quantize_kernel.cpp 8.0 KB
Newer Older
T
Tian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#ifdef PADDLE_MOBILE_CPU

17
#include "operators/kernel/quantize_kernel.h"
18 19
#include <cmath>
#include <limits>
T
Tian 已提交
20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#include <arm_neon.h>
#ifndef __aarch64__
float32_t vmaxvq_f32(float32x4_t r) {
  float32x2_t v = vmax_f32(vget_high_f32(r), vget_low_f32(r));
  return vget_lane_f32(vpmax_f32(v, v), 0);
}
#endif

int32x4_t vrnd_towards_zero(float32x4_t r) {
  return vcvtq_s32_f32(r);
}

int32x4_t vrnd_away_zero(float32x4_t r) {
  float32x4_t plus  = vdupq_n_f32(0.5);
  float32x4_t minus = vdupq_n_f32(-0.5);
  float32x4_t zero  = vdupq_n_f32(0);
  uint32x4_t more_than_zero = vcgtq_f32(r1, zero);
  float32x4_t temp = vbslq_f32(more_than_zero, plus, minus);
  temp = vaddq_f32(r1, add);
  int32x4_t ret = vcvtq_s32_f32(temp);
  return ret;
}

int32x4_t vrnd_to_even(float32x4_t r) {
  int32x4_t ret;
  for (int i = 0; i < 4; ++i) {
    float v = round(r[i]);
    int32_t q = (int32_t)v;
    if (abs(abs(v - r[i]) - 0.5) > 0) {
      ret[i] = q;
    } else {
      if (abs(q) % 2 == 0) {
        ret[i] = q;
      } else {
        ret[i] = q + (q > 0) ? -1 : 1;
      }
    }
  }
  return ret;
}

#endif

65 66 67
namespace paddle_mobile {
namespace operators {

68 69 70
static float find_abs_max(const Tensor *input) {
  float max_abs = float(0);
  const float *x = input->data<const float>();
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
  size_t size = input->numel();
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
  size_t loop = size >> 4;
  size_t remain = size & 0xF;
  for (size_t i = 0; i < loop; ++i) {
    float32x4_t max;
    float32x4_t r1 = vld1q_f32(x);
    float32x4_t r2 = vld1q_f32(x + 4);
    float32x4_t r3 = vld1q_f32(x + 8);
    float32x4_t r4 = vld1q_f32(x + 12);
    r1 = vabsq_f32(r1);
    r2 = vabsq_f32(r2);
    r3 = vabsq_f32(r3);
    r4 = vabsq_f32(r4);
    max[0] = vmaxvq_f32(r1);
    max[1] = vmaxvq_f32(r2);
    max[2] = vmaxvq_f32(r3);
    max[3] = vmaxvq_f32(r4);
    max[0] = vmaxvq_f32(max);
    if (max[0] > max_abs) {
      max_abs = max[0];
    }
    x += 16;
  }
  size = remain;
#endif
  for (size_t i = 0; i < size; ++i) {
98 99 100 101 102 103 104 105 106
    float value = std::abs(x[i]);
    if (value > max_abs) {
      max_abs = value;
    }
  }
  return max_abs;
}

static void quantize_round_to_even(const Tensor *input,
107 108
                                   const float scale,
                                   Tensor *output) {
109 110
  const float *x = input->data<const float>();
  int8_t *y = output->data<int8_t>();
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
  size_t size = input->numel();
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
  size_t loop = size >> 4;
  size_t remain = size & 0xF;
  for (size_t i = 0; i < loop; ++i) {
    float32x4_t r0 = vld1q_f32(x);
    float32x4_t r1 = vld1q_f32(x + 4);
    float32x4_t r2 = vld1q_f32(x + 8);
    float32x4_t r3 = vld1q_f32(x + 12);
    r0 = vmulq_n_f32(r0, scale);
    r1 = vmulq_n_f32(r1, scale);
    r2 = vmulq_n_f32(r2, scale);
    r3 = vmulq_n_f32(r3, scale);
    int32x4_t q0 = vrnd_to_even(r0);
    int32x4_t q1 = vrnd_to_even(r1);
    int32x4_t q2 = vrnd_to_even(r2);
    int32x4_t q3 = vrnd_to_even(r3);
    int16x4_t d0 = vmovn_s32(q0);
    int16x4_t d1 = vmovn_s32(q1);
    int16x4_t d2 = vmovn_s32(q2);
    int16x4_t d3 = vmovn_s32(q3);
    int16x8_t q5 = vcombine_s16(d1, d0);
    int16x8_t q6 = vcombine_s16(d3, d2);
    int8x8_t d1 = vmovn_s16(q5);
    int8x8_t d2 = vmovn_s16(q6);
    vst1_s8(y, d1);
    vst1_s8(y + 8, d2);
    x += 16;
    y += 16;
  }
  size = remain;
#endif
  for (size_t i = 0; i < size; ++i) {
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
    float value = x[i] * scale;
    long long quant = llround(value);
    if (abs(abs(round(value) - value) - 0.5) > 0) {
      y[i] = quant;
    } else {
      if (abs(quant) % 2 == 0) {
        y[i] = quant;
      } else {
        y[i] = quant + (quant > 0) ? -1 : 1;
      }
    }
  }
}

static void quantize_round_to_zero(const Tensor *input,
                            const float scale,
                            Tensor *output) {
  const float *x = input->data<const float>();
  int8_t *y = output->data<int8_t>();
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
  size_t size = input->numel();
#ifdef defined(__ARM_NEON__) || defined(__ARM_NEON)
  size_t loop = size >> 4;
  size_t remain = size & 0xF;
  for (size_t i = 0; i < loop; ++i) {
    float32x4_t r0 = vld1q_f32(x);
    float32x4_t r1 = vld1q_f32(x + 4);
    float32x4_t r2 = vld1q_f32(x + 8);
    float32x4_t r3 = vld1q_f32(x + 12);
    r0 = vmulq_n_f32(r0, scale);
    r1 = vmulq_n_f32(r1, scale);
    r2 = vmulq_n_f32(r2, scale);
    r3 = vmulq_n_f32(r3, scale);
    int32x4_t q0 = vrnd_towards_zero(r0);
    int32x4_t q1 = vrnd_towards_zero(r1);
    int32x4_t q2 = vrnd_towards_zero(r2);
    int32x4_t q3 = vrnd_towards_zero(r3);
    int16x4_t d0 = vmovn_s32(q0);
    int16x4_t d1 = vmovn_s32(q1);
    int16x4_t d2 = vmovn_s32(q2);
    int16x4_t d3 = vmovn_s32(q3);
    int16x8_t q5 = vcombine_s16(d1, d0);
    int16x8_t q6 = vcombine_s16(d3, d2);
    int8x8_t d1 = vmovn_s16(q5);
    int8x8_t d2 = vmovn_s16(q6);
    vst1_s8(y, d1);
    vst1_s8(y + 8, d2);
    x += 16;
    y += 16;
  }
  size = remain;
#endif
  for (size_t i = 0; i < size; ++i) {
196 197 198 199 200 201 202 203 204
    y[i] = trunc(x[i] * scale);
  }
}

static void quantize_round_to_nearest(const Tensor *input,
                               const float scale,
                               Tensor *output) {
  const float *x = input->data<const float>();
  int8_t *y = output->data<int8_t>();
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
  size_t size = input->numel();
#ifdef defined(__ARM_NEON__) || defined(__ARM_NEON)
  size_t loop = size >> 4;
  size_t remain = size & 0xF;
  for (size_t i = 0; i < loop; ++i) {
    float32x4_t r0 = vld1q_f32(x);
    float32x4_t r1 = vld1q_f32(x + 4);
    float32x4_t r2 = vld1q_f32(x + 8);
    float32x4_t r3 = vld1q_f32(x + 12);
    r0 = vmulq_n_f32(r0, scale);
    r1 = vmulq_n_f32(r1, scale);
    r2 = vmulq_n_f32(r2, scale);
    r3 = vmulq_n_f32(r3, scale);
    int32x4_t q0 = vrnd_away_zero(r0);
    int32x4_t q1 = vrnd_away_zero(r1);
    int32x4_t q2 = vrnd_away_zero(r2);
    int32x4_t q3 = vrnd_away_zero(r3);
    int16x4_t d0 = vmovn_s32(q0);
    int16x4_t d1 = vmovn_s32(q1);
    int16x4_t d2 = vmovn_s32(q2);
    int16x4_t d3 = vmovn_s32(q3);
    int16x8_t q5 = vcombine_s16(d1, d0);
    int16x8_t q6 = vcombine_s16(d3, d2);
    int8x8_t d1 = vmovn_s16(q5);
    int8x8_t d2 = vmovn_s16(q6);
    vst1_s8(y, d1);
    vst1_s8(y + 8, d2);
    x += 16;
    y += 16;
  }
  size = remain;
#endif
  for (size_t i = 0; i < size; ++i) {
    y[i] = trunc(x[i] * scale);
239 240 241
  }
}

242 243 244 245 246 247 248 249 250
template<>
bool QuantizeKernel<CPU, float>::Init(QuantizeParam<CPU> *param) {
  return true;
}

template<>
void QuantizeKernel<CPU, float>::Compute(
    const QuantizeParam<CPU> &param) const {
  // TODO
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
  float max_abs = 0.f;
  const Tensor *input = param.input_;
  Tensor *output = param.out_;
  Tensor *output_scale = param.online_scale_;
  if (param.is_static_) {
    max_abs = param.static_scale_;
  } else {
    max_abs = find_abs_max(input);
  }
  if (max_abs < std::numeric_limits<float>::min()) {
    max_abs = std::numeric_limits<float>::min();
  }
  // only support int8 currently
  float online_scale = 127 / max_abs;
  param.online_scale_->mutable_data<float>()[0] = online_scale;
  switch (param.round_type_) {
    case ROUND_NEAREST_TO_EVEN:
      quantize_round_to_even(input, online_scale, output);
      break;
    case ROUND_NEAREST_TOWARDS_ZERO:
      quantize_round_to_zero(input, online_scale, output);
      break;
    case ROUND_NEAREST_AWAY_ZERO:
      quantize_round_to_nearest(input, online_scale, output);
    default:
      LOG(kLOG_ERROR) << "round type is not supported.";
      break;
  }
279 280 281 282
}

}  // namespace paddle_mobile
}  // namespace operators
283 284

#endif