quantize_kernel.cpp 9.2 KB
Newer Older
T
Tian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#ifdef QUANT_OP
16

17
#include "operators/kernel/quantize_kernel.h"
18
#include <cmath>
T
Tian 已提交
19

20 21
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#include <arm_neon.h>
H
Refine  
hjchen2 已提交
22

23 24 25 26 27 28 29
#ifndef __aarch64__
float32_t vmaxvq_f32(float32x4_t r) {
  float32x2_t v = vmax_f32(vget_high_f32(r), vget_low_f32(r));
  return vget_lane_f32(vpmax_f32(v, v), 0);
}
#endif

30
int32x4_t vrnd_towards_zero(float32x4_t r) { return vcvtq_s32_f32(r); }
31 32

int32x4_t vrnd_away_zero(float32x4_t r) {
33
  float32x4_t plus = vdupq_n_f32(0.5);
34
  float32x4_t minus = vdupq_n_f32(-0.5);
35
  float32x4_t zero = vdupq_n_f32(0);
H
Refine  
hjchen2 已提交
36
  uint32x4_t more_than_zero = vcgtq_f32(r, zero);
37
  float32x4_t temp = vbslq_f32(more_than_zero, plus, minus);
H
Refine  
hjchen2 已提交
38
  temp = vaddq_f32(r, temp);
39 40 41 42 43
  int32x4_t ret = vcvtq_s32_f32(temp);
  return ret;
}

int32x4_t vrnd_to_even(float32x4_t r) {
H
Refine  
hjchen2 已提交
44
#if 0
45
  int32x4_t ret;
H
Refine  
hjchen2 已提交
46 47
  float value[4];
  vst1q_f32(value, r);
48
  for (int i = 0; i < 4; ++i) {
H
Refine  
hjchen2 已提交
49
    float v = round(value[i]);
50
    int32_t q = (int32_t)v;
H
Refine  
hjchen2 已提交
51
    if (abs(abs(v - value[i]) - 0.5) > 0) {
52 53 54 55 56
      ret[i] = q;
    } else {
      if (abs(q) % 2 == 0) {
        ret[i] = q;
      } else {
H
hjchen2 已提交
57
        ret[i] = q + ((q > 0) ? -1 : 1);
58 59 60 61
      }
    }
  }
  return ret;
62
#else
H
Refine  
hjchen2 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
  float32x4_t point5 = vdupq_n_f32(0.5);
  int32x4_t one = vdupq_n_s32(1);
  int32x4_t zero = vdupq_n_s32(0);

  int32x4_t rnd = vrnd_away_zero(r);
  float32x4_t frnd = vcvtq_f32_s32(rnd);
  frnd = vsubq_f32(frnd, r);
  frnd = vabsq_f32(frnd);
  uint32x4_t equal_point5 = vceqq_f32(frnd, point5);
  int32x4_t abs_rnd = vabsq_s32(rnd);
  abs_rnd = vandq_s32(abs_rnd, one);
  uint32x4_t not_mod2 = vreinterpretq_u32_s32(abs_rnd);
  uint32x4_t mask = vandq_u32(equal_point5, not_mod2);
  uint32x4_t more_than_zero = vcgtq_s32(rnd, zero);
  more_than_zero = vandq_u32(more_than_zero, vreinterpretq_u32_s32(one));
  mask = veorq_u32(more_than_zero, mask);
  more_than_zero = veorq_u32(more_than_zero, vreinterpretq_u32_s32(one));
  mask = vaddq_u32(more_than_zero, mask);
  int32x4_t smask = vreinterpretq_s32_u32(mask);
  smask = vsubq_s32(smask, one);
83
  rnd = vaddq_s32(rnd, smask);
H
Refine  
hjchen2 已提交
84
  return rnd;
85
#endif
86 87 88
}
#endif

89 90 91
namespace paddle_mobile {
namespace operators {

92
static float find_abs_max(const Tensor *input) {
93
  float max_abs = 0.f;
94
  const float *x = input->data<const float>();
95 96 97 98 99 100
  size_t size = input->numel();
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
  size_t loop = size >> 4;
  size_t remain = size & 0xF;
  for (size_t i = 0; i < loop; ++i) {
    float32x4_t max;
H
Refine  
hjchen2 已提交
101 102 103 104 105
    float32x4_t r0 = vld1q_f32(x);
    float32x4_t r1 = vld1q_f32(x + 4);
    float32x4_t r2 = vld1q_f32(x + 8);
    float32x4_t r3 = vld1q_f32(x + 12);
    r0 = vabsq_f32(r0);
106 107 108
    r1 = vabsq_f32(r1);
    r2 = vabsq_f32(r2);
    r3 = vabsq_f32(r3);
H
Refine  
hjchen2 已提交
109 110 111 112
    max[0] = vmaxvq_f32(r0);
    max[1] = vmaxvq_f32(r1);
    max[2] = vmaxvq_f32(r2);
    max[3] = vmaxvq_f32(r3);
113 114 115 116 117 118 119 120 121
    max[0] = vmaxvq_f32(max);
    if (max[0] > max_abs) {
      max_abs = max[0];
    }
    x += 16;
  }
  size = remain;
#endif
  for (size_t i = 0; i < size; ++i) {
122 123 124 125 126 127 128 129
    float value = std::abs(x[i]);
    if (value > max_abs) {
      max_abs = value;
    }
  }
  return max_abs;
}

130
static void quantize_round_to_even(const Tensor *input, const float scale,
131
                                   Tensor *output) {
132
  const float *x = input->data<const float>();
H
hjchen2 已提交
133
  int8_t *y = output->mutable_data<int8_t>();
134 135 136 137
  size_t size = input->numel();
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
  size_t loop = size >> 4;
  size_t remain = size & 0xF;
H
hjchen2 已提交
138 139

  #pragma omp parallel for
140
  for (size_t i = 0; i < loop; ++i) {
H
hjchen2 已提交
141 142 143 144 145 146
    const float *local_x = x + (i << 4);
    int8_t *local_y = y + (i << 4);
    float32x4_t r0 = vld1q_f32(local_x);
    float32x4_t r1 = vld1q_f32(local_x + 4);
    float32x4_t r2 = vld1q_f32(local_x + 8);
    float32x4_t r3 = vld1q_f32(local_x + 12);
147 148 149 150 151 152 153 154 155 156 157 158
    r0 = vmulq_n_f32(r0, scale);
    r1 = vmulq_n_f32(r1, scale);
    r2 = vmulq_n_f32(r2, scale);
    r3 = vmulq_n_f32(r3, scale);
    int32x4_t q0 = vrnd_to_even(r0);
    int32x4_t q1 = vrnd_to_even(r1);
    int32x4_t q2 = vrnd_to_even(r2);
    int32x4_t q3 = vrnd_to_even(r3);
    int16x4_t d0 = vmovn_s32(q0);
    int16x4_t d1 = vmovn_s32(q1);
    int16x4_t d2 = vmovn_s32(q2);
    int16x4_t d3 = vmovn_s32(q3);
H
hjchen2 已提交
159 160
    int16x8_t q5 = vcombine_s16(d0, d1);
    int16x8_t q6 = vcombine_s16(d2, d3);
H
Refine  
hjchen2 已提交
161 162
    int8x8_t d5 = vmovn_s16(q5);
    int8x8_t d6 = vmovn_s16(q6);
H
hjchen2 已提交
163 164
    vst1_s8(local_y, d5);
    vst1_s8(local_y + 8, d6);
165 166
  }
  size = remain;
H
hjchen2 已提交
167 168
  x += (loop << 4);
  y += (loop << 4);
169 170
#endif
  for (size_t i = 0; i < size; ++i) {
171
    float value = x[i] * scale;
H
Refine  
hjchen2 已提交
172 173 174 175
    float v = round(value);
    int32_t q = (int32_t)v;
    if (abs(abs(q - value) - 0.5) > 0) {
      y[i] = q;
176
    } else {
H
Refine  
hjchen2 已提交
177 178
      if (abs(q) % 2 == 0) {
        y[i] = q;
179
      } else {
H
hjchen2 已提交
180
        y[i] = q + ((q > 0) ? -1 : 1);
181 182 183 184 185
      }
    }
  }
}

186 187
static void quantize_round_to_zero(const Tensor *input, const float scale,
                                   Tensor *output) {
188
  const float *x = input->data<const float>();
H
hjchen2 已提交
189
  int8_t *y = output->mutable_data<int8_t>();
190 191 192 193
  size_t size = input->numel();
#ifdef defined(__ARM_NEON__) || defined(__ARM_NEON)
  size_t loop = size >> 4;
  size_t remain = size & 0xF;
H
hjchen2 已提交
194 195

  #pragma omp parallel for
196
  for (size_t i = 0; i < loop; ++i) {
H
hjchen2 已提交
197 198 199 200 201 202
    const float *local_x = x + (i << 4);
    int8_t *local_y = y + (i << 4);
    float32x4_t r0 = vld1q_f32(local_x);
    float32x4_t r1 = vld1q_f32(local_x + 4);
    float32x4_t r2 = vld1q_f32(local_x + 8);
    float32x4_t r3 = vld1q_f32(local_x + 12);
203 204 205 206 207 208 209 210 211 212 213 214
    r0 = vmulq_n_f32(r0, scale);
    r1 = vmulq_n_f32(r1, scale);
    r2 = vmulq_n_f32(r2, scale);
    r3 = vmulq_n_f32(r3, scale);
    int32x4_t q0 = vrnd_towards_zero(r0);
    int32x4_t q1 = vrnd_towards_zero(r1);
    int32x4_t q2 = vrnd_towards_zero(r2);
    int32x4_t q3 = vrnd_towards_zero(r3);
    int16x4_t d0 = vmovn_s32(q0);
    int16x4_t d1 = vmovn_s32(q1);
    int16x4_t d2 = vmovn_s32(q2);
    int16x4_t d3 = vmovn_s32(q3);
H
hjchen2 已提交
215 216
    int16x8_t q5 = vcombine_s16(d0, d1);
    int16x8_t q6 = vcombine_s16(d2, d3);
H
Refine  
hjchen2 已提交
217 218
    int8x8_t d5 = vmovn_s16(q5);
    int8x8_t d6 = vmovn_s16(q6);
H
hjchen2 已提交
219 220
    vst1_s8(local_y, d5);
    vst1_s8(local_y + 8, d6);
221 222
  }
  size = remain;
H
hjchen2 已提交
223 224
  x += (loop << 4);
  y += (loop << 4);
225 226
#endif
  for (size_t i = 0; i < size; ++i) {
227 228 229 230
    y[i] = trunc(x[i] * scale);
  }
}

231 232
static void quantize_round_to_nearest(const Tensor *input, const float scale,
                                      Tensor *output) {
233
  const float *x = input->data<const float>();
H
hjchen2 已提交
234
  int8_t *y = output->mutable_data<int8_t>();
235
  size_t size = input->numel();
236
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
237 238
  size_t loop = size >> 4;
  size_t remain = size & 0xF;
H
hjchen2 已提交
239 240

  #pragma omp parallel for
241
  for (size_t i = 0; i < loop; ++i) {
H
hjchen2 已提交
242 243 244 245 246 247
    const float *local_x = x + (i << 4);
    int8_t *local_y = y + (i << 4);
    float32x4_t r0 = vld1q_f32(local_x);
    float32x4_t r1 = vld1q_f32(local_x + 4);
    float32x4_t r2 = vld1q_f32(local_x + 8);
    float32x4_t r3 = vld1q_f32(local_x + 12);
248 249 250 251 252 253 254 255 256 257 258 259
    r0 = vmulq_n_f32(r0, scale);
    r1 = vmulq_n_f32(r1, scale);
    r2 = vmulq_n_f32(r2, scale);
    r3 = vmulq_n_f32(r3, scale);
    int32x4_t q0 = vrnd_away_zero(r0);
    int32x4_t q1 = vrnd_away_zero(r1);
    int32x4_t q2 = vrnd_away_zero(r2);
    int32x4_t q3 = vrnd_away_zero(r3);
    int16x4_t d0 = vmovn_s32(q0);
    int16x4_t d1 = vmovn_s32(q1);
    int16x4_t d2 = vmovn_s32(q2);
    int16x4_t d3 = vmovn_s32(q3);
H
hjchen2 已提交
260 261
    int16x8_t q5 = vcombine_s16(d0, d1);
    int16x8_t q6 = vcombine_s16(d2, d3);
H
Refine  
hjchen2 已提交
262 263
    int8x8_t d5 = vmovn_s16(q5);
    int8x8_t d6 = vmovn_s16(q6);
H
hjchen2 已提交
264 265
    vst1_s8(local_y, d5);
    vst1_s8(local_y + 8, d6);
266 267
  }
  size = remain;
H
hjchen2 已提交
268 269
  x += (loop << 4);
  y += (loop << 4);
270 271
#endif
  for (size_t i = 0; i < size; ++i) {
H
hjchen2 已提交
272
    y[i] = round(x[i] * scale);
273 274 275
  }
}

276
template <>
277 278 279 280
bool QuantizeKernel<CPU, float>::Init(QuantizeParam<CPU> *param) {
  return true;
}

281
template <>
L
liuruilong 已提交
282
void QuantizeKernel<CPU, float>::Compute(const QuantizeParam<CPU> &param) {
283 284 285 286 287 288 289 290 291
  float max_abs = 0.f;
  const Tensor *input = param.input_;
  Tensor *output = param.out_;
  Tensor *output_scale = param.online_scale_;
  if (param.is_static_) {
    max_abs = param.static_scale_;
  } else {
    max_abs = find_abs_max(input);
  }
H
hjchen2 已提交
292
  max_abs = std::max(max_abs, 1e-6f);
293
  // only support int8 currently
294 295
  float scale = 127 / max_abs;
  param.online_scale_->mutable_data<float>()[0] = max_abs;
296 297
  switch (param.round_type_) {
    case ROUND_NEAREST_TO_EVEN:
298
      quantize_round_to_even(input, scale, output);
299 300
      break;
    case ROUND_NEAREST_TOWARDS_ZERO:
301
      quantize_round_to_zero(input, scale, output);
302 303
      break;
    case ROUND_NEAREST_AWAY_ZERO:
304 305
      quantize_round_to_nearest(input, scale, output);
      break;
306 307 308 309
    default:
      LOG(kLOG_ERROR) << "round type is not supported.";
      break;
  }
310 311 312
}

}  // namespace operators
313
}  // namespace paddle_mobile
314 315

#endif