out_type], out_name, out_size_expr
271 272 273 274

        temp_list = output_config.split(',')

        if len(temp_list) == 1:
275
            out_type, out_name, size_expr = parse_output_item(temp_list[0])
276
            return [out_type], [out_name], [size_expr]
277 278 279
        else:
            out_type_list = []
            out_name_list = []
280
            out_size_expr_list = []
281
            for output_item in temp_list:
282
                out_type, out_name, size_expr = parse_output_item(output_item)
283 284
                out_type_list.append(out_type)
                out_name_list.append(out_name)
285
                out_size_expr_list.append(size_expr)
286

287
            return out_type_list, out_name_list, out_size_expr_list
288

289 290 291 292 293 294 295 296 297 298 299 300 301 302
    def parse_infer_meta(self, infer_meta_config):
        infer_meta = infer_meta_config
        if 'param' not in infer_meta_config:
            infer_meta['param'] = None

        return infer_meta

    def parse_kernel(self, kernel_config):
        # kernel :
        #    func : [], Kernel functions (example: scale, scale_sr)
        #    param : [], Input params of kernel
        #    backend : str, the names of param to choose the kernel backend, default is None
        #    layout : str, the names of param to choose the kernel layout, default is None
        #    data_type : str, the names of param to choose the kernel data_type, default is None
303
        #    dispatch : {}, the key is kernel_func, the value is type of inputs and outputs for kernel (example: {kernel_name : (['dense','sparse_coo']#input,['sparse_coo']#output)})
304 305 306 307 308
        kernel = {
            'func': [],
            'param': None,
            'backend': None,
            'layout': None,
Z
zyfncg 已提交
309
            'data_type': None,
310
            'dispatch': {},
311 312 313 314 315 316 317 318 319
        }
        if 'backend' in kernel_config and len(kernel_config['backend']) > 0:
            kernel['backend'] = kernel_config['backend']
        if 'layout' in kernel_config and len(kernel_config['layout']) > 0:
            kernel['layout'] = kernel_config['layout']
        if 'data_type' in kernel_config and len(kernel_config['data_type']) > 0:
            kernel['data_type'] = kernel_config['data_type']
        if 'param' in kernel_config:
            kernel['param'] = kernel_config['param']
320
        kernel_funcs = re.compile(r'([a-zA-Z0-9_]+)\s*({[^}]+})?').findall(
321 322
            kernel_config['func']
        )
323 324 325 326 327 328 329

        def parse_kernel_in_out_type(in_out_str):
            if len(in_out_str) == 0:
                return None
            tmp_in_out_list = in_out_str[1:-1].split('->')
            inputs = [item.strip() for item in tmp_in_out_list[0].split(',')]
            outputs = [item.strip() for item in tmp_in_out_list[1].split(',')]
330 331 332 333

            # check the tensor type
            for item in inputs:
                assert item in [
334 335 336 337
                    'dense',
                    'selected_rows',
                    'sparse_coo',
                    'sparse_csr',
338 339 340
                ], f"{self.api} : Invalid input tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."
            for item in outputs:
                assert item in [
341 342 343 344
                    'dense',
                    'selected_rows',
                    'sparse_coo',
                    'sparse_csr',
345 346
                ], f"{self.api} : Invalid output tensor type ('{item}'), here we only support 'dense', 'selected_rows', 'sparse_coo' and 'sparse_csr'."

347 348 349 350 351
            return (inputs, outputs)

        for func_item in kernel_funcs:
            kernel['func'].append(func_item[0])
            kernel['dispatch'][func_item[0]] = parse_kernel_in_out_type(
352 353
                func_item[1]
            )
354 355 356 357 358 359 360 361

        return kernel

    def parse_data_transform(self, api_item_yaml):
        data_transform = {'skip_transform': [], 'support_trans_dtype': []}
        if 'data_transform' in api_item_yaml:
            if 'skip_transform' in api_item_yaml['data_transform']:
                data_transform['skip_transform'] = api_item_yaml[
362 363
                    'data_transform'
                ]['skip_transform']
364 365
            if 'support_trans_dtype' in api_item_yaml['data_transform']:
                data_transform['support_trans_dtype'] = api_item_yaml[
366 367
                    'data_transform'
                ]['support_trans_dtype']
368 369 370

        return data_transform

371
    # Override by child class
372
    def get_return_type(self, inplace_flag=False):
373 374 375
        return None

    def gene_api_declaration(self):
376 377 378 379 380
        api_declaration = ""
        api_func_name = self.get_api_func_name()
        if api_func_name[-1] != '_':
            api_declaration = f"""
PADDLE_API {self.get_return_type()} {api_func_name}({self.get_declare_args()});
381 382
"""

383 384 385
        if self.is_base_api and len(self.inplace_map) > 0:
            if api_func_name[-1] != '_':
                api_func_name += '_'
386 387 388
            api_declaration = (
                api_declaration
                + f"""
389
PADDLE_API {self.get_return_type(inplace_flag=True)} {api_func_name}({self.get_declare_args(inplace_flag=True)});
390
"""
391
            )
392 393 394

        return api_declaration

395 396 397 398 399 400
    # Backward API Override this method
    def gene_kernel_backend_select(self):
        backend_select_code = ""
        if self.kernel['backend'] is not None:
            if '>' in self.kernel['backend']:
                vars_list = self.kernel['backend'].split('>')
401 402 403 404 405 406 407
                assert (
                    len(vars_list) == 2
                ), f"{self.api} api: The number of params to set backend with '>' only allows 2, but received {len(vars_list)}."
                assert (vars_list[0].strip() in self.attrs['names']) and (
                    self.attrs['attr_info'][vars_list[0].strip()][0]
                    == 'const Place&'
                ), f"{self.api} api: When use '>' to set kernel backend, the first param should be a attribute with Place type."
408 409 410 411 412 413 414 415 416 417 418 419 420 421
                backend_select_code = f"""
  kernel_backend = ParseBackendWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""

            else:
                backend_args = [
                    ele.strip() for ele in self.kernel['backend'].split(',')
                ]
                backend_select_code = f"""
  kernel_backend = ParseBackend({", ".join(backend_args)});
"""

        return backend_select_code

422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
    def gene_kernel_select(self) -> str:
        api = self.api
        input_names = self.inputs['names']
        attrs = self.attrs
        kernel = self.kernel

        kernel_key_item_init = """
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
"""
        # Check the tensor options
        attr_backend_count = 0
        attr_layout_count = 0
        attr_data_type_count = 0
        for attr_name in attrs['names']:
438
            if attrs['attr_info'][attr_name][0] == 'const Place&':
439 440 441
                assert (
                    kernel['backend'] is not None
                ), f"{api} api: When there is a parameter with 'Place' type in attributes, you must set backend of kernel manually."
442 443
                attr_backend_count = attr_backend_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataLayout':
444 445 446
                assert (
                    kernel['layout'] is not None
                ), f"{api} api: When there is a parameter with 'DataLayout' type in attributes, you must set layout of kernel manually."
447 448
                attr_layout_count = attr_layout_count + 1
            if attrs['attr_info'][attr_name][0] == 'DataType':
449 450 451
                assert (
                    kernel['data_type'] is not None
                ), f"{api} api: When there is a parameter with 'DataType' type in attributes, you must set data_type of kernel manually."
452 453 454
                attr_data_type_count = attr_data_type_count + 1

        # preprocess kernel configures
455
        kernel_select_code = self.gene_kernel_backend_select()
456 457 458 459

        if kernel['layout'] is not None:
            if '>' in kernel['layout']:
                vars_list = kernel['layout'].split('>')
460 461 462 463 464 465 466 467 468 469 470
                assert (
                    len(vars_list) == 2
                ), f"{api} api: The number of params to set layout with '>' only allows 2, but received {len(vars_list)}."
                assert (
                    vars_list[0].strip() in attrs['names']
                    and attrs['attr_info'][vars_list[0].strip()][0]
                    == 'DataLayout'
                ), f"{api} api: When use '>' to set kernel layout, the first param should be a attribute with DataLayout type."
                kernel_select_code = (
                    kernel_select_code
                    + f"""
471 472
  kernel_layout = ParseLayoutWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""
473
                )
474 475 476

            else:
                vars_list = kernel['layout'].split(',')
477 478 479 480 481 482
                assert (
                    len(vars_list) == 1
                ), f"{api} api: The number of params to set layout must be 1, but received {len(vars_list)}."
                kernel_select_code = (
                    kernel_select_code
                    + f"""
483 484
  kernel_layout = ParseLayout({vars_list[0].strip()});
"""
485
                )
486 487 488 489

        if kernel['data_type'] is not None:
            if '>' in kernel['data_type']:
                vars_list = kernel['data_type'].split('>')
490 491 492 493 494 495 496 497 498 499 500
                assert (
                    len(vars_list) == 2
                ), f"{api} api: The number of params to set data_type with '>' only allows 2, but received {len(vars_list)}."
                assert (
                    vars_list[0].strip() in attrs['names']
                    and attrs['attr_info'][vars_list[0].strip()][0]
                    == 'DataType'
                ), f"{api} api: When use '>' to set kernel data_type, the first param should be a attribute with DataType type."
                kernel_select_code = (
                    kernel_select_code
                    + f"""
501 502
  kernel_data_type = ParseDataTypeWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()});
"""
503
                )
504 505 506

            else:
                vars_list = kernel['data_type'].split(',')
507 508 509 510 511 512
                assert (
                    len(vars_list) == 1
                ), f"{api} api: The number of params to set data_type only allows 1, but received {len(vars_list)}."
                kernel_select_code = (
                    kernel_select_code
                    + f"""
513 514
  kernel_data_type = ParseDataType({vars_list[0].strip()});
"""
515
                )
516 517

        if len(input_names) == 0:
518 519 520
            assert (
                attr_backend_count > 0 and attr_data_type_count > 0
            ), f"{api} api: When there is no input tensor, the args must have 'Place' and 'DataType'."
521 522 523 524 525 526 527 528 529 530 531

        kernel_select_args = ""
        for input_name in input_names:
            kernel_select_args = kernel_select_args + input_name + ", "

        if len(kernel_select_args) > 2:
            kernel_select_args = kernel_select_args[:-2]

        kernel_select_code = kernel_key_item_init + kernel_select_code

        if len(input_names) > 0:
532 533 534
            kernel_select_code = (
                kernel_select_code
                + f"""
535 536 537 538
  if (kernel_backend == Backend::UNDEFINED
        || kernel_layout == DataLayout::UNDEFINED
        || kernel_data_type == DataType::UNDEFINED ) {{
    auto kernel_key_set = ParseKernelKeyByInputArgs({kernel_select_args});
539
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
540 541 542 543 544 545 546 547 548 549
    if (kernel_backend == Backend::UNDEFINED) {{
      kernel_backend = kernel_key.backend();
    }}
    if (kernel_layout == DataLayout::UNDEFINED) {{
      kernel_layout = kernel_key.layout();
    }}
    if (kernel_data_type == DataType::UNDEFINED) {{
      kernel_data_type = kernel_key.dtype();
    }}
  }}"""
550
            )
551 552 553

        return kernel_select_code

554
    def gene_infer_meta(self, kernel_output_names, code_indent) -> str:
555 556 557 558
        input_names = self.inputs['names']
        attr_names = self.attrs['names']
        infer_meta = self.infer_meta

559 560 561 562 563
        infer_meta_params = (
            infer_meta['param']
            if infer_meta['param'] is not None
            else input_names + attr_names
        )
564 565 566 567 568
        # generate meta tensors
        meta_tensor_code = ""
        param_code = ""
        for param in infer_meta_params:
            if param in input_names:
569
                if self.inputs['input_info'][param] == "const Tensor&":
570 571 572 573 574 575 576 577 578 579 580 581 582 583
                    param_code = (
                        param_code
                        + "MakeMetaTensor(*"
                        + PREFIX_TENSOR_NAME
                        + param
                        + "), "
                    )
                elif (
                    self.inputs['input_info'][param]
                    == "const std::vector<Tensor>&"
                ):
                    meta_tensor_code = (
                        meta_tensor_code
                        + f"""
584
{code_indent}  auto {param}_meta_vec = MakeMetaTensor({PREFIX_TENSOR_NAME}{param});
585
{code_indent}  std::vector<const phi::MetaTensor*> {param}_metas({param}_meta_vec.size());
586 587 588 589
{code_indent}  for (size_t i = 0; i < {param}_meta_vec.size(); ++i) {{
{code_indent}    {param}_metas[i] = &{param}_meta_vec[i];
{code_indent}  }}
"""
590
                    )
591
                    param_code = param_code + param + "_metas, "
592 593 594 595 596 597 598
                elif (
                    self.inputs['input_info'][param]
                    == "const paddle::optional<std::vector<Tensor>>&"
                ):
                    meta_tensor_code = (
                        meta_tensor_code
                        + f"""
599 600 601 602 603 604
{code_indent}  auto {param}_meta_vec = MakeMetaTensor({PREFIX_TENSOR_NAME}{param});
{code_indent}  paddle::optional<std::vector<const phi::MetaTensor*>> {param}_metas({param}_meta_vec.size());
{code_indent}  for (size_t i = 0; i < {param}_meta_vec.size(); ++i) {{
{code_indent}    {param}_metas->at(i) = &{param}_meta_vec[i];
{code_indent}  }}
"""
605
                    )
606 607
                    param_code = param_code + param + "_metas, "
                elif param in self.optional_vars:
608 609 610 611 612 613 614
                    param_code = (
                        param_code
                        + "MakeMetaTensor("
                        + PREFIX_TENSOR_NAME
                        + param
                        + "), "
                    )
615
                else:
616 617 618
                    raise ValueError(
                        f"{self.api} : Param of infer_meta error : {self.inputs['input_info'][param]} type is not supported."
                    )
619 620 621 622 623 624 625 626 627
            elif param in attr_names:
                param_code = param_code + param + ", "
            elif isinstance(param, str):
                param_code = param_code + "\"" + param + "\", "
            elif isinstance(param, bool):
                param_code = param_code + str(param).lower() + ", "
            else:
                param_code = param_code + str(param) + ", "

628 629
        for i, out_name in enumerate(kernel_output_names):
            if self.outputs['types'][i] == 'std::vector<Tensor>':
630 631 632
                meta_tensor_code = (
                    meta_tensor_code
                    + f"""
633 634 635
{code_indent}  auto {out_name}_{PREFIX_META_TENSOR_NAME}vec = MakeMetaTensor({out_name});
{code_indent}  std::vector<phi::MetaTensor*> {out_name}_metas({out_name}_{PREFIX_META_TENSOR_NAME}vec.size());
{code_indent}  for (size_t i = 0; i < {out_name}_{PREFIX_META_TENSOR_NAME}vec.size(); ++i) {{
636
{code_indent}    {out_name}_metas[i] = {out_name}[i] ? &{out_name}_{PREFIX_META_TENSOR_NAME}vec[i] : nullptr;
637
{code_indent}  }}"""
638
                )
639 640 641

                param_code = param_code + out_name + '_metas, '
            else:
642 643 644 645 646 647 648 649 650
                meta_tensor_code = (
                    meta_tensor_code
                    + code_indent
                    + "  phi::MetaTensor "
                    + out_name.replace('kernel_', PREFIX_META_TENSOR_NAME)
                    + "("
                    + out_name
                    + ");\n"
                )
651
                if len(kernel_output_names) == 1:
652 653 654 655
                    param_code = (
                        param_code
                        + f"&{out_name.replace('kernel_', PREFIX_META_TENSOR_NAME)}, "
                    )
656
                else:
657 658 659 660
                    param_code = (
                        param_code
                        + f"{out_name} ? &{out_name.replace('kernel_', PREFIX_META_TENSOR_NAME)} : nullptr, "
                    )
661

662 663
        param_code = param_code[:-2]
        return f"""{meta_tensor_code}
664
{code_indent}  phi::{infer_meta['func']}({param_code});
665 666
"""

Y
YuanRisheng 已提交
667 668 669 670 671 672 673 674
    def gene_trans_flag(self, input_name):
        trans_flag = "{}"
        if input_name in self.data_transform['skip_transform']:
            trans_flag = "{true}"
        elif input_name in self.data_transform['support_trans_dtype']:
            trans_flag = "{false, true}"
        return trans_flag

675 676 677
    def gene_dense_input(
        self, input_name, input_name_tensor_map, code_indent=''
    ):
Y
YuanRisheng 已提交
678 679
        input_tensor_code = ""
        trans_flag = self.gene_trans_flag(input_name)
680
        input_names = self.inputs['names']
Y
YuanRisheng 已提交
681 682 683 684 685 686
        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        input_name_tensor_map[input_name].append(
687 688 689 690 691
            (f"{PREFIX_TENSOR_NAME}{input_name}", False)
        )
        input_tensor_code = (
            input_tensor_code
            + f"""
Y
YuanRisheng 已提交
692
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = PrepareData({input_name}, kernel.InputAt({kernel_param.index(input_name)}), {trans_flag});"""
693
        )
Y
YuanRisheng 已提交
694
        return input_tensor_code
695

696 697 698
    def gene_selected_rows_input(
        self, input_name, input_name_tensor_map, code_indent=''
    ):
Y
YuanRisheng 已提交
699 700 701
        input_tensor_code = ""
        trans_flag = self.gene_trans_flag(input_name)
        input_names = self.inputs['names']
702 703 704 705 706
        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

Y
YuanRisheng 已提交
707
        input_name_tensor_map[input_name].append(
708 709 710 711 712
            (f"{PREFIX_TENSOR_NAME}{input_name}", False)
        )
        input_tensor_code = (
            input_tensor_code
            + f"""
713
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = PrepareDataForSelectedRows({input_name}, kernel.InputAt({kernel_param.index(input_name)}), {trans_flag});
Y
YuanRisheng 已提交
714
"""
715
        )
Y
YuanRisheng 已提交
716 717
        return input_tensor_code

718 719 720
    def gene_optional_vec_dense_input(
        self, input_name, input_name_tensor_map, code_indent=''
    ):
721
        input_tensor_code = ""
Y
YuanRisheng 已提交
722 723 724 725 726 727 728 729
        trans_flag = self.gene_trans_flag(input_name)
        input_names = self.inputs['names']
        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names
        if input_name in self.inplace_map.values():
            input_name_tensor_map[input_name].append(
730 731 732 733 734
                (f"{PREFIX_TENSOR_NAME}{input_name}", True)
            )
            input_tensor_code = (
                input_tensor_code
                + f"""
735
{code_indent}  paddle::optional<std::vector<const phi::DenseTensor*>> {PREFIX_TENSOR_NAME}{input_name} = TensorToConstDenseTensorPtr({input_name});"""
736
            )
Y
YuanRisheng 已提交
737 738
        else:
            input_name_tensor_map[input_name].append(
739 740 741 742 743
                (f"{PREFIX_TENSOR_NAME}{input_name}_vec", True)
            )
            input_tensor_code = (
                input_tensor_code
                + f"""
744 745 746 747 748 749 750 751
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_vec = PrepareData({input_name}, kernel.InputAt({kernel_param.index(input_name)}), {trans_flag});
{code_indent}  paddle::optional<std::vector<const phi::DenseTensor*>> {PREFIX_TENSOR_NAME}{input_name};
{code_indent}  if ({PREFIX_TENSOR_NAME}{input_name}_vec){{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name} = paddle::optional<std::vector<const phi::DenseTensor*>>({PREFIX_TENSOR_NAME}{input_name}_vec->size());
{code_indent}    for (size_t i = 0; i < {PREFIX_TENSOR_NAME}{input_name}_vec->size(); ++i) {{
{code_indent}      {PREFIX_TENSOR_NAME}{input_name}->at(i) = &{PREFIX_TENSOR_NAME}{input_name}_vec->at(i);
{code_indent}    }}
{code_indent}  }}"""
752
            )
Y
YuanRisheng 已提交
753
        return input_tensor_code
754

755 756 757
    def gene_vec_dense_input(
        self, input_name, input_name_tensor_map, code_indent=''
    ):
Y
YuanRisheng 已提交
758 759 760 761 762 763 764
        input_tensor_code = ""
        trans_flag = self.gene_trans_flag(input_name)
        input_names = self.inputs['names']
        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names
765

Y
YuanRisheng 已提交
766 767
        if input_name in self.inplace_map.values():
            input_name_tensor_map[input_name].append(
768 769 770 771 772
                (f"{PREFIX_TENSOR_NAME}{input_name}", True)
            )
            input_tensor_code = (
                input_tensor_code
                + f"""
773
{code_indent}  std::vector<const phi::DenseTensor*> {PREFIX_TENSOR_NAME}{input_name} = TensorToConstDenseTensorPtr({input_name});"""
774
            )
Y
YuanRisheng 已提交
775 776
        else:
            input_name_tensor_map[input_name].append(
777 778 779 780 781
                (f"{PREFIX_TENSOR_NAME}{input_name}_vec", True)
            )
            input_tensor_code = (
                input_tensor_code
                + f"""
782
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_vec = PrepareData({input_name}, kernel.InputAt({kernel_param.index(input_name)}), {trans_flag});
783 784 785 786
{code_indent}  std::vector<const phi::DenseTensor*> {PREFIX_TENSOR_NAME}{input_name}({PREFIX_TENSOR_NAME}{input_name}_vec->size());
{code_indent}  for (size_t i = 0; i < {PREFIX_TENSOR_NAME}{input_name}.size(); ++i) {{
{code_indent}    {PREFIX_TENSOR_NAME}{input_name}[i] = &{PREFIX_TENSOR_NAME}{input_name}_vec->at(i);
{code_indent}  }}"""
787
            )
Y
YuanRisheng 已提交
788
        return input_tensor_code
789

Y
YuanRisheng 已提交
790 791 792 793 794 795 796 797 798 799 800 801 802
    def gene_input(self, kernel_tensor_type=None, code_indent=''):
        input_names = self.inputs['names']
        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names
        input_name_tensor_map = collections.defaultdict(list)
        input_tensor_code = ""
        for i, input_name in enumerate(input_names):
            # set input code
            if input_name in kernel_param:
                # input is dense tensor
                api_tensor_type = self.inputs['input_info'][input_name]
803 804 805 806 807
                phi_tensor_type = (
                    'dense'
                    if kernel_tensor_type is None
                    else kernel_tensor_type[0][kernel_param.index(input_name)]
                )
Y
YuanRisheng 已提交
808 809
                if api_tensor_type in self.gene_input_func.keys():
                    input_tensor_code += self.gene_input_func[api_tensor_type][
810 811
                        phi_tensor_type
                    ](input_name, input_name_tensor_map, code_indent)
Y
YuanRisheng 已提交
812 813 814
                else:
                    # do nothing
                    pass
815 816 817
            else:
                if input_name in self.infer_meta['param']:
                    if input_name in self.optional_vars:
818 819 820
                        input_tensor_code = (
                            input_tensor_code
                            + f"""
821
{code_indent}  paddle::optional<phi::TensorBase> {PREFIX_TENSOR_NAME}{input_name} = {input_name} ? paddle::optional<phi::TensorBase>(*{input_name}->impl()) : paddle::none;"""
822
                        )
823

824
                    else:
825 826 827 828 829 830 831
                        if (
                            self.inputs['input_info'][input_name]
                            == "const std::vector<Tensor>&"
                        ):
                            input_tensor_code = (
                                input_tensor_code
                                + f"""
832 833
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name}_uq_ptr = TensorToDenseTensor({input_name});
{code_indent}  const auto& {PREFIX_TENSOR_NAME}{input_name} = *{PREFIX_TENSOR_NAME}{input_name}_uq_ptr;"""
834
                            )
835
                        else:
836 837 838
                            input_tensor_code = (
                                input_tensor_code
                                + f"""
839
{code_indent}  auto {PREFIX_TENSOR_NAME}{input_name} = {input_name}.impl();"""
840
                            )
Y
YuanRisheng 已提交
841 842 843 844 845

        return input_name_tensor_map, input_tensor_code

    def get_kernel_args(self, kernel_tensor_type=None, code_indent=''):
        dense_input_trans_map = {
846 847 848 849 850
            'const Tensor&': 'const phi::DenseTensor&',
            'const std::vector<Tensor>&': 'const std::vector<const phi::DenseTensor*>&',
            'const paddle::optional<Tensor&>': 'paddle::optional<const phi::DenseTensor&>',
            'const paddle::optional<Tensor>&': 'const paddle::optional<phi::DenseTensor>&',
            'const paddle::optional<std::vector<Tensor>>&': 'const paddle::optional<std::vector<const phi::DenseTensor*>>&',
Y
YuanRisheng 已提交
851 852 853
        }
        dense_out_trans_map = {
            'Tensor': 'phi::DenseTensor*',
854
            'std::vector<Tensor>': 'std::vector<phi::DenseTensor*>&',
Y
YuanRisheng 已提交
855 856
        }
        sr_input_trans_map = {
857 858
            'const Tensor&': 'const phi::SelectedRows&',
            'const paddle::optional<Tensor>&': 'const paddle::optional<phi::SelectedRows>&',
Y
YuanRisheng 已提交
859 860 861 862 863 864 865 866 867 868 869 870
        }
        sr_out_trans_map = {'Tensor': 'phi::SelectedRows*'}
        input_names = self.inputs['names']
        input_infos = self.inputs['input_info']
        kernel_args_type_list = ['const platform::DeviceContext&']

        attr_names = self.attrs['names']
        kernel_param = self.kernel['param']
        if kernel_param is None:
            kernel_param = input_names + attr_names

        input_name_tensor_map, input_tensor_code = self.gene_input(
871 872
            kernel_tensor_type, code_indent
        )
Y
YuanRisheng 已提交
873

874 875 876
        input_tensor_code = (
            input_tensor_code
            + f"""
877
{code_indent}  if(platform::RecordOpInfoSupplement::IsEnabled()){{"""
878
        )
879 880 881 882 883 884 885 886 887 888 889 890
        single_tensor_names = []
        list_tensor_names = []
        for input_name, input_tensors in input_name_tensor_map.items():
            has_vector_tensor = False
            for input_tensor, is_vector in input_tensors:
                if is_vector is True:
                    has_vector_tensor = True
            if has_vector_tensor is False:
                single_tensor_names.append(input_name)
            else:
                list_tensor_names.append(input_name)
        if not single_tensor_names:
891 892 893
            input_tensor_code = (
                input_tensor_code
                + f"""
894
{code_indent}     std::vector<std::pair<const char*, std::vector<phi::DDim>>> input_shapes;"""
895
            )
896
        else:
897 898 899
            for input_name in single_tensor_names:
                if input_name in self.optional_vars:
                    input_tensors = input_name_tensor_map[input_name]
900 901 902
                    input_tensor_code = (
                        input_tensor_code
                        + f"""
903
{code_indent}     std::vector<phi::DDim> {input_name}_record_shapes;"""
904
                    )
905
                    for input_tensor, _ in input_tensors:
906 907 908
                        input_tensor_code = (
                            input_tensor_code
                            + f"""
909 910 911
{code_indent}     if({input_tensor}){{
{code_indent}       {input_name}_record_shapes.push_back((*{input_tensor}).dims());
{code_indent}     }}"""
912
                        )
913

914 915 916
            input_tensor_code = (
                input_tensor_code
                + f"""
917
{code_indent}     std::vector<std::pair<const char*, std::vector<phi::DDim>>> input_shapes{{"""
918
            )
919
            for input_name in single_tensor_names[:-1]:
920
                if input_name in self.optional_vars:
921 922 923
                    input_tensor_code = (
                        input_tensor_code
                        + f"""
924
{code_indent}     {{"{input_name}", {input_name}_record_shapes}},"""
925
                    )
926
                else:
927 928 929
                    input_tensor_code = (
                        input_tensor_code
                        + f"""
930
{code_indent}     {{"{input_name}", {{"""
931
                    )
932 933
                    input_tensors = input_name_tensor_map[input_name]
                    for input_tensor, _ in input_tensors[:-1]:
934 935 936
                        input_tensor_code = (
                            input_tensor_code
                            + f"""
937
{code_indent}     (*{input_tensor}).dims(),"""
938 939 940 941
                        )
                    input_tensor_code = (
                        input_tensor_code
                        + f"""
942
{code_indent}     (*{input_tensors[-1][0]}).dims()}}}},"""
943
                    )
944
            if single_tensor_names[-1] in self.optional_vars:
945 946 947
                input_tensor_code = (
                    input_tensor_code
                    + f"""
948
{code_indent}     {{"{single_tensor_names[-1]}",
949
{code_indent}     {single_tensor_names[-1]}_record_shapes}}}};"""
950
                )
951
            else:
952 953 954
                input_tensor_code = (
                    input_tensor_code
                    + f"""
955
{code_indent}     {{"{single_tensor_names[-1]}", {{"""
956
                )
957 958
                input_tensors = input_name_tensor_map[single_tensor_names[-1]]
                for input_tensor, _ in input_tensors[:-1]:
959 960 961
                    input_tensor_code = (
                        input_tensor_code
                        + f"""
962
{code_indent}     (*{input_tensor}).dims(),"""
963 964 965 966
                    )
                input_tensor_code = (
                    input_tensor_code
                    + f"""
967
{code_indent}     (*{input_tensors[-1][0]}).dims()}}}}}};"""
968
                )
969
        if list_tensor_names:
970 971 972
            input_tensor_code = (
                input_tensor_code
                + f"""
973
{code_indent}     std::vector<phi::DDim> ddims_vec;"""
974
            )
975
        for input_name in list_tensor_names:
976 977 978
            input_tensor_code = (
                input_tensor_code
                + f"""
979
{code_indent}     ddims_vec.clear();"""
980
            )
981 982
            for input_tensor, is_vector in input_name_tensor_map[input_name]:
                if is_vector:
983 984 985 986
                    input_tensor_truncate = input_tensor[:-4]
                    if input_name in self.inplace_map.values():
                        input_tensor_truncate = input_tensor

987
                    if input_name in self.optional_vars:
988 989 990
                        input_tensor_code = (
                            input_tensor_code
                            + f"""
991 992 993 994
{code_indent}     if ({input_tensor_truncate}){{
{code_indent}       ddims_vec.reserve({input_tensor_truncate}->size());
{code_indent}       for (size_t i = 0; i < {input_tensor_truncate}->size(); ++i) {{
{code_indent}         ddims_vec.emplace_back((*{input_tensor_truncate}->at(i)).dims());
995 996
{code_indent}       }}
{code_indent}     }}"""
997
                        )
998
                    else:
999 1000 1001
                        input_tensor_code = (
                            input_tensor_code
                            + f"""
1002 1003 1004
{code_indent}     ddims_vec.reserve({input_tensor_truncate}.size());
{code_indent}     for (size_t i = 0; i < {input_tensor_truncate}.size(); ++i) {{
{code_indent}       ddims_vec.emplace_back((*{input_tensor_truncate}[i]).dims());
1005
{code_indent}     }}"""
1006
                        )
1007
                else:
1008 1009 1010
                    input_tensor_code = (
                        input_tensor_code
                        + f"""
1011 1012
                  ddims_vec.emplace_back((*{input_tensor}).dims());
{code_indent}     """
1013 1014 1015 1016
                    )
            input_tensor_code = (
                input_tensor_code
                + f"""
1017
{code_indent}     input_shapes.emplace_back("{input_name}", ddims_vec);"""
1018
            )
1019

1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
        input_tensor_code += f"""
{code_indent}     framework::AttributeMap attrs;"""

        for attr_name in self.attrs['names']:
            if 'IntArray' in self.attrs['attr_info'][attr_name][0]:
                input_tensor_code += f"""
{code_indent}     attrs["{attr_name}"] = {attr_name}.GetData();"""
            elif 'vector<phi::Scalar>' in self.attrs['attr_info'][attr_name][0]:
                input_tensor_code += f"""
{code_indent}     attrs["{attr_name}"] = "";"""  # TODO(kuizhiqing)
            elif 'Scalar' in self.attrs['attr_info'][attr_name][0]:
                input_tensor_code += f"""
{code_indent}    switch ({attr_name}.dtype()) {{
{code_indent}      case DataType::FLOAT32:
{code_indent}          attrs["{attr_name}"] = static_cast<float>({attr_name}.to<float>());
{code_indent}          break;
{code_indent}      case DataType::FLOAT64:
{code_indent}          attrs["{attr_name}"] = static_cast<double>({attr_name}.to<double>());
{code_indent}          break;
{code_indent}      case DataType::FLOAT16:
{code_indent}          attrs["{attr_name}"] = static_cast<float>({attr_name}.to<float16>());
{code_indent}          break;
{code_indent}      case DataType::BFLOAT16:
{code_indent}          attrs["{attr_name}"] = static_cast<float>({attr_name}.to<bfloat16>());
{code_indent}          break;
{code_indent}      case DataType::INT32:
{code_indent}          attrs["{attr_name}"] = static_cast<int32_t>({attr_name}.to<int32_t>());
{code_indent}          break;
{code_indent}      case DataType::INT64:
{code_indent}          attrs["{attr_name}"] = static_cast<int64_t>({attr_name}.to<int64_t>());
{code_indent}          break;
{code_indent}      case DataType::INT16:
{code_indent}          attrs["{attr_name}"] = static_cast<int16_t>({attr_name}.to<int16_t>());
{code_indent}          break;
{code_indent}      case DataType::INT8:
{code_indent}          attrs["{attr_name}"] = static_cast<int8_t>({attr_name}.to<int8_t>());
{code_indent}          break;
{code_indent}      case DataType::UINT16:
{code_indent}          attrs["{attr_name}"] = static_cast<uint16_t>({attr_name}.to<uint16_t>());
{code_indent}          break;
{code_indent}      case DataType::UINT8:
{code_indent}          attrs["{attr_name}"] = static_cast<uint8_t>({attr_name}.to<uint8_t>());
{code_indent}          break;
{code_indent}      case DataType::BOOL:
{code_indent}          attrs["{attr_name}"] = static_cast<bool>({attr_name}.to<bool>());
{code_indent}          break;
{code_indent}      case DataType::COMPLEX64:
{code_indent}          attrs["{attr_name}"] = static_cast<float>({attr_name}.to<complex64>());
{code_indent}          break;
{code_indent}      case DataType::COMPLEX128:
{code_indent}          attrs["{attr_name}"] = static_cast<double>({attr_name}.to<complex128>());
{code_indent}          break;
{code_indent}      default:
{code_indent}          attrs["{attr_name}"] = "";
{code_indent}          break;
{code_indent}    }}"""
            elif 'DataType' in self.attrs['attr_info'][attr_name][0]:
                pass  # no need
            elif 'Place' in self.attrs['attr_info'][attr_name][0]:
                pass  # no need
            else:
                input_tensor_code += f"""
{code_indent}     attrs["{attr_name}"] = {attr_name};"""

1084 1085 1086
        input_tensor_code = (
            input_tensor_code
            + f"""
1087
{code_indent}     platform::RecordOpInfoSupplement("{self.api}", input_shapes, attrs);
1088
{code_indent}  }}"""
1089
        )
1090
        kernel_args = ["*dev_ctx"]
1091 1092
        for param in kernel_param:
            if param in input_names:
1093
                if param in self.optional_vars:
1094
                    kernel_args.append(PREFIX_TENSOR_NAME + param)
1095
                else:
1096
                    if self.inputs['input_info'][param] == "const Tensor&":
1097
                        kernel_args.append("*" + PREFIX_TENSOR_NAME + param)
1098 1099 1100 1101
                    elif (
                        self.inputs['input_info'][param]
                        == "const std::vector<Tensor>&"
                    ):
1102
                        kernel_args.append(PREFIX_TENSOR_NAME + param)
1103 1104 1105
                    else:
                        # do nothing
                        pass
1106
                # input is dense tensor
1107 1108 1109 1110 1111
                if (
                    kernel_tensor_type is None
                    or kernel_tensor_type[0][kernel_param.index(param)]
                    == 'dense'
                ):
1112
                    kernel_args_type_list.append(
1113 1114
                        dense_input_trans_map[input_infos[param]]
                    )
1115 1116
                else:  # input is selected_rows
                    kernel_args_type_list.append(
1117 1118
                        sr_input_trans_map[input_infos[param]]
                    )
1119 1120
            elif param in attr_names:
                # set attr for kernel_context
1121 1122 1123
                if 'IntArray' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append('const phi::IntArray&')
                    param = 'phi::IntArray(' + param + ')'
1124 1125
                elif 'vector<phi::Scalar>' in self.attrs['attr_info'][param][0]:
                    kernel_args_type_list.append(
1126 1127
                        'const std::vector<phi::Scalar>&'
                    )
1128
                    param = param
1129
                elif 'Scalar' in self.attrs['attr_info'][param][0]:
1130 1131
                    kernel_args_type_list.append('const phi::Scalar&')
                    param = 'phi::Scalar(' + param + ')'
1132
                else:
1133
                    kernel_args_type_list.append(
1134 1135
                        self.attrs['attr_info'][param][0]
                    )
1136
                kernel_args.append(param)
1137
            elif isinstance(param, bool):
1138
                kernel_args.append(str(param).lower())
1139
            else:
1140
                kernel_args.append(str(param))
1141

1142 1143
        for i, out_type in enumerate(self.outputs['types']):
            # output is dense tensor
1144 1145 1146 1147
            if (
                kernel_tensor_type is None
                or kernel_tensor_type[1][i] == 'dense'
            ):
1148 1149 1150
                kernel_args_type_list.append(dense_out_trans_map[out_type])
            else:  # output is selected_rows
                kernel_args_type_list.append(sr_out_trans_map[out_type])
1151 1152 1153

        kernel_signature = "void(*)(" + ", ".join(kernel_args_type_list) + ")"

1154
        return input_tensor_code, ", ".join(kernel_args), kernel_signature
1155

1156 1157
    # Override by child class
    def gene_return_code(self):
1158
        return "return api_output;"
1159

1160
    # Override by child class
1161 1162 1163 1164 1165 1166 1167
    def gene_output(
        self,
        out_dtype_list,
        out_tensor_type_list=None,
        code_indent='',
        inplace_flag=False,
    ):
1168 1169
        return None, None, None

1170 1171
    def gen_kernel_code(self, kernel_name, code_indent, inplace_flag=False):
        kernel_dispatch = self.kernel['dispatch'][kernel_name]
1172
        input_tensors, kernel_args, kernel_signature = self.get_kernel_args(
1173 1174
            kernel_dispatch, code_indent
        )
1175
        out_tensor_type_list = kernel_dispatch[1] if kernel_dispatch else None
1176
        outputs_args, kernel_output_names, output_create = self.gene_output(
1177 1178 1179 1180 1181
            self.outputs['types'],
            out_tensor_type_list,
            code_indent,
            inplace_flag,
        )
1182 1183
        fallback_kernel_output_trans = ""
        for kernel_out in outputs_args:
1184
            fallback_kernel_output_trans += f"""
1185
{code_indent}    TransDataBackend({kernel_out}, kernel_backend, {kernel_out});"""
1186
        return f"""
F
From00 已提交
1187
{code_indent}  VLOG(6) << "{self.api} API kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]";
1188
{code_indent}  auto kernel_result = phi::KernelFactory::Instance().SelectKernelOrThrowError(
1189
{code_indent}      "{kernel_name}", {{kernel_backend, kernel_layout, kernel_data_type}});
1190
{code_indent}  const auto& kernel = kernel_result.kernel;
1191
{code_indent}  VLOG(6) << "{kernel_name} kernel: " << kernel;
1192
{code_indent}  auto* dev_ctx = GetDeviceContextByBackend(kernel_result.has_fallback_cpu ? Backend::CPU : kernel_backend);
1193 1194
{input_tensors}
{output_create}
1195 1196 1197 1198
{code_indent}  paddle::platform::RecordEvent *infer_shape_record_event = nullptr;
{code_indent}  if(paddle::platform::RecordEvent::IsEnabled()){{
{code_indent}    infer_shape_record_event = new paddle::platform::RecordEvent(\"{self.api} infer_meta\", paddle::platform::TracerEventType::OperatorInner, 1);
{code_indent}  }}
1199
{self.gene_infer_meta(kernel_output_names, code_indent)}
1200 1201 1202
{code_indent}  if(infer_shape_record_event != nullptr){{
{code_indent}    delete infer_shape_record_event;
{code_indent}  }}
1203 1204
{code_indent}  using kernel_signature = {kernel_signature};
{code_indent}  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
1205 1206 1207 1208
{code_indent}  paddle::platform::RecordEvent* kernel_record_event = nullptr;
{code_indent}  if(paddle::platform::RecordEvent::IsEnabled()){{
{code_indent}    kernel_record_event = new paddle::platform::RecordEvent(\"{self.api} compute\", paddle::platform::TracerEventType::OperatorInner, 1);
{code_indent}  }}
1209
{code_indent}    (*kernel_fn)({kernel_args}, {", ".join(outputs_args)});
1210 1211
{code_indent}  if(kernel_record_event != nullptr){{
{code_indent}    delete kernel_record_event;
1212 1213 1214
{code_indent}  }}
{code_indent}  if (kernel_result.has_fallback_cpu) {{
{fallback_kernel_output_trans}
1215
{code_indent}  }}
1216
{code_indent}  {self.gene_return_code()}"""
1217

1218
    def get_condition_code(self, kernel_name):
1219 1220 1221
        assert self.kernel['dispatch'][
            kernel_name
        ], f"{self.api} api: the tensor type of inputs and outputs for kernel isn't set, see also 'kernel:func' of 'scale' in ops.yaml."
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
        input_types = self.kernel['dispatch'][kernel_name][0]
        condition_list = []
        for i, in_type in enumerate(input_types):
            if in_type == "dense":
                if self.inputs['names'][i] in self.optional_vars:
                    condition_list.append(
                        f"(!{self.inputs['names'][i]} || {self.inputs['names'][i]}->is_dense_tensor())"
                    )
                else:
                    condition_list.append(
1232 1233
                        f"{self.inputs['names'][i]}.is_dense_tensor()"
                    )
1234 1235 1236 1237 1238 1239 1240
            else:
                if self.inputs['names'][i] in self.optional_vars:
                    condition_list.append(
                        f"(!{self.inputs['names'][i]} || {self.inputs['names'][i]}->is_selected_rows())"
                    )
                else:
                    condition_list.append(
1241 1242
                        f"{self.inputs['names'][i]}.is_selected_rows()"
                    )
1243
        return " && ".join(condition_list)
1244

1245 1246 1247 1248 1249 1250
    def gene_dispatch_code(self, kernel_name, inplace_flag=False):
        return f"""
  if ({self.get_condition_code(kernel_name)}) {{
{self.gen_kernel_code(kernel_name, '  ', inplace_flag)}
  }}
"""
1251

1252
    def gene_base_api_code(self, inplace_flag=False):
1253 1254 1255
        api_func_name = self.get_api_func_name()
        if inplace_flag and api_func_name[-1] != '_':
            api_func_name += '_'
1256
        api_code = f"""
1257
PADDLE_API {self.get_return_type(inplace_flag)} {api_func_name}({self.get_define_args(inplace_flag)}) {{
1258
{self.gene_kernel_select()}
1259
"""
1260

1261 1262 1263 1264
        if len(self.kernel['func']) > 1:
            kernel_dispatch_code = ''
            for kernel_name in self.kernel['func']:
                kernel_dispatch_code += self.gene_dispatch_code(
1265 1266 1267 1268 1269
                    kernel_name, inplace_flag
                )
            return (
                api_code
                + f"""
1270 1271 1272
{kernel_dispatch_code}
  PADDLE_THROW(phi::errors::Unimplemented(
          "The kernel of ({self.api}) for input tensors is unimplemented, please check the type of input tensors."));
1273
}}
1274
"""
1275
            )
1276
        else:
1277 1278 1279 1280
            return (
                api_code
                + self.gen_kernel_code(self.kernel['func'][0], '', inplace_flag)
                + """
1281
}
1282
"""
1283
            )
1284

1285 1286
    def gene_invoke_code(self, invoke_code, params_code):
        return f"""
1287
PADDLE_API {self.get_return_type()} {self.api}({params_code}) {{
1288 1289 1290
  return {invoke_code};
}}"""

1291 1292 1293
    def gene_api_code(self):
        if self.is_base_api:
            api_code = self.gene_base_api_code()
1294
            if len(self.inplace_map) > 0:
Z
zyfncg 已提交
1295 1296
                if self.api[-1] == '_':
                    api_code = ""
1297 1298 1299
                api_code = api_code + self.gene_base_api_code(inplace_flag=True)
            return api_code

1300
        else:
1301 1302
            invoke_func_name = self.invoke.split('(')[0].strip()
            if invoke_func_name in self.attrs['names']:
1303
                # Adjust the param whose name is same with api invoked.
1304
                pattern = r'\W' + invoke_func_name + '[^A-Za-z0-9_(]'
1305 1306 1307 1308 1309 1310

                def adjust_name(matched):
                    matched_str = matched.group()
                    return matched_str[0:-1] + '_val' + matched_str[-1]

                invoke_code = re.sub(pattern, adjust_name, self.invoke)
1311 1312 1313
                params_code = re.sub(
                    pattern, adjust_name, self.get_define_args()
                )
1314 1315
            else:
                invoke_code = self.invoke
1316 1317
                params_code = self.get_define_args()
            return self.gene_invoke_code(invoke_code, params_code)