Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
022f1291
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
022f1291
编写于
10月 23, 2018
作者:
H
hjchen2
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Optimize elementwise/relu/im2col, support 1x1 and 7x7 conv using int8, fix some code style
上级
3d475c9a
变更
18
隐藏空白更改
内联
并排
Showing
18 changed file
with
340 addition
and
161 deletion
+340
-161
src/io/executor.cpp
src/io/executor.cpp
+6
-4
src/operators/dequantize_op.cpp
src/operators/dequantize_op.cpp
+4
-0
src/operators/dequantize_op.h
src/operators/dequantize_op.h
+4
-0
src/operators/kernel/arm/dequantize_kernel.cpp
src/operators/kernel/arm/dequantize_kernel.cpp
+1
-1
src/operators/kernel/arm/quantize_kernel.cpp
src/operators/kernel/arm/quantize_kernel.cpp
+2
-2
src/operators/kernel/central-arm-func/elementwise_add_arm_func.h
...rators/kernel/central-arm-func/elementwise_add_arm_func.h
+46
-0
src/operators/kernel/central-arm-func/relu_arm_func.h
src/operators/kernel/central-arm-func/relu_arm_func.h
+97
-65
src/operators/kernel/dequantize_kernel.h
src/operators/kernel/dequantize_kernel.h
+4
-0
src/operators/kernel/quantize_kernel.h
src/operators/kernel/quantize_kernel.h
+4
-0
src/operators/math/conv3x3_arm_int8.cpp
src/operators/math/conv3x3_arm_int8.cpp
+4
-2
src/operators/math/conv5x5_arm_int8.cpp
src/operators/math/conv5x5_arm_int8.cpp
+4
-1
src/operators/math/gemm_int8.cpp
src/operators/math/gemm_int8.cpp
+2
-0
src/operators/math/im2col.cpp
src/operators/math/im2col.cpp
+88
-52
src/operators/quantize_op.cpp
src/operators/quantize_op.cpp
+4
-0
src/operators/quantize_op.h
src/operators/quantize_op.h
+4
-0
test/operators/test_int8_conv_op.cpp
test/operators/test_int8_conv_op.cpp
+56
-33
tools/op.cmake
tools/op.cmake
+9
-0
tools/pre-commit.hooks/cpplint.hook
tools/pre-commit.hooks/cpplint.hook
+1
-1
未找到文件。
src/io/executor.cpp
浏览文件 @
022f1291
...
...
@@ -80,12 +80,13 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
}
template
<
typename
Dtype
>
void
LoadMemInternal
(
void
**
data
,
framework
::
LoDTensor
*
tensor
)
{
static
void
LoadMemInternal
(
void
**
data
,
framework
::
LoDTensor
*
tensor
,
bool
quant_uint8
=
false
)
{
char
**
data_buf
=
reinterpret_cast
<
char
**>
(
data
);
int64_t
size
=
tensor
->
numel
();
Dtype
*
tensor_data
=
tensor
->
mutable_data
<
Dtype
>
();
if
(
0
)
{
//
TODO(hjchen2)
should be moved into operator init function
if
(
quant_uint8
)
{
// should be moved into operator init function
float
min_value
;
float
max_value
;
memcpy
(
&
min_value
,
data_buf
,
sizeof
(
float
));
...
...
@@ -141,7 +142,8 @@ void Executor<Dtype, P>::LoadMemory(
// parse tensor from stream
switch
(
tensor_desc
.
DataType
())
{
case
framework
::
VARTYPE_TYPE_FP32
:
LoadMemInternal
<
float
>
(
reinterpret_cast
<
void
**>
(
data_buf
),
tensor
);
LoadMemInternal
<
float
>
(
reinterpret_cast
<
void
**>
(
data_buf
),
tensor
,
program_
.
quantification
);
break
;
case
framework
::
VARTYPE_TYPE_INT8
:
LoadMemInternal
<
int8_t
>
(
reinterpret_cast
<
void
**>
(
data_buf
),
tensor
);
...
...
src/operators/dequantize_op.cpp
浏览文件 @
022f1291
...
...
@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef DEQUANT_OP
#include "operators/dequantize_op.h"
namespace
paddle_mobile
{
...
...
@@ -30,3 +32,5 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU
(
dequantize
,
ops
::
DequantizeOp
);
#endif
#endif
src/operators/dequantize_op.h
浏览文件 @
022f1291
...
...
@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef DEQUANT_OP
#pragma once
#include <string>
...
...
@@ -41,3 +43,5 @@ class DequantizeOp
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/arm/dequantize_kernel.cpp
浏览文件 @
022f1291
...
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef
PADDLE_MOBILE_CPU
#ifdef
DEQUANT_OP
#include "operators/kernel/dequantize_kernel.h"
...
...
src/operators/kernel/arm/quantize_kernel.cpp
浏览文件 @
022f1291
...
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef
PADDLE_MOBILE_CPU
#ifdef
QUANT_OP
#include "operators/kernel/quantize_kernel.h"
#include <cmath>
...
...
@@ -225,7 +225,7 @@ static void quantize_round_to_nearest(const Tensor *input, const float scale,
const
float
*
x
=
input
->
data
<
const
float
>
();
int8_t
*
y
=
output
->
mutable_data
<
int8_t
>
();
size_t
size
=
input
->
numel
();
#if
def
defined(__ARM_NEON__) || defined(__ARM_NEON)
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
size_t
loop
=
size
>>
4
;
size_t
remain
=
size
&
0xF
;
for
(
size_t
i
=
0
;
i
<
loop
;
++
i
)
{
...
...
src/operators/kernel/central-arm-func/elementwise_add_arm_func.h
浏览文件 @
022f1291
...
...
@@ -15,8 +15,12 @@ limitations under the License. */
#ifdef ELEMENTWISEADD_OP
#pragma once
#include "operators/math/elementwise_op_function.h"
#include "operators/op_param.h"
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#include <arm_neon.h>
#endif
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -33,8 +37,50 @@ void ElementwiseAddCompute(const ElementwiseAddParam<CPU> ¶m) {
Tensor
*
Out
=
param
.
Out
();
Out
->
mutable_data
<
float
>
();
int
axis
=
param
.
Axis
();
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
size_t
batch
=
1
;
size_t
elementwise_num
=
1
;
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
batch
*=
input_x
->
dims
()[
i
];
}
for
(
int
i
=
axis
+
1
;
i
<
input_x
->
dims
().
size
();
++
i
)
{
elementwise_num
*=
input_x
->
dims
()[
i
];
}
for
(
int
i
=
0
;
i
<
batch
;
++
i
)
{
for
(
int
j
=
0
;
j
<
input_x
->
dims
()[
axis
];
++
j
)
{
size_t
offset
=
(
i
*
input_x
->
dims
()[
axis
]
+
j
)
*
elementwise_num
;
const
float
*
input
=
input_x
->
data
<
float
>
()
+
offset
;
const
float
*
bias
=
input_y
->
data
<
float
>
()
+
j
;
float
*
output
=
Out
->
mutable_data
<
float
>
()
+
offset
;
int
loop
=
elementwise_num
>>
0x4
;
int
remain
=
elementwise_num
&
0xF
;
for
(
int
k
=
0
;
k
<
loop
;
++
k
)
{
float32x4_t
rb
=
vdupq_n_f32
(
*
bias
);
float32x4_t
r0
=
vld1q_f32
(
input
);
float32x4_t
r1
=
vld1q_f32
(
input
+
4
);
float32x4_t
r2
=
vld1q_f32
(
input
+
8
);
float32x4_t
r3
=
vld1q_f32
(
input
+
12
);
r0
=
vaddq_f32
(
r0
,
rb
);
r1
=
vaddq_f32
(
r1
,
rb
);
r2
=
vaddq_f32
(
r2
,
rb
);
r3
=
vaddq_f32
(
r3
,
rb
);
vst1q_f32
(
output
,
r0
);
vst1q_f32
(
output
+
4
,
r1
);
vst1q_f32
(
output
+
8
,
r2
);
vst1q_f32
(
output
+
12
,
r3
);
input
+=
16
;
output
+=
16
;
}
for
(
int
k
=
0
;
k
<
remain
;
++
k
)
{
output
[
k
]
=
input
[
k
]
+
*
bias
;
}
}
}
#else
ElementwiseComputeEx
<
AddFunctor
<
float
>
,
float
>
(
input_x
,
input_y
,
axis
,
AddFunctor
<
float
>
(),
Out
);
#endif
}
template
class
ElementwiseAddKernel
<
CPU
,
float
>;
...
...
src/operators/kernel/central-arm-func/relu_arm_func.h
浏览文件 @
022f1291
...
...
@@ -17,6 +17,9 @@ limitations under the License. */
#include <operators/math/transform.h>
#include "operators/op_param.h"
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#include <arm_neon.h>
#endif
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -37,71 +40,100 @@ void ReluCompute(const ReluParam<CPU> ¶m) {
auto
*
out_ptr
=
out
->
mutable_data
<
float
>
();
int
numel
=
input_x
->
numel
();
// if (numel > 64) {
// asm volatile(
// "pld [%[input_x_ptr], #0] \n\t"
// "vmov.f32 q8, #0.0 \n\t"
// "subs %[num], %[num], #32 \n\t"
// "blt end_num_%= \n\t"
// "loop_num_%=: \n\t"
// "pld [%[input_x_ptr], #1024] \n\t"
//
// "vld1.32 {q0, q1}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q2, q3}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q4, q5}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q6, q7}, [%[input_x_ptr]]! \n\t"
//
// "vmax.f32 q0, q0, q8 \n\t"
// "vmax.f32 q1, q1, q8 \n\t"
// "vmax.f32 q2, q2, q8 \n\t"
// "vmax.f32 q3, q3, q8 \n\t"
// "vmax.f32 q4, q4, q8 \n\t"
// "vmax.f32 q5, q5, q8 \n\t"
// "vmax.f32 q6, q6, q8 \n\t"
// "vmax.f32 q7, q7, q8 \n\t"
//
// "vst1.32 {q0, q1}, [%[out_ptr]]! \n\t"
// "vst1.32 {q2, q3}, [%[out_ptr]]! \n\t"
// "vst1.32 {q4, q5}, [%[out_ptr]]! \n\t"
// "vst1.32 {q6, q7}, [%[out_ptr]]! \n\t"
//
// "subs %[num], %[num], #32 \n\t"
// "bge loop_num_%= \n\t"
// "end_num_%=: \n\t"
// "cmp %[num], #0 \n\t"
// "bge end_%= \n\t"
// "mov r6, #4 \n\t"
// "mul r5, %[num], r6 \n\t"
// "add %[input_x_ptr], %[input_x_ptr], r5 \n\t"
// "vld1.32 {q0, q1}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q2, q3}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q4, q5}, [%[input_x_ptr]]! \n\t"
// "vld1.32 {q6, q7}, [%[input_x_ptr]]! \n\t"
// "vmax.f32 q0, q0, q8 \n\t"
// "vmax.f32 q1, q1, q8 \n\t"
// "vmax.f32 q2, q2, q8 \n\t"
// "vmax.f32 q3, q3, q8 \n\t"
// "vmax.f32 q4, q4, q8 \n\t"
// "vmax.f32 q5, q5, q8 \n\t"
// "vmax.f32 q6, q6, q8 \n\t"
// "vmax.f32 q7, q7, q8 \n\t"
// "add %[out_ptr], %[out_ptr], r5 \n\t"
// "vst1.32 {q0, q1}, [%[out_ptr]]! \n\t"
// "vst1.32 {q2, q3}, [%[out_ptr]]! \n\t"
// "vst1.32 {q4, q5}, [%[out_ptr]]! \n\t"
// "vst1.32 {q6, q7}, [%[out_ptr]]! \n\t"
// "end_%=: \n\t"
// :
// :
// [out_ptr] "r"(out_ptr), [input_x_ptr] "r"(input_x_ptr), [num]
// "r"(numel) : "memory", "q0", "q1", "q2", "q3", "q4", "q5", "q6",
// "q7", "q8", "r5",
// "r6");
// } else {
ReluFunctor
<
float
>
func_
;
math
::
Transform
trans
;
trans
(
input_x_ptr
,
input_x_ptr
+
numel
,
out_ptr
,
func_
);
// }
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#if __aarch64__
if
(
numel
>
0
)
{
int
loop
=
numel
>>
0x4
;
int
remain
=
numel
&
0xF
;
float32x4_t
zero
=
vdupq_n_f32
(
0.
f
);
for
(
int
i
=
0
;
i
<
loop
;
++
i
)
{
float32x4_t
r0
=
vld1q_f32
(
input_x_ptr
);
float32x4_t
r1
=
vld1q_f32
(
input_x_ptr
+
4
);
float32x4_t
r2
=
vld1q_f32
(
input_x_ptr
+
8
);
float32x4_t
r3
=
vld1q_f32
(
input_x_ptr
+
12
);
r0
=
vmaxq_f32
(
r0
,
zero
);
r1
=
vmaxq_f32
(
r1
,
zero
);
r2
=
vmaxq_f32
(
r2
,
zero
);
r3
=
vmaxq_f32
(
r3
,
zero
);
vst1q_f32
(
out_ptr
,
r0
);
vst1q_f32
(
out_ptr
+
4
,
r1
);
vst1q_f32
(
out_ptr
+
8
,
r2
);
vst1q_f32
(
out_ptr
+
12
,
r3
);
input_x_ptr
+=
16
;
out_ptr
+=
16
;
}
for
(
int
i
=
0
;
i
<
remain
;
++
i
)
{
out_ptr
[
i
]
=
(
input_x_ptr
[
i
]
>
0
)
*
input_x_ptr
[
i
];
}
#else
if
(
numel
>
64
)
{
asm
volatile
(
"pld [%[input_x_ptr], #0]
\n\t
"
"vmov.f32 q8, #0.0
\n\t
"
"subs %[num], %[num], #32
\n\t
"
"blt end_num_%=
\n\t
"
"loop_num_%=:
\n\t
"
"pld [%[input_x_ptr], #1024]
\n\t
"
"vld1.32 {q0, q1}, [%[input_x_ptr]]!
\n\t
"
"vld1.32 {q2, q3}, [%[input_x_ptr]]!
\n\t
"
"vld1.32 {q4, q5}, [%[input_x_ptr]]!
\n\t
"
"vld1.32 {q6, q7}, [%[input_x_ptr]]!
\n\t
"
"vmax.f32 q0, q0, q8
\n\t
"
"vmax.f32 q1, q1, q8
\n\t
"
"vmax.f32 q2, q2, q8
\n\t
"
"vmax.f32 q3, q3, q8
\n\t
"
"vmax.f32 q4, q4, q8
\n\t
"
"vmax.f32 q5, q5, q8
\n\t
"
"vmax.f32 q6, q6, q8
\n\t
"
"vmax.f32 q7, q7, q8
\n\t
"
"vst1.32 {q0, q1}, [%[out_ptr]]!
\n\t
"
"vst1.32 {q2, q3}, [%[out_ptr]]!
\n\t
"
"vst1.32 {q4, q5}, [%[out_ptr]]!
\n\t
"
"vst1.32 {q6, q7}, [%[out_ptr]]!
\n\t
"
"subs %[num], %[num], #32
\n\t
"
"bge loop_num_%=
\n\t
"
"end_num_%=:
\n\t
"
"cmp %[num], #0
\n\t
"
"bge end_%=
\n\t
"
"mov r6, #4
\n\t
"
"mul r5, %[num], r6
\n\t
"
"add %[input_x_ptr], %[input_x_ptr], r5
\n\t
"
"vld1.32 {q0, q1}, [%[input_x_ptr]]!
\n\t
"
"vld1.32 {q2, q3}, [%[input_x_ptr]]!
\n\t
"
"vld1.32 {q4, q5}, [%[input_x_ptr]]!
\n\t
"
"vld1.32 {q6, q7}, [%[input_x_ptr]]!
\n\t
"
"vmax.f32 q0, q0, q8
\n\t
"
"vmax.f32 q1, q1, q8
\n\t
"
"vmax.f32 q2, q2, q8
\n\t
"
"vmax.f32 q3, q3, q8
\n\t
"
"vmax.f32 q4, q4, q8
\n\t
"
"vmax.f32 q5, q5, q8
\n\t
"
"vmax.f32 q6, q6, q8
\n\t
"
"vmax.f32 q7, q7, q8
\n\t
"
"add %[out_ptr], %[out_ptr], r5
\n\t
"
"vst1.32 {q0, q1}, [%[out_ptr]]!
\n\t
"
"vst1.32 {q2, q3}, [%[out_ptr]]!
\n\t
"
"vst1.32 {q4, q5}, [%[out_ptr]]!
\n\t
"
"vst1.32 {q6, q7}, [%[out_ptr]]!
\n\t
"
"end_%=:
\n\t
"
:
:
[
out_ptr
]
"r"
(
out_ptr
),
[
input_x_ptr
]
"r"
(
input_x_ptr
),
[
num
]
"r"
(
numel
)
:
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"r5"
,
"r6"
);
#endif
}
else
{
#endif
ReluFunctor
<
float
>
func_
;
math
::
Transform
trans
;
trans
(
input_x_ptr
,
input_x_ptr
+
numel
,
out_ptr
,
func_
);
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
}
#endif
}
}
// namespace operators
}
// namespace paddle_mobile
...
...
src/operators/kernel/dequantize_kernel.h
浏览文件 @
022f1291
...
...
@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef DEQUANT_OP
#pragma once
#include "framework/operator.h"
...
...
@@ -30,3 +32,5 @@ class DequantizeKernel
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/kernel/quantize_kernel.h
浏览文件 @
022f1291
...
...
@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef QUANT_OP
#pragma once
#include "framework/operator.h"
...
...
@@ -30,3 +32,5 @@ class QuantizeKernel
}
// namespace operators
}
// namespace paddle_mobile
#endif
src/operators/math/conv3x3_arm_int8.cpp
浏览文件 @
022f1291
...
...
@@ -36,7 +36,9 @@ void conv3x3s1_int8(const framework::Tensor& input,
int
image_size
=
input_h
*
input_w
;
int
out_image_size
=
output_h
*
output_w
;
memset
(
out_data
,
0
,
output_c
*
out_image_size
*
sizeof
(
int32_t
));
#if __aarch64__
// TODO(hjchen2)
#else
int
oc
=
0
;
#pragma omp parallel for
for
(;
oc
<
output_c
-
1
;
oc
+=
2
)
{
...
...
@@ -747,7 +749,7 @@ void conv3x3s1_int8(const framework::Tensor& input,
}
}
}
#endif
#else
// TODO(hjchen2)
#endif
...
...
src/operators/math/conv5x5_arm_int8.cpp
浏览文件 @
022f1291
...
...
@@ -36,7 +36,9 @@ void conv5x5s1_int8(const framework::Tensor& input,
int
image_size
=
input_h
*
input_w
;
int
out_image_size
=
output_h
*
output_w
;
memset
(
out_data
,
0
,
output_c
*
out_image_size
*
sizeof
(
int32_t
));
#if __aarch64__
// TODO(hjchen2)
#else
#pragma omp parallel for
for
(
int
oc
=
0
;
oc
<
output_c
;
++
oc
)
{
for
(
int
ic
=
0
;
ic
<
input_c
;
++
ic
)
{
...
...
@@ -537,6 +539,7 @@ void conv5x5s1_int8(const framework::Tensor& input,
}
}
}
#endif
#else
// TODO(hjchen2)
#endif
...
...
src/operators/math/gemm_int8.cpp
浏览文件 @
022f1291
...
...
@@ -642,6 +642,7 @@ void Gemm::WriteWithAlphaBeta(int32_t mc, int32_t nc, int32_t *c, int32_t *C,
// C = A * B, 8位 int32_t
void
Gemm
::
WriteBasic
(
int32_t
mc
,
int32_t
nc
,
int32_t
*
c
,
int32_t
*
C
,
int32_t
ldc
)
{
#if __ARM_NEON
int32_t
nc1
=
nc
>>
4
;
int32_t
_nc1
=
nc
&
15
;
int32_t
step
=
sizeof
(
int32_t
)
*
ldc
;
...
...
@@ -695,6 +696,7 @@ void Gemm::WriteBasic(int32_t mc, int32_t nc, int32_t *c, int32_t *C,
}
}
}
#endif // __ARM_NEON
}
// C = A * B + C
...
...
src/operators/math/im2col.cpp
浏览文件 @
022f1291
...
...
@@ -397,7 +397,7 @@ void Im2ColFunctor<ColFormat::kCFO, CPU, float>::operator()(
col_data
[
col_idx
]
=
(
im_row_idx
<
0
||
im_row_idx
>=
im_height
||
im_col_idx
<
0
||
im_col_idx
>=
im_width
)
?
static_cast
<
T
>
(
0
)
?
static_cast
<
float
>
(
0
)
:
im_data
[
im_idx
];
}
}
...
...
@@ -405,10 +405,68 @@ void Im2ColFunctor<ColFormat::kCFO, CPU, float>::operator()(
#endif
}
// TODO(hjchen2)
void
ExtractToRows1
()
{}
void
ExtractToRows2
()
{}
void
ExtractToImg
(
const
int8_t
*
im_data
,
int8_t
*
col_data
,
const
int
im_height
,
const
int
im_width
,
const
int
col_height
,
const
int
col_width
,
const
int
padding_h
,
const
int
padding_w
,
const
int
stride_h
,
const
int
stride_w
,
const
int
kh
,
const
int
kw
)
{
int
h
=
padding_h
-
kh
;
int
w
=
padding_w
-
kw
;
int
col_start_height
=
h
>
0
?
(
h
+
stride_h
-
1
)
/
stride_h
:
0
;
int
col_start_width
=
w
>
0
?
(
w
+
stride_w
-
1
)
/
stride_w
:
0
;
int
start_height
=
kh
+
col_start_height
*
stride_h
-
padding_h
;
int
start_width
=
kw
+
col_start_width
*
stride_w
-
padding_w
;
int
end_height
=
(
col_height
-
col_start_height
)
*
stride_h
+
start_height
;
end_height
=
end_height
>
im_height
?
im_height
:
end_height
;
int
end_width
=
(
col_width
-
col_start_width
)
*
stride_w
+
start_width
;
end_width
=
end_width
>
im_width
?
im_width
:
end_width
;
int
extract
=
(
end_width
-
start_width
+
stride_w
-
1
)
/
stride_w
;
im_data
+=
start_height
*
im_width
+
start_width
;
col_data
+=
col_start_height
*
col_width
+
col_start_width
;
for
(
int
i
=
start_height
;
i
<
end_height
;
i
+=
stride_h
)
{
if
(
stride_w
==
1
)
{
memcpy
(
col_data
,
im_data
,
extract
*
sizeof
(
int8_t
));
}
else
if
(
stride_w
==
2
)
{
int
s
=
0
;
#if __ARM_NEON
for
(;
s
<
extract
-
15
;
s
+=
16
)
{
int8x16x2_t
img
=
vld2q_s8
(
im_data
+
s
*
2
);
vst1q_s8
(
col_data
+
s
,
img
.
val
[
0
]);
}
#endif
for
(;
s
<
extract
;
++
s
)
{
col_data
[
s
]
=
im_data
[
s
*
2
];
}
}
else
if
(
stride_w
==
3
)
{
int
s
=
0
;
#if __ARM_NEON
for
(;
s
<
extract
-
15
;
s
+=
16
)
{
int8x16x3_t
img
=
vld3q_s8
(
im_data
+
s
*
3
);
vst1q_s8
(
col_data
+
s
,
img
.
val
[
0
]);
}
#endif
for
(;
s
<
extract
;
++
s
)
{
col_data
[
s
]
=
im_data
[
s
*
3
];
}
}
else
if
(
stride_w
==
4
)
{
int
s
=
0
;
#if __ARM_NEON
for
(;
s
<
extract
-
15
;
s
+=
16
)
{
int8x16x4_t
img
=
vld4q_s8
(
im_data
+
s
*
4
);
vst1q_s8
(
col_data
+
s
,
img
.
val
[
0
]);
}
#endif
for
(;
s
<
extract
;
++
s
)
{
col_data
[
s
]
=
im_data
[
s
*
4
];
}
}
else
{
PADDLE_MOBILE_THROW_EXCEPTION
(
"stride_w must be one of 1, 2, 3 and 4."
);
}
im_data
+=
im_width
*
stride_h
;
col_data
+=
col_width
;
}
}
/*
* im = [input_channels, input_height, input_width]
...
...
@@ -432,64 +490,42 @@ void Im2ColFunctor<ColFormat::kCFO, CPU, int8_t>::operator()(
int
channels_col
=
im_channels
*
filter_height
*
filter_width
;
const
int8_t
*
im_data
=
im
.
data
<
int8_t
>
();
int8_t
*
col_data
=
col
->
data
<
int8_t
>
();
// #if defined(__ARM_NEON__) || defined(__ARM_NEON)
#if 0
if (stride[0] == stride[1] && stride[0] == 1 && dilation[0] == 1 &&
padding[0] == padding[1] && dilation[0] == dilation[1]) {
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
if
(
stride
[
0
]
<=
4
&&
dilation
[
0
]
==
1
&&
dilation
[
0
]
==
dilation
[
1
])
{
// pad 0
memset
(
col_data
,
0
,
col
->
numel
()
*
sizeof
(
int8_t
));
for
(
int
ic
=
0
;
ic
<
im_channels
;
++
ic
)
{
for (int oh = 0; oh < padding[0]; ++oh) {
for (int k = 0; k < filter_height * filter_width; ++k) {
ExtractToRows1();
ExtractToRows1();
}
}
for (int oh = padding[0]; oh < col_height - padding[0]; ++oh) {
for (int k = 0; k < filter_height * filter_width; ++k) {
ExtractToRows1();
}
}
}
} else if (stride[0] == stride[1] && stride[0] == 2 && dilation[0] == 1 &&
padding[0] == padding[1] && dilation[0] == dilation[1]) {
// pad 0
memset(col_data, 0, col->numel() * sizeof(int8_t));
for (int ic = 0; ic < im_channels; ++ic) {
for (int oh = 0; oh < padding[0]; ++oh) {
for (int k = 0; k < filter_height * filter_width; ++k) {
ExtractToRows2();
ExtractToRows2();
}
}
for (int oh = padding[0]; oh < col_height - padding[0]; ++oh) {
for (int k = 0; k < filter_height * filter_width; ++k) {
ExtractToRows2();
for
(
int
kh
=
0
;
kh
<
filter_height
;
++
kh
)
{
for
(
int
kw
=
0
;
kw
<
filter_width
;
++
kw
)
{
ExtractToImg
(
im_data
,
col_data
,
im_height
,
im_width
,
col_height
,
col_width
,
padding
[
0
],
padding
[
1
],
stride
[
0
],
stride
[
1
],
kh
,
kw
);
col_data
+=
col_height
*
col_width
;
}
}
im_data
+=
im_height
*
im_width
;
}
}
else
{
#endif
for
(
int
c
=
0
;
c
<
channels_col
;
++
c
)
{
int
w_offset
=
c
%
filter_width
;
int
h_offset
=
(
c
/
filter_width
)
%
filter_height
;
int
c_im
=
c
/
(
filter_width
*
filter_height
);
for
(
int
h
=
0
;
h
<
col_height
;
++
h
)
{
int
im_row_idx
=
h
*
stride
[
0
]
-
padding
[
0
]
+
h_offset
*
dilation
[
0
];
for
(
int
w
=
0
;
w
<
col_width
;
++
w
)
{
int
im_col_idx
=
w
*
stride
[
1
]
-
padding
[
1
]
+
w_offset
*
dilation
[
1
];
int
col_idx
=
(
c
*
col_height
+
h
)
*
col_width
+
w
;
int
im_idx
=
(
im_row_idx
+
c_im
*
im_height
)
*
im_width
+
im_col_idx
;
for
(
int
c
=
0
;
c
<
channels_col
;
++
c
)
{
int
w_offset
=
c
%
filter_width
;
int
h_offset
=
(
c
/
filter_width
)
%
filter_height
;
int
c_im
=
c
/
(
filter_width
*
filter_height
);
for
(
int
h
=
0
;
h
<
col_height
;
++
h
)
{
int
im_row_idx
=
h
*
stride
[
0
]
-
padding
[
0
]
+
h_offset
*
dilation
[
0
];
for
(
int
w
=
0
;
w
<
col_width
;
++
w
)
{
int
im_col_idx
=
w
*
stride
[
1
]
-
padding
[
1
]
+
w_offset
*
dilation
[
1
];
int
col_idx
=
(
c
*
col_height
+
h
)
*
col_width
+
w
;
int
im_idx
=
(
im_row_idx
+
c_im
*
im_height
)
*
im_width
+
im_col_idx
;
col_data
[
col_idx
]
=
(
im_row_idx
<
0
||
im_row_idx
>=
im_height
||
im_col_idx
<
0
||
im_col_idx
>=
im_width
)
?
static_cast
<
int8_t
>
(
0
)
:
im_data
[
im_idx
];
col_data
[
col_idx
]
=
(
im_row_idx
<
0
||
im_row_idx
>=
im_height
||
im_col_idx
<
0
||
im_col_idx
>=
im_width
)
?
static_cast
<
int8_t
>
(
0
)
:
im_data
[
im_idx
];
}
}
}
}
// #if defined(__ARM_NEON__) || defined(__ARM_NEON)
#if 0
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
}
#endif
}
...
...
src/operators/quantize_op.cpp
浏览文件 @
022f1291
...
...
@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef QUANT_OP
#include "operators/quantize_op.h"
#include <vector>
...
...
@@ -33,3 +35,5 @@ namespace ops = paddle_mobile::operators;
#ifdef PADDLE_MOBILE_CPU
REGISTER_OPERATOR_CPU
(
quantize
,
ops
::
QuantizeOp
);
#endif
#endif
src/operators/quantize_op.h
浏览文件 @
022f1291
...
...
@@ -12,6 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef QUANT_OP
#pragma once
#include <string>
...
...
@@ -40,3 +42,5 @@ class QuantizeOp : public framework::OperatorWithKernel<
}
// namespace operators
}
// namespace paddle_mobile
#endif
test/operators/test_int8_conv_op.cpp
浏览文件 @
022f1291
...
...
@@ -140,10 +140,10 @@ int TestConvOp() {
int
dilation_w
=
1
;
int
batch_size
=
1
;
int
input_c
=
6
3
;
int
input_h
=
51
;
int
input_w
=
51
;
int
output_c
=
1
25
;
int
input_c
=
3
;
int
input_h
=
100
;
int
input_w
=
100
;
int
output_c
=
1
0
;
framework
::
DDim
input_shape
=
framework
::
make_ddim
({
batch_size
,
input_c
,
input_h
,
input_w
});
framework
::
DDim
filter_shape
=
...
...
@@ -174,40 +174,38 @@ int TestConvOp() {
auto
*
op
=
new
operators
::
ConvOp
<
CPU
,
float
>
(
"conv2d"
,
inputs
,
outputs
,
attrs
,
scope
);
struct
timespec
ts_begin
,
ts_end
;
//
struct timespec ts_begin, ts_end;
op
->
InferShape
();
// warmup
// op->Run();
// clock_gettime(CLOCK_MONOTONIC, &ts_begin);
// for (int i = 0; i < 10; ++i) {
op
->
Run
();
clock_gettime
(
CLOCK_MONOTONIC
,
&
ts_begin
);
for
(
int
i
=
0
;
i
<
10
;
++
i
)
{
op
->
Run
();
}
clock_gettime
(
CLOCK_MONOTONIC
,
&
ts_end
);
uint64_t
elapsed
=
(
ts_end
.
tv_sec
-
ts_begin
.
tv_sec
)
*
1e3
+
(
ts_end
.
tv_nsec
-
ts_begin
.
tv_nsec
)
/
1e6
;
LOG
(
kLOG_INFO
)
<<
"elapsed: "
<<
elapsed
/
10.0
<<
" ms"
;
// }
// clock_gettime(CLOCK_MONOTONIC, &ts_end);
// uint64_t elapsed = (ts_end.tv_sec - ts_begin.tv_sec) * 1e3 +
// (ts_end.tv_nsec - ts_begin.tv_nsec) / 1e6;
// LOG(kLOG_INFO) << "elapsed: " << elapsed / 10.0 << " ms";
/*
int kernel_extent_h = dilation_h * (kernel_h - 1) + 1;
int kernel_extent_w = dilation_w * (kernel_w - 1) + 1;
int output_h = (input_h + 2 * pad_h - kernel_extent_h) / stride_h + 1;
int output_w = (input_w + 2 * pad_w - kernel_extent_w) / stride_w + 1;
auto output_shape = framework::make_ddim(
std::vector<int>({batch_size, output_c, output_h, output_w}));
framework::Tensor output_cmp;
output_cmp.mutable_data<Otype>(output_shape);
conv2d<Itype, Otype>(input, filter, attrs, &output_cmp);
int
kernel_extent_h
=
dilation_h
*
(
kernel_h
-
1
)
+
1
;
int
kernel_extent_w
=
dilation_w
*
(
kernel_w
-
1
)
+
1
;
int
output_h
=
(
input_h
+
2
*
pad_h
-
kernel_extent_h
)
/
stride_h
+
1
;
int
output_w
=
(
input_w
+
2
*
pad_w
-
kernel_extent_w
)
/
stride_w
+
1
;
auto
output_shape
=
framework
::
make_ddim
(
std
::
vector
<
int
>
({
batch_size
,
output_c
,
output_h
,
output_w
}));
framework
::
Tensor
output_cmp
;
output_cmp
.
mutable_data
<
Otype
>
(
output_shape
);
conv2d
<
Itype
,
Otype
>
(
input
,
filter
,
attrs
,
&
output_cmp
);
// compare results
auto output = output_var->template Get<framework::LoDTensor>();
const Otype *output_data = output->data<Otype>();
Otype *output_cmp_data = output_cmp.data<Otype>();
for (int i = 0; i < output->numel(); ++i) {
PADDLE_MOBILE_ENFORCE(output_data[i] == output_cmp_data[i],
"output[%d] = %d, output_cmp[%d] = %d", i,
output_data[i], i, output_cmp_data[i]);
}
*/
// compare results
auto
output
=
output_var
->
template
Get
<
framework
::
LoDTensor
>();
const
Otype
*
output_data
=
output
->
data
<
Otype
>
();
Otype
*
output_cmp_data
=
output_cmp
.
data
<
Otype
>
();
for
(
int
i
=
0
;
i
<
output
->
numel
();
++
i
)
{
PADDLE_MOBILE_ENFORCE
(
output_data
[
i
]
==
output_cmp_data
[
i
],
"output[%d] = %d, output_cmp[%d] = %d"
,
i
,
output_data
[
i
],
i
,
output_cmp_data
[
i
]);
}
delete
op
;
return
0
;
}
...
...
@@ -219,10 +217,35 @@ int main() {
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=0, stride=2"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
7
,
0
,
2
>
();
// kernel = 7, pad = 1, stride = 2
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=1, stride=2"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
7
,
1
,
2
>
();
// kernel = 7, pad = 3, stride = 2
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=3, stride=2"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
7
,
3
,
2
>
();
// kernel = 7, pad = 0, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=0, stride=1"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
7
,
0
,
1
>
();
// kernel = 7, pad = 1, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=1, stride=1"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
7
,
1
,
1
>
();
// kernel = 7, pad = 3, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=3, stride=1"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
7
,
3
,
1
>
();
// kernel = 7, pad = 5, stride = 3
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=5, stride=3"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
7
,
5
,
3
>
();
// kernel = 7, pad = 3, stride = 4
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=7, pad=3, stride=4"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
7
,
3
,
4
>
();
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"
\n
"
;
// kernel = 3, pad = 0, stride = 1
LOG
(
paddle_mobile
::
kLOG_INFO
)
<<
"int8, kernel=3, pad=0, stride=1"
;
paddle_mobile
::
TestConvOp
<
int8_t
,
int32_t
,
3
,
0
,
1
>
();
...
...
tools/op.cmake
浏览文件 @
022f1291
...
...
@@ -222,6 +222,8 @@ if(NOT FOUND_MATCH)
set
(
SHAPE_OP ON
)
set
(
ELEMENTWISEMUL_OP ON
)
set
(
SUM_OP ON
)
set
(
QUANT_OP ON
)
set
(
DEQUANT_OP ON
)
endif
()
# option(BATCHNORM_OP "" ON)
...
...
@@ -401,3 +403,10 @@ if (SUM_OP)
add_definitions
(
-DSUM_OP
)
endif
()
if
(
QUANT_OP
)
add_definitions
(
-DQUANT_OP
)
endif
()
if
(
DEQUANT_OP
)
add_definitions
(
-DDEQUANT_OP
)
endif
()
tools/pre-commit.hooks/cpplint.hook
浏览文件 @
022f1291
...
...
@@ -5,7 +5,7 @@ TOTAL_ERRORS=0
# The trick to remove deleted files: https://stackoverflow.com/a/2413151
for
file
in
$(
git diff
--cached
--name-status
|
awk
'$1 != "D" {print $2}'
|
\
grep
-v
".pb.cpp"
|
grep
-v
".pb.h"
|
grep
-v
".pb-c.h"
|
grep
-v
".pb-c.c"
|
\
grep
-v
"protobuf-c.h"
|
grep
-v
"protobuf-c.c"
|
grep
-v
"variant.h"
)
;
do
grep
-v
"protobuf-c.h"
|
grep
-v
"protobuf-c.c"
)
;
do
cpplint
$file
;
TOTAL_ERRORS
=
$(
expr
$TOTAL_ERRORS
+
$?
)
;
done
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录