op_param.h 105.7 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

17
#include <memory>
E
eclipsess 已提交
18
#include <string>
W
wangliu 已提交
19
#include <vector>
L
liuruilong 已提交
20
#include "common/log.h"
朔-望's avatar
朔-望 已提交
21
#include "common/type_define.h"
N
nhzlx 已提交
22
#include "common/types.h"
23
#include "framework/attribute.h"
朔-望's avatar
朔-望 已提交
24 25 26
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
27
#include "framework/type_trait.h"
朔-望's avatar
朔-望 已提交
28
#include "framework/variable.h"
Z
zhangyang 已提交
29 30 31 32 33 34 35

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
36
#endif
朔-望's avatar
朔-望 已提交
37

C
Chon 已提交
38 39 40 41
#ifdef PADDLE_MOBILE_FPGA_KD
#include "fpga/KD/context.hpp"
#endif

L
liuruilong 已提交
42 43
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
44
#endif
朔-望's avatar
朔-望 已提交
45 46

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
47 48
namespace operators {

W
wangliu 已提交
49 50 51 52 53
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
54
using framework::Variable;
W
wangliu 已提交
55 56
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
57

58
using framework::DtypeTensorTrait;
L
liuruilong 已提交
59

L
liuruilong 已提交
60
class OpParam {
61 62
 public:
  OpParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
63 64
          const AttributeMap &attrs, Scope *scope)
      : scope_(scope) {}
65

66 67
  Scope *GetScope() const { return scope_; }
  Scope *scope_ = nullptr;
68

C
Chon 已提交
69 70 71 72 73 74
#ifdef PADDLE_MOBILE_FPGA_KD
  zynqmp::Context &context() { return context_; }

  zynqmp::Context context_;
#endif

朔-望's avatar
朔-望 已提交
75
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
76 77 78 79
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
80 81 82 83 84 85 86

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

87 88 89 90 91
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

92 93 94 95 96 97 98 99 100
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
101 102 103 104 105
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

133 134 135 136
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
137 138 139 140 141 142

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

143 144 145 146 147
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
148 149 150 151 152
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

153 154 155 156 157
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
158 159 160 161
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
162 163 164 165 166 167 168 169 170 171 172 173
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
174 175 176 177
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
194

E
eclipsess 已提交
195 196 197 198 199 200 201 202 203 204
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
205 206 207 208
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
209

210
  template <typename T>
W
wangliu 已提交
211 212
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
213 214 215
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
216 217 218 219 220
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
221 222 223 224 225 226
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
227 228 229 230 231
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
232 233 234 235 236 237 238 239 240 241 242
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
243 244 245 246 247 248
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
249 250 251 252 253 254 255 256 257 258 259 260
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

261 262 263 264 265
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
266 267 268 269 270
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

271 272 273 274 275
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
276 277 278 279 280 281
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

282 283 284 285 286
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
287 288 289 290 291 292
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
293 294 295 296 297 298
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
299 300 301 302 303
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
304 305 306 307 308
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
309 310 311 312 313 314
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

315 316 317 318 319 320 321 322 323 324 325
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
326
  static const T GetAttr(const string &key, const AttributeMap &map) {
327 328
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
329 330
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
331 332
    return ((Attribute)map.at(key)).GetString();
  }
333

334 335 336 337
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

338
  template <typename T>
W
wangliu 已提交
339
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
340
                        const Scope &scope) {
W
wangliu 已提交
341 342
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
343 344 345 346 347 348
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
349
    }
350
  }
朔-望's avatar
朔-望 已提交
351

E
eclipsess 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

365
  static std::string Getkey(const string &key, const VariableNameMap &var_map,
366
                            int index) {
367 368
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > index,
                          "%s is not contained in var_map", key.c_str())
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

387
  template <typename T>
W
wangliu 已提交
388 389 390
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
391 392
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
393
    vector<T *> var_res;
394 395 396
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
397
    }
398 399
    return var_res;
  }
E
eclipsess 已提交
400 401 402 403 404 405 406 407 408 409 410 411 412

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
413 414
};

415 416 417 418 419 420
#define GET_VAR_AS_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::Tensor>(name, name_dict, scope)

#define GET_VAR_AS_LOD_TENSOR(name, name_dict, scope) \
  OpParam::GetVarValue<framework::LoDTensor>(name, name_dict, scope)

N
nhzlx 已提交
421
template <typename Dtype>
422
class ConvParam : public OpParam {
N
nhzlx 已提交
423 424 425
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
426
 public:
427
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
428 429 430 431
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = OpParam::FilterFrom<GType>(inputs, *scope);
    input_ = OpParam::InputFrom<GType>(inputs, *scope);
432
    if (outputs.count("Output")) {
433
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
434 435 436 437 438
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
439
  }
朔-望's avatar
朔-望 已提交
440

441
  const GType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
442

443
  GType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
444

445
  GType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
446

W
wangliu 已提交
447
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
448

W
wangliu 已提交
449
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
450

W
wangliu 已提交
451
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
452

H
hjchen2 已提交
453 454 455
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
456 457
    EXEC_DEPTHWISE3x3S1_FLOAT,
    EXEC_DEPTHWISE3x3S2_FLOAT,
H
hjchen2 已提交
458 459
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
460
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
461
    EXEC_GEMM_INT8,
H
hjchen2 已提交
462
    EXEC_DEPTHWISE3x3_INT8,
463
    EXEC_DEPTHWISE5x5_INT8,
S
StarryRain 已提交
464 465
    EXEC_SLIDINGWINDOW3x3S1_FLOAT,
    EXEC_SLIDINGWINDOW3x3S2_FLOAT,
466 467 468 469 470
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_SLIDINGWINDOW1x1_FLOAT,
    EXEC_SLIDINGWINDOW3x3_FLOAT,
    EXEC_SLIDINGWINDOW5x5_FLOAT,
    EXEC_SLIDINGWINDOW7x7_FLOAT,
471
    EXEC_GEMM1x1s1_FLOAT,
H
hjchen2 已提交
472 473 474 475
  };

  ExecMode &ExecMode() const { return exec_mode_; }

476
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
477

478 479 480 481 482 483 484
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
485
 public:
486 487 488 489
  GType *input_;
  GType *output_;
  GType *filter_;
  GType *transformed_filter_;
W
wangliu 已提交
490 491 492
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
493
  mutable enum ExecMode exec_mode_;
494
  int groups;
495 496 497 498

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
499 500 501

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
502
 public:
Z
zhangyang 已提交
503 504 505 506 507
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
508 509 510 511 512 513 514

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
515
#endif
朔-望's avatar
朔-望 已提交
516
};
N
nhzlx 已提交
517 518
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
519

N
nhzlx 已提交
520
template <typename Dtype>
521
class ElementwiseAddParam : public OpParam {
N
nhzlx 已提交
522 523 524
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
525
 public:
526
  ElementwiseAddParam(const VariableNameMap &inputs,
527
                      const VariableNameMap &outputs, const AttributeMap &attrs,
528 529 530 531 532
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
533 534 535
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
536
  const GType *InputX() const { return input_x_; }
537

xiebaiyuan's avatar
xiebaiyuan 已提交
538
  const GType *InputY() const { return input_y_; }
539

xiebaiyuan's avatar
xiebaiyuan 已提交
540
  GType *Out() const { return out_; }
541 542 543

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
544
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
545 546 547
  GType *input_x_;
  GType *input_y_;
  GType *out_;
548
  int axis_;
Z
zhangyang 已提交
549 550 551
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
552
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
553 554

 public:
H
hanbuhe 已提交
555 556
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
qnqinan's avatar
qnqinan 已提交
557 558 559 560

 public:
  Tensor float_input_x, float_out;

Z
zhangyang 已提交
561
#endif
朔-望's avatar
朔-望 已提交
562 563
};

E
eclipsess 已提交
564
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
565
template <typename Dtype>
566
class ElementwiseMulParam : public OpParam {
E
eclipsess 已提交
567 568 569 570 571 572
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
573 574 575 576 577
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
qnqinan's avatar
qnqinan 已提交
594 595 596 597 598 599
#ifdef PADDLE_MOBILE_FPGA

 public:
  Tensor float_input_x, float_out;

#endif
E
eclipsess 已提交
600
};
S
suiyang 已提交
601
#endif
E
eclipsess 已提交
602

603
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
604 605
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
606 607
#endif

608
#ifdef ELEMENTWISESUB_OP
609
template <typename Dtype>
610
class ElementwiseSubParam : public OpParam {
611 612 613 614 615 616
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
617 618 619 620 621
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
639
#endif
640

L
liuruilong 已提交
641
#ifdef MUL_OP
N
nhzlx 已提交
642
template <typename Dtype>
643
class MulParam : public OpParam {
N
nhzlx 已提交
644 645 646
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
647
 public:
648
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
649 650 651 652 653
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
654 655 656
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
657

658
  GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
659

660
  GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
661

xiebaiyuan's avatar
xiebaiyuan 已提交
662
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
663

664
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
665

666
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
667

朔-望's avatar
朔-望 已提交
668
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
669 670 671
  GType *input_x_;
  GType *input_y_;
  GType *out_;
672 673
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
674
};
L
liuruilong 已提交
675
#endif
朔-望's avatar
朔-望 已提交
676

L
liuruilong 已提交
677
#ifdef CONCAT_OP
N
nhzlx 已提交
678
template <typename Dtype>
朔-望's avatar
朔-望 已提交
679
class ConcatParam : public OpParam {
N
nhzlx 已提交
680 681 682
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
683
 public:
684
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
685 686 687 688
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
689
    axis_ = GetAttr<int>("axis", attrs);
690
    original_output_dims_size_ = inputs_[0]->dims().size();
691
  }
朔-望's avatar
朔-望 已提交
692

N
nhzlx 已提交
693
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
694

xiebaiyuan's avatar
xiebaiyuan 已提交
695
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
696

697
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
698

699
 public:
N
nhzlx 已提交
700
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
701
  GType *out_;
702
  int axis_;
703
  int original_output_dims_size_;
Z
zhangyang 已提交
704 705 706 707 708 709 710 711 712
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
713
};
L
liuruilong 已提交
714
#endif
朔-望's avatar
朔-望 已提交
715

E
eclipsess 已提交
716 717 718 719 720 721 722 723
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
724 725 726 727 728 729
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
748
#ifdef LRN_OP
N
nhzlx 已提交
749
template <typename Dtype>
E
eclipsess 已提交
750
class LrnParam : public OpParam {
N
nhzlx 已提交
751 752 753
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
754
 public:
755
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
756 757 758 759 760
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    mid_out_ = MidOutFrom<GType>(outputs, *scope);
761 762 763 764
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
765
    data_format_ = GetStringAttr("data_format", attrs);
766
  }
E
eclipsess 已提交
767

768
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
769

770
  GType *Out() const { return out_; }
E
eclipsess 已提交
771

772
  GType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
773

774
  const int &N() const { return n_; }
E
eclipsess 已提交
775

776
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
777

778
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
779

780
  const float &K() const { return k_; }
E
eclipsess 已提交
781

W
wangliu 已提交
782
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
783

朔-望's avatar
朔-望 已提交
784
 private:
785 786 787
  GType *input_x_;
  GType *out_;
  GType *mid_out_;
788 789 790 791
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
792
  string data_format_;
E
eclipsess 已提交
793
};
L
liuruilong 已提交
794 795
#endif

Z
zhaojiaying01 已提交
796 797
#ifdef NORM_OP
template <typename Dtype>
798
class NormParam : public OpParam {
Z
zhaojiaying01 已提交
799 800 801 802 803
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
804 805 806 807 808
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_norm_ = OutputNormFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
809 810 811 812
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

813
  const GType *InputX() const { return input_x_; }
Z
zhaojiaying01 已提交
814

815
  GType *Out() const { return out_; }
Z
zhaojiaying01 已提交
816

817
  GType *OutputNorm() const { return output_norm_; }
Z
zhaojiaying01 已提交
818 819 820 821 822 823

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
824 825 826
  GType *input_x_;
  GType *out_;
  GType *output_norm_;
Z
zhaojiaying01 已提交
827 828 829 830 831
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
832
#ifdef BATCHNORM_OP
N
nhzlx 已提交
833
template <typename Dtype>
834
class BatchNormParam : public OpParam {
N
nhzlx 已提交
835 836 837
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
838
 public:
839
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
840 841 842 843 844 845 846 847
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_y_ = OutputYFrom<GType>(outputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, *scope);
848 849
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
850
    //    is_test_ = GetAttr<bool>("is_test", attrs);
851
  }
E
eclipsess 已提交
852

853
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
854

855
  GType *OutputY() const { return output_y_; }
E
eclipsess 已提交
856

857
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
858

859
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
860

861
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
862

863
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
864

865
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
866

867
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
868

869
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
870

W
wangliu 已提交
871
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
872

873
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
874

875
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
876

877
  const GType *NewScale() const { return new_scale_; }
878

879
  const GType *NewBias() const { return new_bias_; }
880

朔-望's avatar
朔-望 已提交
881
 private:
882 883 884 885 886 887
  GType *input_x_;
  GType *output_y_;
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
888 889 890
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
891
  string data_format_;
892 893
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
894
};
L
liuruilong 已提交
895 896 897
#endif

#ifdef POOL_OP
N
nhzlx 已提交
898
template <typename Dtype>
899
class PoolParam : public OpParam {
N
nhzlx 已提交
900 901 902
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
903
 public:
904
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
905 906 907
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
908

909
    output_ = OutFrom<GType>(outputs, *scope);
910
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
911 912 913
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
914
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
915
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
916 917 918 919 920 921

    if (HasAttr("exclusive", attrs)) {
      exclusive_ = GetAttr<bool>("exclusive", attrs);
    } else {
      exclusive_ = true;
    }
922
  }
923

924
  const GType *Input() const { return input_; }
925

926
  GType *Output() const { return output_; }
927

W
wangliu 已提交
928
  const string &PoolingType() const { return pooling_type_; }
929

W
wangliu 已提交
930
  const vector<int> &Ksize() const { return ksize_; }
931

W
wangliu 已提交
932
  const vector<int> &Strides() const { return strides_; }
933

W
wangliu 已提交
934
  const vector<int> &Paddings() const { return paddings_; }
935

936
  bool isCeilMode() const { return ceil_mode_; }
937

Z
zhangyang 已提交
938
  bool isGlobalPooling() const { return global_pooling_; }
939

940 941
  bool isExclusive() const { return exclusive_; }

朔-望's avatar
朔-望 已提交
942
 private:
943 944
  GType *input_;
  GType *output_;
W
wangliu 已提交
945 946 947 948
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
949
  bool ceil_mode_;
950
  bool global_pooling_ = false;
951
  bool exclusive_ = true;
Z
zhangyang 已提交
952
#ifdef PADDLE_MOBILE_FPGA
953 954

 private:
H
hanbuhe 已提交
955
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
956 957

 public:
H
hanbuhe 已提交
958 959
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
960
#endif
961
};
L
liuruilong 已提交
962 963 964
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
965
template <typename Dtype>
E
eclipsess 已提交
966
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
967 968 969
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
970 971
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
972 973 974 975 976 977
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    input_image_ = InputImageFrom<GType>(inputs, *scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, *scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, *scope);
W
wangliu 已提交
978 979 980 981
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
982 983 984 985

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
986 987
    } else {
      min_max_aspect_ratios_order_ = false;
988
    }
E
eclipsess 已提交
989 990 991 992 993 994
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
995
  const GType *Input() const { return input_; }
E
eclipsess 已提交
996

997
  const GType *InputImage() const { return input_image_; }
E
eclipsess 已提交
998

999
  GType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
1000

1001
  GType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
1002

W
wangliu 已提交
1003
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
1004

W
wangliu 已提交
1005
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
1006

W
wangliu 已提交
1007
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
1008

W
wangliu 已提交
1009
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

1021 1022 1023 1024
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
1025
 private:
1026 1027 1028 1029
  GType *input_;
  GType *input_image_;
  GType *output_boxes_;
  GType *output_variances_;
W
wangliu 已提交
1030 1031 1032 1033
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
1034 1035 1036 1037 1038
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
1039
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
1040
};
L
liuruilong 已提交
1041
#endif
E
eclipsess 已提交
1042

L
liuruilong 已提交
1043
#ifdef BOXCODER_OP
N
nhzlx 已提交
1044
template <typename Dtype>
E
eclipsess 已提交
1045
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
1046 1047 1048
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1049 1050
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1051 1052 1053 1054 1055 1056
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, *scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, *scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, *scope);
    output_box_ = OutputBoxFrom<GType>(outputs, *scope);
1057
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1058
  }
1059
  const GType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1060

1061
  const GType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1062

1063
  const GType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1064

1065
  GType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1066 1067 1068 1069

  const std::string &CodeType() const { return code_type_; }

 private:
1070 1071 1072 1073
  GType *input_priorbox_;
  GType *input_priorboxvar_;
  GType *input_targetbox_;
  GType *output_box_;
E
eclipsess 已提交
1074 1075
  std::string code_type_;
};
L
liuruilong 已提交
1076
#endif
W
wangliu 已提交
1077

L
liuruilong 已提交
1078
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1079
template <typename Dtype>
W
wangliu 已提交
1080
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1081 1082 1083
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1084 1085
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1086 1087 1088 1089
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1090
  }
H
hjchen2 已提交
1091 1092
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1093 1094

 private:
H
hjchen2 已提交
1095 1096
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1097 1098 1099

#ifdef PADDLE_MOBILE_FPGA

1100 1101
#ifdef PADDLE_MOBILE_FPGA_V1

H
hanbuhe 已提交
1102
 private:
1103
  std::shared_ptr<GType> float_input_x_;
H
hanbuhe 已提交
1104 1105 1106
  fpga::BypassArgs fpga_bypass_args;

 public:
1107
  GType *FloatInput() const {
H
hanbuhe 已提交
1108 1109
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1110
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
H
hanbuhe 已提交
1111 1112
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
#else

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }

 public:
  std::shared_ptr<Tensor> float_input_x_, float_out;
#endif
H
hanbuhe 已提交
1125
#endif
W
wangliu 已提交
1126
};
L
liuruilong 已提交
1127
#endif
W
wangliu 已提交
1128

L
liuruilong 已提交
1129
#ifdef SIGMOID_OP
N
nhzlx 已提交
1130
template <typename Dtype>
W
wangliu 已提交
1131
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1132 1133 1134
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1135 1136
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1137 1138 1139 1140
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1141
  }
1142 1143
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1144 1145

 private:
1146 1147
  GType *input_x_;
  GType *out_;
1148 1149 1150 1151 1152 1153 1154 1155 1156
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1157
};
L
liuruilong 已提交
1158 1159 1160
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1161
template <typename Dtype>
E
eclipsess 已提交
1162
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1163 1164 1165
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1166 1167 1168
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1169 1170 1171 1172 1173
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, *scope);
    input_scores_ = InputScoresFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1174 1175 1176 1177 1178 1179 1180 1181
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

1182
  GType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1183

1184
  GType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1185

1186
  GType *Out() const { return out_; }
E
eclipsess 已提交
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
1201 1202 1203
  GType *input_bboxes_;
  GType *input_scores_;
  GType *out_;
E
eclipsess 已提交
1204 1205 1206 1207 1208 1209 1210
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1211
#endif
W
wangliu 已提交
1212

L
lijiancheng0614 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1222 1223 1224 1225
                           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutputFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1226
  }
1227 1228
  const GType *Input() const { return input_; }
  GType *Output() const { return output_; }
L
lijiancheng0614 已提交
1229 1230

 private:
1231 1232
  GType *input_;
  GType *output_;
L
lijiancheng0614 已提交
1233 1234 1235
};
#endif

N
nhzlx 已提交
1236
template <typename Dtype>
L
liuruilong 已提交
1237
class FeedParam : public OpParam {
N
nhzlx 已提交
1238 1239 1240
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1241 1242
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1243
            const AttributeMap &attrs, Scope *scope)
1244
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1245
    input_x_ = InputXFrom<std::vector<LoDTensor>>(inputs, *scope);
H
update  
hjchen2 已提交
1246
    out_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
1247
    col_ = GetAttr<int>("col", attrs);
H
update  
hjchen2 已提交
1248
    auto var = scope->FindVar("batch_size");
W
wangliu 已提交
1249
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1250
  }
H
hjchen2 已提交
1251
  const std::vector<LoDTensor> *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1252
  GType *Out() const { return out_; }
H
update  
hjchen2 已提交
1253
  const int Col() const { return col_; }
W
wangliu 已提交
1254
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1255

L
liuruilong 已提交
1256
 private:
H
hjchen2 已提交
1257
  std::vector<LoDTensor> *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1258
  GType *out_;
H
update  
hjchen2 已提交
1259
  int col_;
W
wangliu 已提交
1260
  int batch_size;
L
liuruilong 已提交
1261 1262
};

N
nhzlx 已提交
1263
template <typename Dtype>
L
liuruilong 已提交
1264
class FetchParam : public OpParam {
N
nhzlx 已提交
1265 1266 1267
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1268 1269
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
1270
             const AttributeMap &attrs, Scope *scope)
1271
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
1272 1273
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<std::vector<LoDTensor>>(outputs, *scope);
1274
    col_ = GetAttr<int>("col", attrs);
L
liuruilong 已提交
1275
  }
L
liuruilong 已提交
1276

H
hjchen2 已提交
1277 1278
  const GType *InputX() const { return input_x_; }
  std::vector<LoDTensor> *Out() const { return out_; }
1279
  const int Col() const { return col_; }
L
liuruilong 已提交
1280

L
liuruilong 已提交
1281
 private:
H
hjchen2 已提交
1282 1283
  GType *input_x_;
  std::vector<LoDTensor> *out_;
1284
  int col_;
qnqinan's avatar
qnqinan 已提交
1285
#ifdef PADDLE_MOBILE_FPGA
1286

qnqinan's avatar
qnqinan 已提交
1287
 public:
1288
#ifdef PADDLE_MOBILE_FPGA_V1
qnqinan's avatar
qnqinan 已提交
1289
  fpga::BypassArgs fpga_bypass_args;
1290
  Tensor aligned_out;
1291 1292 1293
#else
  std::shared_ptr<Tensor> aligned_out;
#endif
qnqinan's avatar
qnqinan 已提交
1294
#endif
L
liuruilong 已提交
1295 1296
};

L
lijiancheng0614 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1306 1307 1308 1309
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1310 1311 1312 1313 1314 1315 1316
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

1317
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
1327
  GType *out_;
L
lijiancheng0614 已提交
1328 1329 1330 1331 1332 1333
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
#ifdef FILL_CONSTANT_BATCH_SIZE_LIKE_OP
template <typename Dtype>
class FillConstantBatchSizeLikeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantBatchSizeLikeParam(const VariableNameMap &inputs,
                                 const VariableNameMap &outputs,
                                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
    input_dim_idx_ = GetAttr<int>("input_dim_idx", attrs);
    output_dim_idx_ = GetAttr<int>("output_dim_idx", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  const GType *Input() const { return input_; }

  GType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

  int InputDimIdx() const { return input_dim_idx_; }

  int OutputDimIdx() const { return output_dim_idx_; }

 private:
  GType *input_;
  Variable *out_var_;
  GType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
  int input_dim_idx_;
  int output_dim_idx_;
};
#endif

L
liuruilong 已提交
1383
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1384
template <typename Dtype>
E
eclipsess 已提交
1385
class TransposeParam : public OpParam {
N
nhzlx 已提交
1386 1387 1388
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1389 1390
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1391 1392 1393 1394
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1395 1396 1397
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1398
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1399

1400
  GType *Out() const { return out_; }
E
eclipsess 已提交
1401 1402 1403 1404

  const vector<int> &Axis() const { return axis_; }

 private:
1405 1406
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1407 1408
  vector<int> axis_;
};
L
liuruilong 已提交
1409
#endif
E
eclipsess 已提交
1410

L
lijiancheng0614 已提交
1411 1412 1413 1414 1415 1416 1417 1418
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1419 1420 1421 1422 1423
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1424 1425 1426
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

1427
  GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1428

1429
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1430

1431
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1432 1433 1434 1435

  const vector<int> &Axis() const { return axis_; }

 private:
1436 1437 1438
  GType *input_x_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1439 1440 1441 1442
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1443 1444 1445 1446 1447 1448 1449 1450
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1451 1452 1453 1454 1455
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_w_ = InputWFrom<GType>(inputs, *scope);
    input_ids_ = InputIdsFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1482 1483
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
xiebaiyuan's avatar
xiebaiyuan 已提交
1484
    // todo crf params
1485 1486 1487 1488
    input_emission_ = InputEmissionFrom<GType>(inputs, *scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, *scope);
    input_label_ = InputLabelFrom<GType>(inputs, *scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1489 1490 1491 1492 1493 1494
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
1495 1496
  //  const GType *InputIds() const { return input_ids_; }
  //  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1497 1498 1499 1500 1501 1502 1503 1504
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

1505 1506
  //  GType *input_ids_;
  //  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1507 1508 1509 1510
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1511
#ifdef RESHAPE_OP
N
nhzlx 已提交
1512
template <typename Dtype>
E
eclipsess 已提交
1513
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1514 1515 1516
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1517 1518
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1519 1520 1521 1522 1523
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1524
    shape_ = GetAttr<vector<int>>("shape", attrs);
1525 1526 1527 1528 1529 1530 1531

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1532 1533
  }

1534
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1535

1536
  const GType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1537

1538
  GType *Out() const { return out_; }
E
eclipsess 已提交
1539 1540 1541 1542 1543 1544

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
1545 1546 1547
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
E
eclipsess 已提交
1548 1549 1550
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1551
#endif
E
eclipsess 已提交
1552

L
lijiancheng0614 已提交
1553 1554 1555 1556 1557 1558 1559 1560
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1561 1562 1563 1564 1565 1566
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1567 1568 1569 1570 1571 1572 1573 1574
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

1575
  GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1576

E
eclipsess 已提交
1577
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1578

E
eclipsess 已提交
1579
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1580

E
eclipsess 已提交
1581
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1582 1583 1584 1585 1586 1587

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1588 1589 1590 1591
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1592 1593 1594 1595 1596
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1597
#ifdef SCALE_OP
N
nhzlx 已提交
1598
template <typename Dtype>
I
itminner 已提交
1599
class ScaleParam : public OpParam {
N
nhzlx 已提交
1600 1601 1602
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1603 1604
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1605 1606 1607 1608
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
1609 1610
    scale_ = GetAttr<float>("scale", attrs);
    bias_ = GetAttr<float>("bias", attrs);
I
itminner 已提交
1611 1612
  }

1613
  const GType *InputX() const { return input_x_; }
I
itminner 已提交
1614

1615
  GType *Out() const { return out_; }
I
itminner 已提交
1616

1617
  const float Scale() const { return scale_; }
I
itminner 已提交
1618

1619
  const float Bias() const { return bias_; }
I
itminner 已提交
1620 1621

 private:
1622 1623
  GType *input_x_;
  GType *out_;
1624 1625
  float scale_;
  float bias_;
I
itminner 已提交
1626
};
T
Tian 已提交
1627 1628 1629
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1630
template <typename Dtype>
I
itminner 已提交
1631
class SliceParam : public OpParam {
N
nhzlx 已提交
1632 1633 1634
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1635 1636
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1637 1638 1639 1640
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1641

1642 1643 1644
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
1645 1646

    original_output_dims_size_ = output_->dims().size();
1647
  }
I
itminner 已提交
1648

1649 1650 1651 1652 1653 1654
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
1655
  int original_output_dims_size_;
I
itminner 已提交
1656
};
T
Tian 已提交
1657 1658 1659
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1660
template <typename Dtype>
T
Tian 已提交
1661
class ResizeParam : public OpParam {
N
nhzlx 已提交
1662 1663 1664
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1665 1666
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1667 1668 1669 1670 1671
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1672 1673 1674 1675 1676 1677
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1678

1679
  const GType *InputX() const { return input_x_; }
T
Tian 已提交
1680

1681
  const GType *InputShape() const { return input_shape_; }
T
Tian 已提交
1682

1683
  GType *Out() const { return out_; }
T
Tian 已提交
1684

I
itminner 已提交
1685
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1686

I
itminner 已提交
1687
  const int &Height() const { return height_; }
T
Tian 已提交
1688

I
itminner 已提交
1689
  const int &Width() const { return width_; }
T
Tian 已提交
1690

I
itminner 已提交
1691
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1692

I
itminner 已提交
1693
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1694

I
itminner 已提交
1695
 private:
1696 1697 1698
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
I
itminner 已提交
1699 1700 1701 1702 1703
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1704 1705 1706
};
#endif

L
liuruilong 已提交
1707
#ifdef RELU_OP
L
liuruilong 已提交
1708 1709 1710
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1711
template <typename Dtype>
D
relu  
dolphin8 已提交
1712
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1713 1714 1715
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1716
 public:
D
relu  
dolphin8 已提交
1717
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
1718 1719 1720 1721
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1722 1723
  }

1724
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1725

1726
  GType *Out() const { return out_; }
E
eclipsess 已提交
1727 1728

 private:
1729 1730
  GType *input_x_;
  GType *out_;
E
eclipsess 已提交
1731
};
D
relu  
dolphin8 已提交
1732 1733 1734

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1735
 public:
D
relu  
dolphin8 已提交
1736 1737 1738
  using ReluParamBase<Dtype>::ReluParamBase;
};

Z
zp7 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
template <typename Dtype>
class Relu6Param : public ReluParamBase<Dtype> {
 public:
  Relu6Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, Scope *scope)
      : ReluParamBase<Dtype>(inputs, outputs, attrs, scope) {
    threshold = OpParam::GetAttr<float>("threshold", attrs);
  }
  float getThreshold() const { return threshold; }

 private:
  float threshold;
};

Y
yangfei 已提交
1753
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1754 1755
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1756
 public:
D
relu  
dolphin8 已提交
1757
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1758 1759 1760
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1761 1762
  framework::CLImage midImage;
};
Y
yangfei 已提交
1763
#endif
D
relu  
dolphin8 已提交
1764

L
liuruilong 已提交
1765
#endif
E
eclipsess 已提交
1766

Z
zhangyang 已提交
1767 1768 1769 1770 1771 1772 1773 1774
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1775 1776 1777 1778
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
1779
  }
1780 1781
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
Z
zhangyang 已提交
1782 1783

 private:
1784 1785
  GType *input_x_;
  GType *out_;
qnqinan's avatar
qnqinan 已提交
1786 1787 1788
#ifdef PADDLE_MOBILE_FPGA

 private:
1789
  std::shared_ptr<GType> float_input_x_;
qnqinan's avatar
qnqinan 已提交
1790 1791 1792
  fpga::BypassArgs fpga_bypass_args;

 public:
1793
  GType *FloatInput() const {
qnqinan's avatar
qnqinan 已提交
1794 1795
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
H
hjchen2 已提交
1796
  void SetFloatInput(LoDTensor *input) { float_input_x_.reset(input); }
qnqinan's avatar
qnqinan 已提交
1797 1798 1799
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1800
};
L
liuruilong 已提交
1801
#endif
E
eclipsess 已提交
1802

T
Tian 已提交
1803
#ifdef PRELU_OP
N
nhzlx 已提交
1804
template <typename Dtype>
T
Tian 已提交
1805
class PReluParam : public OpParam {
N
nhzlx 已提交
1806 1807 1808
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1809 1810
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1811 1812
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
1813
    DLOG << "PReluParam inputs before";
1814 1815
    input_x_ = InputXFrom<GType>(inputs, *scope);
    alpha_ = InputAlphaFrom<GType>(inputs, *scope);
1816
    framework::DDim dims = alpha_->dims();
1817
    out_ = OutFrom<GType>(outputs, *scope);
1818
    mode_ = GetStringAttr("mode", attrs);
1819
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1820
  }
1821 1822 1823
  const GType *InputX() const { return input_x_; }
  const GType *InputAlpha() const { return alpha_; }
  GType *Out() const { return out_; }
1824
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1825

I
itminner 已提交
1826
 private:
1827 1828 1829
  GType *input_x_;
  GType *out_;
  GType *alpha_;
1830
  std::string mode_;
T
Tian 已提交
1831 1832 1833
};
#endif

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
#ifdef LEAKY_RELU_OP
template <typename Dtype>
class LeakyReluParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LeakyReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    alpha_ = GetAttr<float>("alpha", attrs);
  }
  const GType *InputX() const { return input_x_; }
  const float Alpha() const { return alpha_; }
  GType *Out() const { return out_; }

 private:
  GType *input_x_;
  GType *out_;
  float alpha_;
};
#endif

N
nhzlx 已提交
1859
template <typename Dtype>
L
liuruilong 已提交
1860
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1861 1862 1863
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1864
 public:
L
liuruilong 已提交
1865
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1866 1867 1868 1869 1870 1871
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    input_z_ = InputZFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1872 1873 1874 1875
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1876
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1877

1878
  GType *InputY() const { return input_y_; }
E
eclipsess 已提交
1879

1880
  GType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1881

xiebaiyuan's avatar
xiebaiyuan 已提交
1882
  GType *Out() const { return out_; }
E
eclipsess 已提交
1883 1884 1885 1886 1887 1888 1889 1890

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1891
  GType *input_x_;
1892 1893
  GType *input_y_;
  GType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1894
  GType *out_;
E
eclipsess 已提交
1895 1896 1897
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1898

Z
ZhenWang 已提交
1899
#ifdef PADDLE_MOBILE_FPGA
1900
 private:  // NOLINT
Z
zhangyang 已提交
1901
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1902 1903

 public:
Z
zhangyang 已提交
1904 1905
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1906
#endif
E
eclipsess 已提交
1907
};
1908 1909

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1910 1911
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1912
#endif
E
eclipsess 已提交
1913

N
nhzlx 已提交
1914
template <typename Dtype>
1915
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1916 1917 1918
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1919
 public:
L
liuruilong 已提交
1920
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1921
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1922
                     Scope *scope)
1923
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1924
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1925
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1926
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1927
  }
1928
  GType *Bias() const { return bias_; }
W
wangliu 已提交
1929 1930 1931

  const int &Axis() const { return axis_; }

L
liuruilong 已提交
1932
 protected:
1933
  GType *bias_;
W
wangliu 已提交
1934 1935 1936
  int axis_;
};

N
nhzlx 已提交
1937 1938
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1939

Z
zhangyang 已提交
1940
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1941 1942
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1943
 public:
L
liuruilong 已提交
1944
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1945
                         const VariableNameMap &outputs,
1946
                         const AttributeMap &attrs, Scope *scope)
1947
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1948 1949 1950
};
#endif

1951
#ifdef FUSION_CONVADDPRELU_OP
1952 1953 1954 1955
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1956 1957 1958 1959

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1960
                          const AttributeMap &attrs, Scope *scope)
1961
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1962
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1963
    mode_ = OpParam::GetStringAttr("mode", attrs);
1964
    framework::DDim dims = alpha_->dims();
1965
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1966
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
1967
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
1968
  }
1969
  const GType *InputAlpha() const { return alpha_; }
1970
  const std::string &Mode() const { return mode_; }
1971
  GType *Bias() const { return bias_; }
1972 1973 1974
  const int &Axis() const { return axis_; }

 protected:
1975
  GType *bias_;
1976
  int axis_;
1977
  GType *alpha_;
1978 1979 1980 1981 1982
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1983 1984 1985 1986
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1987 1988 1989 1990

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1991
                             const AttributeMap &attrs, Scope *scope)
1992
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1993 1994
    bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1995
    mode_ = OpParam::GetStringAttr("mode", attrs);
1996
    framework::DDim dims = alpha_->dims();
H
update  
hjchen2 已提交
1997
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1998
    axis_ = OpParam::GetAttr<int>("axis", attrs);
1999 2000 2001
    keyOutput_ = OpParam::Getkey("addOut", inputs, 0);
    keyX1_ = OpParam::Getkey("addX", inputs, 1);
    keyY1_ = OpParam::Getkey("Y", inputs, 1);
2002
    if (keyX1_ == keyOutput_) {
2003
      bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
2004
    } else if (keyY1_ == keyOutput_) {
2005
      bias1_ = OpParam::InputXFrom1<GType>(inputs, *scope);
2006
    }
H
update  
hjchen2 已提交
2007
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2008
  }
2009
  const GType *InputAlpha() const { return alpha_; }
2010
  const std::string &Mode() const { return mode_; }
2011
  const GType *Bias1() const { return bias1_; }
2012

2013
  GType *Bias() const { return bias_; }
2014 2015 2016 2017

  const int &Axis() const { return axis_; }

 protected:
2018
  GType *bias_;
2019
  int axis_;
2020
  GType *alpha_;
2021
  std::string mode_;
2022
  GType *bias1_;
2023 2024 2025 2026 2027 2028
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
2029
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
2030
template <typename Dtype>
2031
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2032 2033 2034
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2035 2036 2037
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
2038
                           const AttributeMap &attrs, Scope *scope)
2039
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2040
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2041
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2042 2043 2044 2045
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2046 2047
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2048
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
2049
  }
2050
  GType *Bias() const { return bias_; }
E
eclipsess 已提交
2051 2052 2053

  const int &Axis() const { return axis_; }

2054
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2055

2056
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2057

2058
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2059

2060
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2061 2062 2063 2064 2065

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2066
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2067

2068
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2069

2070
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2071

2072
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2073 2074

 protected:
2075
  GType *bias_;
E
eclipsess 已提交
2076
  int axis_;
2077 2078 2079 2080
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2081 2082
  float epsilon_;
  float momentum_;
2083 2084
  GType *new_bias_;
  GType *new_scale_;
2085 2086 2087 2088 2089
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
2090
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
2091 2092 2093 2094 2095 2096
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
2097
                           const AttributeMap &attrs, Scope *scope)
2098
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2099
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2100
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2101 2102 2103 2104
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2105 2106
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
2107 2108 2109
    keyBNY_ = OpParam::Getkey("BNY", inputs, 0);
    keyX_ = OpParam::Getkey("X", inputs, 0);
    keyY_ = OpParam::Getkey("Y", inputs, 0);
2110
    if (keyX_ == keyBNY_) {
2111
      bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2112
    } else if (keyY_ == keyBNY_) {
2113
      bias_ = OpParam::InputXFrom<GType>(inputs, *scope);
2114
    }
H
update  
hjchen2 已提交
2115
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2116
  }
2117
  GType *Bias() const { return bias_; }
2118 2119 2120

  const int &Axis() const { return axis_; }

2121
  const GType *InputBias() const { return input_bias_; }
2122

2123
  const GType *InputMean() const { return input_mean_; }
2124

2125
  const GType *InputScale() const { return input_scale_; }
2126

2127
  const GType *InputVariance() const { return input_variance_; }
2128 2129 2130 2131 2132

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2133
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2134

2135
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2136

2137
  const GType *NewScale() const { return new_scale_; }
2138

2139
  const GType *NewBias() const { return new_bias_; }
2140 2141

 protected:
2142
  GType *bias_;
2143
  int axis_;
2144 2145 2146 2147
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2148 2149
  float epsilon_;
  float momentum_;
2150 2151
  GType *new_bias_;
  GType *new_scale_;
2152 2153 2154
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
2155
};
2156
#endif
E
eclipsess 已提交
2157

Z
zhangyang 已提交
2158
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
2159
template <typename Dtype>
2160
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2161 2162 2163
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
2164 2165 2166
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
2167
                    Scope *scope)
2168
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2169 2170 2171 2172
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2173 2174
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2175
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
2176 2177
  }

2178
  const GType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2179

2180
  const GType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2181

2182
  const GType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2183

2184
  const GType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2185 2186 2187 2188 2189

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2190
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
2191

2192
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
2193

2194
  const GType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
2195

2196
  const GType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
2197 2198

 protected:
2199 2200 2201 2202
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
Z
zhangyang 已提交
2203 2204
  float epsilon_;
  float momentum_;
2205 2206
  GType *new_bias_;
  GType *new_scale_;
Z
zhangyang 已提交
2207 2208 2209
};
#endif

2210
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2211
template <typename Dtype>
2212
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2213 2214 2215
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2216 2217 2218
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2219
                       const AttributeMap &attrs, Scope *scope)
2220
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2221
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2222
    axis_ = OpParam::GetAttr<int>("axis", attrs);
H
update  
hjchen2 已提交
2223 2224 2225 2226
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2227 2228
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2229
    this->output_ = OpParam::OutputYFrom<GType>(outputs, *scope);
2230
  }
2231
  GType *Bias() const { return bias_; }
2232 2233 2234

  const int &Axis() const { return axis_; }

2235
  const GType *InputBias() const { return input_bias_; }
2236

2237
  const GType *InputMean() const { return input_mean_; }
2238

2239
  const GType *InputScale() const { return input_scale_; }
2240

2241
  const GType *InputVariance() const { return input_variance_; }
2242 2243 2244 2245 2246

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2247
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2248

2249
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2250

2251
  const GType *NewScale() const { return new_scale_; }
2252

2253
  const GType *NewBias() const { return new_bias_; }
2254 2255

 protected:
2256
  GType *bias_;
2257
  int axis_;
2258 2259 2260 2261
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2262 2263
  float epsilon_;
  float momentum_;
2264 2265
  GType *new_bias_;
  GType *new_scale_;
2266
};
E
eclipsess 已提交
2267
#endif
Y
Yao,kun 已提交
2268

E
eclipsess 已提交
2269
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2270
template <typename Dtype>
2271
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2272 2273 2274
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2275 2276 2277
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2278
                          const AttributeMap &attrs, Scope *scope)
2279
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2280 2281 2282 2283
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2284 2285
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2286
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
2287 2288
  }

2289
  const GType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2290

2291
  const GType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2292

2293
  const GType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2294

2295
  const GType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2296 2297 2298 2299 2300

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2301
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2302

2303
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2304

2305
  const GType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2306

2307
  const GType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2308 2309

 protected:
2310 2311 2312 2313
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
E
eclipsess 已提交
2314 2315
  float epsilon_;
  float momentum_;
2316 2317
  GType *new_bias_;
  GType *new_scale_;
E
eclipsess 已提交
2318 2319 2320 2321
};

#endif

2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337
#ifdef FUSION_CONVRELU_OP
template <typename Dtype>
class FusionConvReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvReluParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      Scope *scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
  }
};
#endif

2338
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2339
template <typename Dtype>
2340
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2341 2342 2343
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2344 2345 2346
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2347
                        const AttributeMap &attrs, Scope *scope)
2348
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
2349 2350 2351 2352
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2353 2354
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
H
update  
hjchen2 已提交
2355
    this->output_ = OpParam::OutFrom<GType>(outputs, *scope);
2356 2357
  }

2358
  const GType *InputBias() const { return input_bias_; }
2359

2360
  const GType *InputMean() const { return input_mean_; }
2361

2362
  const GType *InputScale() const { return input_scale_; }
2363

2364
  const GType *InputVariance() const { return input_variance_; }
2365 2366 2367 2368 2369

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

2370
  void SetNewScale(GType *new_scale) { new_scale_ = new_scale; }
2371

2372
  void SetNewBias(GType *new_bias) { new_bias_ = new_bias; }
2373

2374
  const GType *NewScale() const { return new_scale_; }
2375

2376
  const GType *NewBias() const { return new_bias_; }
2377 2378

 protected:
2379 2380 2381 2382
  GType *input_bias_;
  GType *input_mean_;
  GType *input_scale_;
  GType *input_variance_;
2383 2384
  float epsilon_;
  float momentum_;
2385 2386
  GType *new_bias_;
  GType *new_scale_;
2387 2388 2389
};
#endif

Y
Yao,kun 已提交
2390
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2391
template <typename Dtype>
Y
Yao,kun 已提交
2392
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2393 2394 2395
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2396 2397 2398
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
2399 2400 2401 2402
                   Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
Yao,kun 已提交
2403 2404 2405 2406 2407
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2408
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2409

E
eclipsess 已提交
2410
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2411 2412 2413 2414 2415 2416 2417 2418

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2419 2420
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2421 2422 2423 2424
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2425
#endif
Y
Yao,kun 已提交
2426

2427
#ifdef DROPOUT_OP
N
nhzlx 已提交
2428
template <typename Dtype>
Y
Yao,kun 已提交
2429
class DropoutParam : public OpParam {
N
nhzlx 已提交
2430 2431 2432
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2433 2434
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2435 2436 2437 2438
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
yangfei 已提交
2439 2440

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2441 2442
  }

2443
  const GType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2444

2445
  GType *Out() const { return out_; }
Y
Yao,kun 已提交
2446

Y
yangfei 已提交
2447 2448
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2449
 private:
2450 2451
  GType *input_x_;
  GType *out_;
Y
yangfei 已提交
2452
  float dropout_prob_;
Y
Yao,kun 已提交
2453
};
2454
#endif
Y
Yao,kun 已提交
2455

N
nhzlx 已提交
2456
template <typename Dtype>
L
liuruilong 已提交
2457
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2458 2459 2460
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2461 2462 2463
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
2464 2465 2466 2467
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = FilterFrom<GType>(inputs, *scope);
    input_ = InputFrom<GType>(inputs, *scope);
2468
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2469
    if (outputs.count("Output")) {
2470
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2471
    }
L
liuruilong 已提交
2472 2473 2474 2475 2476 2477
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

2478
  const GType *Input() const { return input_; }
L
liuruilong 已提交
2479

2480
  const GType *Filter() const { return filter_; }
L
liuruilong 已提交
2481

2482
  GType *Output() const { return output_; }
L
liuruilong 已提交
2483 2484 2485 2486 2487 2488 2489 2490 2491

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

H
hjchen2 已提交
2492 2493 2494 2495 2496 2497 2498 2499 2500
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DECONV3X3_FLOAT,
    EXEC_DECONV4X4_FLOAT,
  };

  ExecMode &ExecMode() const { return exec_mode_; }

L
liuruilong 已提交
2501
 private:
2502 2503 2504
  GType *input_;
  GType *output_;
  GType *filter_;
L
liuruilong 已提交
2505 2506 2507 2508
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
H
hjchen2 已提交
2509
  mutable enum ExecMode exec_mode_;
Z
zhangyang 已提交
2510 2511 2512 2513 2514

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2515
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2516 2517 2518

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2519 2520 2521
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2522
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2523 2524 2525
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2526
#endif
L
liuruilong 已提交
2527
};
Z
zhangyang 已提交
2528

qnqinan's avatar
qnqinan 已提交
2529 2530 2531 2532 2533
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2534 2535

 public:
qnqinan's avatar
qnqinan 已提交
2536
  FusionDeconvAddParam(const VariableNameMap &inputs,
2537
                       const VariableNameMap &outputs,
2538
                       const AttributeMap &attrs, Scope *scope)
2539
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2540
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
qnqinan's avatar
qnqinan 已提交
2541
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2542
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2543
  }
2544
  GType *Bias() const { return bias_; }
qnqinan's avatar
qnqinan 已提交
2545 2546 2547

  const int &Axis() const { return axis_; }

2548
  GType *Output() const { return output_; }
qnqinan's avatar
qnqinan 已提交
2549 2550

 protected:
2551
  GType *bias_;
qnqinan's avatar
qnqinan 已提交
2552
  int axis_;
2553
  GType *output_;
qnqinan's avatar
qnqinan 已提交
2554 2555 2556 2557 2558 2559 2560
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
2561 2562 2563 2564 2565 2566 2567 2568 2569
#ifdef FUSION_DECONVADDBN_OP
template <typename Dtype>
class FusionDeconvAddBNParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNParam(const VariableNameMap &inputs,
                         const VariableNameMap &outputs,
2570
                         const AttributeMap &attrs, Scope *scope)
2571
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2572 2573 2574 2575 2576
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2577 2578 2579 2580 2581 2582 2583
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVBNRELU_OP
template <typename Dtype>
class FusionDeconvBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2627
                          const AttributeMap &attrs, Scope *scope)
2628
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2629 2630 2631 2632 2633
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2634 2635 2636 2637 2638 2639
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVADDBNRELU_OP
template <typename Dtype>
class FusionDeconvAddBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
2683
                             const AttributeMap &attrs, Scope *scope)
2684
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2685 2686 2687 2688 2689
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
L
liuruilong 已提交
2731

Z
zhangyang 已提交
2732 2733 2734 2735 2736
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2751 2752 2753 2754 2755 2756 2757 2758
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_h0_ = InputH0From<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2759
    output_batch_reset_hidden_prev_ =
2760 2761 2762
        OutputBatchResetHiddenPrevFrom<GType>(outputs, *scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
2763 2764
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2798 2799 2800 2801 2802 2803 2804
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2805 2806 2807 2808 2809 2810 2811 2812
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_gate_ = OutputGateFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2813
    output_reset_hidden_prev_ =
2814 2815
        OutputResetHiddenPrevFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2844 2845 2846 2847 2848 2849 2850 2851
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2852 2853 2854 2855
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2856
    axis = GetAttr<int>("axis", attrs);
2857
  }
2858 2859
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2860
  const int &Axis() const { return axis; }
2861 2862

 private:
2863 2864
  GType *input_x_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2865
  int axis;
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2877 2878 2879 2880
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    outs_ = OutMultiFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2881
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2882 2883 2884 2885 2886 2887
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2888
  }
2889
  GType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2890 2891 2892 2893 2894
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2895 2896

 private:
2897
  GType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2898
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2899
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2900 2901 2902
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2903 2904 2905 2906 2907 2908 2909 2910 2911
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
2924 2925 2926 2927 2928
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2929 2930
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2931
  }
2932
  const GType *InputX() const { return input_x_; }
2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }

 private:
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
  int out_h_;
  int out_w_;
};
#endif

#ifdef NEAREST_INTERP_OP
template <typename Dtype>
class NearestInterpolationParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NearestInterpolationParam(const VariableNameMap &inputs,
                            const VariableNameMap &outputs,
                            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
  }
  const GType *InputX() const { return input_x_; }
2965 2966
  const GType *InputOutPutSize() const { return input_outsize_; }
  GType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2967 2968
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2969 2970

 private:
2971 2972 2973
  GType *input_x_;
  GType *input_outsize_;
  GType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2974 2975
  int out_h_;
  int out_w_;
2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2987 2988 2989 2990
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
2991
  }
2992 2993
  const GType *Input() const { return input_; }
  GType *Out() const { return out_; }
2994 2995

 private:
2996 2997
  GType *input_;
  GType *out_;
2998 2999 3000
};
#endif

H
hjchen2 已提交
3001 3002 3003 3004 3005 3006 3007 3008
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3009 3010 3011 3012 3013
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, *scope);
H
hjchen2 已提交
3014 3015 3016 3017
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
3018 3019 3020
  GType *input_;
  GType *output_;
  GType *indices_;
H
hjchen2 已提交
3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3033 3034 3035 3036
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
H
hjchen2 已提交
3037 3038 3039 3040 3041
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
3042 3043
  GType *input_;
  GType *output_;
H
hjchen2 已提交
3044 3045 3046 3047 3048
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

3049
#ifdef QUANT_OP
3050
template <typename Dtype>
3051 3052 3053 3054 3055
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3056
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3057 3058 3059 3060
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3061 3062
    // online
    // scale = max(abs(x))
3063
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3064
    // offline
3065
    if (inputs.count("InScale")) {
3066
      offline_ = true;
3067
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3068 3069
    }
    // x = round(scale * x)
3070 3071
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
3072
    }
3073 3074 3075 3076
  }

 public:
  // op input
3077
  GType *input_;
3078
  // op output
3079
  GType *output_;
3080
  GType *online_scale_;
3081
  // quantize offline scale
3082
  GType *offline_scale_;
3083 3084
  // if offine scale or not
  bool offline_ = false;
3085
  // round method type
3086 3087
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
3088
};
3089
#endif
3090

3091
#ifdef DEQUANT_OP
3092
template <typename Dtype>
3093 3094 3095 3096 3097
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3098
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3099 3100 3101 3102 3103
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, *scope);
3104
    // dequantization is performed as x = x / static_scale / online_scale
3105 3106
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
3107
    } else {
3108
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
3109 3110 3111 3112 3113
    }
  }

 public:
  // op input
3114
  GType *input_;
3115
  // op output
3116
  GType *output_;
3117
  GType *activation_scale_;
3118 3119
  float weight_scale_;
};
3120
#endif
3121

3122 3123 3124 3125
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
3126
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
3127
template <typename Dtype>
3128
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
3129 3130 3131 3132
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3133 3134
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
3135
                       const AttributeMap &attrs, Scope *scope)
H
hjchen2 已提交
3136 3137
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
3138 3139 3140 3141
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, *scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, *scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, *scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, *scope);
H
hjchen2 已提交
3142 3143 3144 3145 3146
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
3147 3148 3149 3150
  GType *bn_mean_;
  GType *bn_variance_;
  GType *bn_scale_;
  GType *bn_bias_;
H
hjchen2 已提交
3151
  float epsilon_;
3152 3153 3154
};
#endif

3155 3156 3157 3158
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
3159 3160 3161 3162 3163 3164 3165 3166
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
3167
                          const AttributeMap &attrs, Scope *scope)
3168 3169 3170
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
3171
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
3172 3173 3174 3175 3176
  }

 public:
  // elementwise add
  int axis_;
3177
  GType *bias_;
3178 3179 3180
};
#endif

3181 3182 3183 3184 3185 3186 3187 3188 3189
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
3190
                               const AttributeMap &attrs, Scope *scope)
3191 3192
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
3193
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3194
    // offline
3195 3196
    if (inputs.count("InScale")) {
      offline_ = true;
3197
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3198 3199 3200 3201 3202 3203 3204 3205
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
3206
  GType *online_scale_;
3207
  // quantize offline scale
3208
  GType *offline_scale_;
3209 3210
  // if offine scale or not
  bool offline_ = false;
3211 3212 3213 3214 3215 3216
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

3217 3218 3219 3220 3221 3222 3223 3224 3225
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
3226 3227 3228 3229 3230
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3254 3255 3256 3257
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3258 3259
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
3260
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

3271 3272 3273 3274 3275 3276 3277 3278
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3279 3280 3281 3282
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3283 3284
    input_y_ = nullptr;
    if (inputs.count("Y")) {
3285
      input_y_ = InputYFrom<GType>(inputs, *scope);
3286 3287 3288
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
Z
zp7 已提交
3289 3290 3291
    if (HasAttr("append", attrs)) {
      append = OpParam::GetAttr<bool>("append", attrs);
    }
3292 3293 3294 3295 3296 3297 3298
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
3299
  bool append;
3300 3301 3302
};
#endif  // LOD_RESET_OP

3303 3304 3305 3306 3307 3308 3309 3310
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3311 3312 3313 3314 3315
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
3327
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
3328
template <typename Dtype>
Z
zhaojiaying01 已提交
3329
class LogicalBinaryParam : public OpParam {
3330 3331 3332 3333
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3334 3335
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3336 3337 3338 3339 3340
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
3352
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
3353 3354 3355

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
3356
class LogicalUnaryParam : public OpParam {
3357 3358 3359 3360
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3361 3362
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3363 3364 3365 3366
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

3378 3379 3380
#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
H
hjchen2 已提交
3381 3382 3383
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3384 3385 3386
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3387 3388
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3389 3390 3391
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<std::vector<GType>>("Out", outputs, *scope);
3392 3393 3394
  }

 public:
H
hjchen2 已提交
3395 3396 3397
  GType *input_;
  GType *index_;
  std::vector<GType> *output_;
3398 3399 3400 3401 3402 3403
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
H
hjchen2 已提交
3404 3405 3406
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

3407 3408 3409
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3410 3411
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
H
hjchen2 已提交
3412 3413 3414
    input_ = OpParam::GetVarValue<std::vector<GType>>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<GType>("I", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
3415 3416 3417
  }

 public:
H
hjchen2 已提交
3418 3419 3420
  std::vector<GType> *input_;
  GType *index_;
  GType *output_;
3421 3422 3423
};
#endif

Z
zhaojiaying01 已提交
3424 3425 3426 3427 3428 3429 3430 3431
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3432 3433 3434 3435
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
H
update  
hjchen2 已提交
3455
                 const AttributeMap &attrs, Scope *scope)
3456
      : OpParam(inputs, outputs, attrs, scope) {
H
update  
hjchen2 已提交
3457 3458
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
H
update  
hjchen2 已提交
3459
    step_ = OpParam::GetAttr<float>("step", attrs);
Z
zhaojiaying01 已提交
3460 3461 3462 3463
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
H
update  
hjchen2 已提交
3464
  float Step() const { return step_; }
Z
zhaojiaying01 已提交
3465 3466 3467 3468

 public:
  GType *input_x_;
  GType *output_;
H
update  
hjchen2 已提交
3469
  float step_;
Z
zhaojiaying01 已提交
3470 3471
};
#endif  // INCREMENT_OP
3472 3473 3474 3475 3476 3477 3478 3479
#ifdef PAD2D_OP
template <typename Dtype>
class Pad2dParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Pad2dParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3480 3481 3482 3483
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
3484 3485 3486 3487 3488 3489 3490 3491 3492
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
};
#endif
H
Huie 已提交
3493 3494 3495 3496 3497
#ifdef EXP_OP
template <typename Dtype>
class EXPParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
Z
zhaojiaying01 已提交
3498

H
Huie 已提交
3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513
 public:
  EXPParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
  }
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }

 private:
  GType *input_x_;
  GType *out_;
};
#endif
朔-望's avatar
朔-望 已提交
3514 3515
}  // namespace operators
}  // namespace paddle_mobile