quantize_kernel.cpp 8.8 KB
Newer Older
T
Tian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#ifdef PADDLE_MOBILE_CPU

17
#include "operators/kernel/quantize_kernel.h"
18 19
#include <cmath>
#include <limits>
T
Tian 已提交
20

21 22
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#include <arm_neon.h>
H
Refine  
hjchen2 已提交
23

24 25 26 27 28 29 30
#ifndef __aarch64__
float32_t vmaxvq_f32(float32x4_t r) {
  float32x2_t v = vmax_f32(vget_high_f32(r), vget_low_f32(r));
  return vget_lane_f32(vpmax_f32(v, v), 0);
}
#endif

31
int32x4_t vrnd_towards_zero(float32x4_t r) { return vcvtq_s32_f32(r); }
32 33

int32x4_t vrnd_away_zero(float32x4_t r) {
34
  float32x4_t plus = vdupq_n_f32(0.5);
35
  float32x4_t minus = vdupq_n_f32(-0.5);
36
  float32x4_t zero = vdupq_n_f32(0);
H
Refine  
hjchen2 已提交
37
  uint32x4_t more_than_zero = vcgtq_f32(r, zero);
38
  float32x4_t temp = vbslq_f32(more_than_zero, plus, minus);
H
Refine  
hjchen2 已提交
39
  temp = vaddq_f32(r, temp);
40 41 42 43 44
  int32x4_t ret = vcvtq_s32_f32(temp);
  return ret;
}

int32x4_t vrnd_to_even(float32x4_t r) {
H
Refine  
hjchen2 已提交
45
#if 0
46
  int32x4_t ret;
H
Refine  
hjchen2 已提交
47 48
  float value[4];
  vst1q_f32(value, r);
49
  for (int i = 0; i < 4; ++i) {
H
Refine  
hjchen2 已提交
50
    float v = round(value[i]);
51
    int32_t q = (int32_t)v;
H
Refine  
hjchen2 已提交
52
    if (abs(abs(v - value[i]) - 0.5) > 0) {
53 54 55 56 57 58 59 60 61 62
      ret[i] = q;
    } else {
      if (abs(q) % 2 == 0) {
        ret[i] = q;
      } else {
        ret[i] = q + (q > 0) ? -1 : 1;
      }
    }
  }
  return ret;
63
#else
H
Refine  
hjchen2 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
  float32x4_t point5 = vdupq_n_f32(0.5);
  int32x4_t one = vdupq_n_s32(1);
  int32x4_t zero = vdupq_n_s32(0);

  int32x4_t rnd = vrnd_away_zero(r);
  float32x4_t frnd = vcvtq_f32_s32(rnd);
  frnd = vsubq_f32(frnd, r);
  frnd = vabsq_f32(frnd);
  uint32x4_t equal_point5 = vceqq_f32(frnd, point5);
  int32x4_t abs_rnd = vabsq_s32(rnd);
  abs_rnd = vandq_s32(abs_rnd, one);
  uint32x4_t not_mod2 = vreinterpretq_u32_s32(abs_rnd);
  uint32x4_t mask = vandq_u32(equal_point5, not_mod2);
  uint32x4_t more_than_zero = vcgtq_s32(rnd, zero);
  more_than_zero = vandq_u32(more_than_zero, vreinterpretq_u32_s32(one));
  mask = veorq_u32(more_than_zero, mask);
  more_than_zero = veorq_u32(more_than_zero, vreinterpretq_u32_s32(one));
  mask = vaddq_u32(more_than_zero, mask);
  int32x4_t smask = vreinterpretq_s32_u32(mask);
  smask = vsubq_s32(smask, one);
84
  rnd = vaddq_s32(rnd, smask);
H
Refine  
hjchen2 已提交
85
  return rnd;
86
#endif
87 88 89
}
#endif

90 91 92
namespace paddle_mobile {
namespace operators {

93
static float find_abs_max(const Tensor *input) {
94
  float max_abs = 0.f;
95
  const float *x = input->data<const float>();
96 97 98 99 100 101
  size_t size = input->numel();
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
  size_t loop = size >> 4;
  size_t remain = size & 0xF;
  for (size_t i = 0; i < loop; ++i) {
    float32x4_t max;
H
Refine  
hjchen2 已提交
102 103 104 105 106
    float32x4_t r0 = vld1q_f32(x);
    float32x4_t r1 = vld1q_f32(x + 4);
    float32x4_t r2 = vld1q_f32(x + 8);
    float32x4_t r3 = vld1q_f32(x + 12);
    r0 = vabsq_f32(r0);
107 108 109
    r1 = vabsq_f32(r1);
    r2 = vabsq_f32(r2);
    r3 = vabsq_f32(r3);
H
Refine  
hjchen2 已提交
110 111 112 113
    max[0] = vmaxvq_f32(r0);
    max[1] = vmaxvq_f32(r1);
    max[2] = vmaxvq_f32(r2);
    max[3] = vmaxvq_f32(r3);
114 115 116 117 118 119 120 121 122
    max[0] = vmaxvq_f32(max);
    if (max[0] > max_abs) {
      max_abs = max[0];
    }
    x += 16;
  }
  size = remain;
#endif
  for (size_t i = 0; i < size; ++i) {
123 124 125 126 127 128 129 130
    float value = std::abs(x[i]);
    if (value > max_abs) {
      max_abs = value;
    }
  }
  return max_abs;
}

131
static void quantize_round_to_even(const Tensor *input, const float scale,
132
                                   Tensor *output) {
133 134
  const float *x = input->data<const float>();
  int8_t *y = output->data<int8_t>();
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
  size_t size = input->numel();
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
  size_t loop = size >> 4;
  size_t remain = size & 0xF;
  for (size_t i = 0; i < loop; ++i) {
    float32x4_t r0 = vld1q_f32(x);
    float32x4_t r1 = vld1q_f32(x + 4);
    float32x4_t r2 = vld1q_f32(x + 8);
    float32x4_t r3 = vld1q_f32(x + 12);
    r0 = vmulq_n_f32(r0, scale);
    r1 = vmulq_n_f32(r1, scale);
    r2 = vmulq_n_f32(r2, scale);
    r3 = vmulq_n_f32(r3, scale);
    int32x4_t q0 = vrnd_to_even(r0);
    int32x4_t q1 = vrnd_to_even(r1);
    int32x4_t q2 = vrnd_to_even(r2);
    int32x4_t q3 = vrnd_to_even(r3);
    int16x4_t d0 = vmovn_s32(q0);
    int16x4_t d1 = vmovn_s32(q1);
    int16x4_t d2 = vmovn_s32(q2);
    int16x4_t d3 = vmovn_s32(q3);
    int16x8_t q5 = vcombine_s16(d1, d0);
    int16x8_t q6 = vcombine_s16(d3, d2);
H
Refine  
hjchen2 已提交
158 159 160 161
    int8x8_t d5 = vmovn_s16(q5);
    int8x8_t d6 = vmovn_s16(q6);
    vst1_s8(y, d5);
    vst1_s8(y + 8, d6);
162 163 164 165 166 167
    x += 16;
    y += 16;
  }
  size = remain;
#endif
  for (size_t i = 0; i < size; ++i) {
168
    float value = x[i] * scale;
H
Refine  
hjchen2 已提交
169 170 171 172
    float v = round(value);
    int32_t q = (int32_t)v;
    if (abs(abs(q - value) - 0.5) > 0) {
      y[i] = q;
173
    } else {
H
Refine  
hjchen2 已提交
174 175
      if (abs(q) % 2 == 0) {
        y[i] = q;
176
      } else {
H
Refine  
hjchen2 已提交
177
        y[i] = q + (q > 0) ? -1 : 1;
178 179 180 181 182
      }
    }
  }
}

183 184
static void quantize_round_to_zero(const Tensor *input, const float scale,
                                   Tensor *output) {
185 186
  const float *x = input->data<const float>();
  int8_t *y = output->data<int8_t>();
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
  size_t size = input->numel();
#ifdef defined(__ARM_NEON__) || defined(__ARM_NEON)
  size_t loop = size >> 4;
  size_t remain = size & 0xF;
  for (size_t i = 0; i < loop; ++i) {
    float32x4_t r0 = vld1q_f32(x);
    float32x4_t r1 = vld1q_f32(x + 4);
    float32x4_t r2 = vld1q_f32(x + 8);
    float32x4_t r3 = vld1q_f32(x + 12);
    r0 = vmulq_n_f32(r0, scale);
    r1 = vmulq_n_f32(r1, scale);
    r2 = vmulq_n_f32(r2, scale);
    r3 = vmulq_n_f32(r3, scale);
    int32x4_t q0 = vrnd_towards_zero(r0);
    int32x4_t q1 = vrnd_towards_zero(r1);
    int32x4_t q2 = vrnd_towards_zero(r2);
    int32x4_t q3 = vrnd_towards_zero(r3);
    int16x4_t d0 = vmovn_s32(q0);
    int16x4_t d1 = vmovn_s32(q1);
    int16x4_t d2 = vmovn_s32(q2);
    int16x4_t d3 = vmovn_s32(q3);
    int16x8_t q5 = vcombine_s16(d1, d0);
    int16x8_t q6 = vcombine_s16(d3, d2);
H
Refine  
hjchen2 已提交
210 211 212 213
    int8x8_t d5 = vmovn_s16(q5);
    int8x8_t d6 = vmovn_s16(q6);
    vst1_s8(y, d5);
    vst1_s8(y + 8, d6);
214 215 216 217 218 219
    x += 16;
    y += 16;
  }
  size = remain;
#endif
  for (size_t i = 0; i < size; ++i) {
220 221 222 223
    y[i] = trunc(x[i] * scale);
  }
}

224 225
static void quantize_round_to_nearest(const Tensor *input, const float scale,
                                      Tensor *output) {
226 227
  const float *x = input->data<const float>();
  int8_t *y = output->data<int8_t>();
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
  size_t size = input->numel();
#ifdef defined(__ARM_NEON__) || defined(__ARM_NEON)
  size_t loop = size >> 4;
  size_t remain = size & 0xF;
  for (size_t i = 0; i < loop; ++i) {
    float32x4_t r0 = vld1q_f32(x);
    float32x4_t r1 = vld1q_f32(x + 4);
    float32x4_t r2 = vld1q_f32(x + 8);
    float32x4_t r3 = vld1q_f32(x + 12);
    r0 = vmulq_n_f32(r0, scale);
    r1 = vmulq_n_f32(r1, scale);
    r2 = vmulq_n_f32(r2, scale);
    r3 = vmulq_n_f32(r3, scale);
    int32x4_t q0 = vrnd_away_zero(r0);
    int32x4_t q1 = vrnd_away_zero(r1);
    int32x4_t q2 = vrnd_away_zero(r2);
    int32x4_t q3 = vrnd_away_zero(r3);
    int16x4_t d0 = vmovn_s32(q0);
    int16x4_t d1 = vmovn_s32(q1);
    int16x4_t d2 = vmovn_s32(q2);
    int16x4_t d3 = vmovn_s32(q3);
    int16x8_t q5 = vcombine_s16(d1, d0);
    int16x8_t q6 = vcombine_s16(d3, d2);
H
Refine  
hjchen2 已提交
251 252 253 254
    int8x8_t d5 = vmovn_s16(q5);
    int8x8_t d6 = vmovn_s16(q6);
    vst1_s8(y, d5);
    vst1_s8(y + 8, d6);
255 256 257 258 259 260 261
    x += 16;
    y += 16;
  }
  size = remain;
#endif
  for (size_t i = 0; i < size; ++i) {
    y[i] = trunc(x[i] * scale);
262 263 264
  }
}

265
template <>
266 267 268 269
bool QuantizeKernel<CPU, float>::Init(QuantizeParam<CPU> *param) {
  return true;
}

270
template <>
271 272
void QuantizeKernel<CPU, float>::Compute(
    const QuantizeParam<CPU> &param) const {
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
  float max_abs = 0.f;
  const Tensor *input = param.input_;
  Tensor *output = param.out_;
  Tensor *output_scale = param.online_scale_;
  if (param.is_static_) {
    max_abs = param.static_scale_;
  } else {
    max_abs = find_abs_max(input);
  }
  if (max_abs < std::numeric_limits<float>::min()) {
    max_abs = std::numeric_limits<float>::min();
  }
  // only support int8 currently
  float online_scale = 127 / max_abs;
  param.online_scale_->mutable_data<float>()[0] = online_scale;
  switch (param.round_type_) {
    case ROUND_NEAREST_TO_EVEN:
      quantize_round_to_even(input, online_scale, output);
      break;
    case ROUND_NEAREST_TOWARDS_ZERO:
      quantize_round_to_zero(input, online_scale, output);
      break;
    case ROUND_NEAREST_AWAY_ZERO:
      quantize_round_to_nearest(input, online_scale, output);
    default:
      LOG(kLOG_ERROR) << "round type is not supported.";
      break;
  }
301 302 303
}

}  // namespace operators
304
}  // namespace paddle_mobile
305 306

#endif