Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
b02f4b59
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b02f4b59
编写于
10月 08, 2018
作者:
H
hjchen2
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine
上级
0f79507d
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
69 addition
and
35 deletion
+69
-35
src/operators/kernel/arm/dequantize_kernel.cpp
src/operators/kernel/arm/dequantize_kernel.cpp
+34
-3
src/operators/kernel/arm/quantize_kernel.cpp
src/operators/kernel/arm/quantize_kernel.cpp
+35
-32
未找到文件。
src/operators/kernel/arm/dequantize_kernel.cpp
浏览文件 @
b02f4b59
...
...
@@ -16,6 +16,10 @@ limitations under the License. */
#include "operators/kernel/dequantize_kernel.h"
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#include <arm_neon.h>
#endif
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -27,15 +31,42 @@ bool DequantizeKernel<CPU, float>::Init(DequantizeParam<CPU> *param) {
template
<
>
void
DequantizeKernel
<
CPU
,
float
>::
Compute
(
const
DequantizeParam
<
CPU
>
&
param
)
const
{
// TODO
const
Tensor
*
input
=
param
.
input_
;
Tensor
*
output
=
param
.
out_
;
float
activation_scale
=
param
.
activation_scale_
->
data
<
float
>
()[
0
];
float
weight_scale
=
param
.
weight_scale_
;
const
int32_t
*
x
=
input
->
data
<
const
int32_t
>
();
float
*
y
=
output
->
mutable_data
<
float
>
();
for
(
size_t
i
=
0
;
i
<
output
->
numel
();
++
i
)
{
y
[
i
]
=
x
[
i
]
/
activation_scale
/
weight_scale
;
size_t
size
=
output
->
numel
();
float
scale
=
1.
f
/
activation_scale
/
weight_scale
;
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
size_t
loop
=
size
>>
4
;
size_t
remain
=
size
&
0xF
;
float32x4_t
s
=
vdupq_n_f32
(
scale
);
for
(
size_t
i
=
0
;
i
<
loop
;
++
i
)
{
int32x4_t
r0
=
vld1q_s32
(
x
);
int32x4_t
r1
=
vld1q_s32
(
x
+
4
);
int32x4_t
r2
=
vld1q_s32
(
x
+
8
);
int32x4_t
r3
=
vld1q_s32
(
x
+
12
);
float32x4_t
f0
=
vcvtq_f32_s32
(
r0
);
float32x4_t
f1
=
vcvtq_f32_s32
(
r1
);
float32x4_t
f2
=
vcvtq_f32_s32
(
r2
);
float32x4_t
f3
=
vcvtq_f32_s32
(
r3
);
f0
=
vmulq_f32
(
f0
,
s
);
f1
=
vmulq_f32
(
f1
,
s
);
f2
=
vmulq_f32
(
f2
,
s
);
f3
=
vmulq_f32
(
f3
,
s
);
vst1q_f32
(
y
,
f0
);
vst1q_f32
(
y
+
4
,
f1
);
vst1q_f32
(
y
+
8
,
f2
);
vst1q_f32
(
y
+
12
,
f3
);
x
+=
16
;
y
+=
16
;
}
size
=
remain
;
#endif
for
(
size_t
i
=
0
;
i
<
size
;
++
i
)
{
y
[
i
]
=
x
[
i
]
*
scale
;
}
}
...
...
src/operators/kernel/arm/quantize_kernel.cpp
浏览文件 @
b02f4b59
...
...
@@ -20,6 +20,7 @@ limitations under the License. */
#if defined(__ARM_NEON__) || defined(__ARM_NEON)
#include <arm_neon.h>
#ifndef __aarch64__
float32_t
vmaxvq_f32
(
float32x4_t
r
)
{
float32x2_t
v
=
vmax_f32
(
vget_high_f32
(
r
),
vget_low_f32
(
r
));
...
...
@@ -35,19 +36,21 @@ int32x4_t vrnd_away_zero(float32x4_t r) {
float32x4_t
plus
=
vdupq_n_f32
(
0.5
);
float32x4_t
minus
=
vdupq_n_f32
(
-
0.5
);
float32x4_t
zero
=
vdupq_n_f32
(
0
);
uint32x4_t
more_than_zero
=
vcgtq_f32
(
r
1
,
zero
);
uint32x4_t
more_than_zero
=
vcgtq_f32
(
r
,
zero
);
float32x4_t
temp
=
vbslq_f32
(
more_than_zero
,
plus
,
minus
);
temp
=
vaddq_f32
(
r
1
,
add
);
temp
=
vaddq_f32
(
r
,
temp
);
int32x4_t
ret
=
vcvtq_s32_f32
(
temp
);
return
ret
;
}
int32x4_t
vrnd_to_even
(
float32x4_t
r
)
{
int32x4_t
ret
;
float
value
[
4
];
vst1q_f32
(
value
,
r
);
for
(
int
i
=
0
;
i
<
4
;
++
i
)
{
float
v
=
round
(
r
[
i
]);
float
v
=
round
(
value
[
i
]);
int32_t
q
=
(
int32_t
)
v
;
if
(
abs
(
abs
(
v
-
r
[
i
])
-
0.5
)
>
0
)
{
if
(
abs
(
abs
(
v
-
value
[
i
])
-
0.5
)
>
0
)
{
ret
[
i
]
=
q
;
}
else
{
if
(
abs
(
q
)
%
2
==
0
)
{
...
...
@@ -59,7 +62,6 @@ int32x4_t vrnd_to_even(float32x4_t r) {
}
return
ret
;
}
#endif
namespace
paddle_mobile
{
...
...
@@ -74,18 +76,18 @@ static float find_abs_max(const Tensor *input) {
size_t
remain
=
size
&
0xF
;
for
(
size_t
i
=
0
;
i
<
loop
;
++
i
)
{
float32x4_t
max
;
float32x4_t
r1
=
vld1q_f32
(
x
);
float32x4_t
r2
=
vld1q_f32
(
x
+
4
);
float32x4_t
r3
=
vld1q_f32
(
x
+
8
);
float32x4_t
r4
=
vld1q_f32
(
x
+
12
);
float32x4_t
r0
=
vld1q_f32
(
x
);
float32x4_t
r1
=
vld1q_f32
(
x
+
4
);
float32x4_t
r2
=
vld1q_f32
(
x
+
8
);
float32x4_t
r3
=
vld1q_f32
(
x
+
12
);
r0
=
vabsq_f32
(
r0
);
r1
=
vabsq_f32
(
r1
);
r2
=
vabsq_f32
(
r2
);
r3
=
vabsq_f32
(
r3
);
r4
=
vabsq_f32
(
r4
);
max
[
0
]
=
vmaxvq_f32
(
r1
);
max
[
1
]
=
vmaxvq_f32
(
r2
);
max
[
2
]
=
vmaxvq_f32
(
r3
);
max
[
3
]
=
vmaxvq_f32
(
r4
);
max
[
0
]
=
vmaxvq_f32
(
r0
);
max
[
1
]
=
vmaxvq_f32
(
r1
);
max
[
2
]
=
vmaxvq_f32
(
r2
);
max
[
3
]
=
vmaxvq_f32
(
r3
);
max
[
0
]
=
vmaxvq_f32
(
max
);
if
(
max
[
0
]
>
max_abs
)
{
max_abs
=
max
[
0
];
...
...
@@ -131,10 +133,10 @@ static void quantize_round_to_even(const Tensor *input,
int16x4_t
d3
=
vmovn_s32
(
q3
);
int16x8_t
q5
=
vcombine_s16
(
d1
,
d0
);
int16x8_t
q6
=
vcombine_s16
(
d3
,
d2
);
int8x8_t
d
1
=
vmovn_s16
(
q5
);
int8x8_t
d
2
=
vmovn_s16
(
q6
);
vst1_s8
(
y
,
d
1
);
vst1_s8
(
y
+
8
,
d
2
);
int8x8_t
d
5
=
vmovn_s16
(
q5
);
int8x8_t
d
6
=
vmovn_s16
(
q6
);
vst1_s8
(
y
,
d
5
);
vst1_s8
(
y
+
8
,
d
6
);
x
+=
16
;
y
+=
16
;
}
...
...
@@ -142,14 +144,15 @@ static void quantize_round_to_even(const Tensor *input,
#endif
for
(
size_t
i
=
0
;
i
<
size
;
++
i
)
{
float
value
=
x
[
i
]
*
scale
;
long
long
quant
=
llround
(
value
);
if
(
abs
(
abs
(
round
(
value
)
-
value
)
-
0.5
)
>
0
)
{
y
[
i
]
=
quant
;
float
v
=
round
(
value
);
int32_t
q
=
(
int32_t
)
v
;
if
(
abs
(
abs
(
q
-
value
)
-
0.5
)
>
0
)
{
y
[
i
]
=
q
;
}
else
{
if
(
abs
(
q
uant
)
%
2
==
0
)
{
y
[
i
]
=
q
uant
;
if
(
abs
(
q
)
%
2
==
0
)
{
y
[
i
]
=
q
;
}
else
{
y
[
i
]
=
q
uant
+
(
quant
>
0
)
?
-
1
:
1
;
y
[
i
]
=
q
+
(
q
>
0
)
?
-
1
:
1
;
}
}
}
...
...
@@ -183,10 +186,10 @@ static void quantize_round_to_zero(const Tensor *input,
int16x4_t
d3
=
vmovn_s32
(
q3
);
int16x8_t
q5
=
vcombine_s16
(
d1
,
d0
);
int16x8_t
q6
=
vcombine_s16
(
d3
,
d2
);
int8x8_t
d
1
=
vmovn_s16
(
q5
);
int8x8_t
d
2
=
vmovn_s16
(
q6
);
vst1_s8
(
y
,
d
1
);
vst1_s8
(
y
+
8
,
d
2
);
int8x8_t
d
5
=
vmovn_s16
(
q5
);
int8x8_t
d
6
=
vmovn_s16
(
q6
);
vst1_s8
(
y
,
d
5
);
vst1_s8
(
y
+
8
,
d
6
);
x
+=
16
;
y
+=
16
;
}
...
...
@@ -225,10 +228,10 @@ static void quantize_round_to_nearest(const Tensor *input,
int16x4_t
d3
=
vmovn_s32
(
q3
);
int16x8_t
q5
=
vcombine_s16
(
d1
,
d0
);
int16x8_t
q6
=
vcombine_s16
(
d3
,
d2
);
int8x8_t
d
1
=
vmovn_s16
(
q5
);
int8x8_t
d
2
=
vmovn_s16
(
q6
);
vst1_s8
(
y
,
d
1
);
vst1_s8
(
y
+
8
,
d
2
);
int8x8_t
d
5
=
vmovn_s16
(
q5
);
int8x8_t
d
6
=
vmovn_s16
(
q6
);
vst1_s8
(
y
,
d
5
);
vst1_s8
(
y
+
8
,
d
6
);
x
+=
16
;
y
+=
16
;
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录