op_param.h 46.2 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20 21 22 23 24
#include "common/type_define.h"
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
25 26 27
#ifdef PADDLE_MOBILE_FPGA
#include "fpga/api/fpga_api.h"
#endif
朔-望's avatar
朔-望 已提交
28 29

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
30 31
namespace operators {

W
wangliu 已提交
32 33 34 35 36 37 38
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
39

L
liuruilong 已提交
40
class OpParam {
朔-望's avatar
朔-望 已提交
41
 protected:
42 43 44 45 46
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
62 63 64 65 66
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
84 85 86 87
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
104

E
eclipsess 已提交
105 106 107 108 109 110 111 112 113 114
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
115 116 117 118
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
119

120
  template <typename T>
W
wangliu 已提交
121 122
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    return GetMultiVarValue<T>("X", inputs, scope);
  }

  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
141 142 143 144 145 146
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
147 148 149 150 151
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
152 153 154 155 156 157
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

158 159 160 161 162 163 164 165 166 167 168
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
169
  static const T GetAttr(const string &key, const AttributeMap &map) {
170 171 172 173
    return ((Attribute)map.at(key)).Get<T>();
  }

  template <typename T>
W
wangliu 已提交
174
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
175
                        const Scope &scope) {
W
wangliu 已提交
176 177
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
178 179 180 181 182 183
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
184
    }
185
  }
朔-望's avatar
朔-望 已提交
186

187
  template <typename T>
W
wangliu 已提交
188 189 190
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
191 192
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
193
    vector<T *> var_res;
194 195 196
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
197
    }
198 199
    return var_res;
  }
朔-望's avatar
朔-望 已提交
200 201
};

L
liuruilong 已提交
202
#ifdef CONV_OP
朔-望's avatar
朔-望 已提交
203
class ConvParam : OpParam {
朔-望's avatar
朔-望 已提交
204
 public:
205
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
206
            const AttributeMap &attrs, const Scope &scope) {
W
wangliu 已提交
207
    filter_ = FilterFrom<LoDTensor>(inputs, scope);
W
wangliu 已提交
208 209
    input_ = InputFrom<LoDTensor>(inputs, scope);
    output_ = OutputFrom<LoDTensor>(outputs, scope);
W
wangliu 已提交
210 211 212
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
213 214
    groups = GetAttr<int>("groups", attrs);
  }
朔-望's avatar
朔-望 已提交
215

216
  const Tensor *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
217

C
chonwhite 已提交
218
  Tensor *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
219

220
  Tensor *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
221

W
wangliu 已提交
222
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
223

W
wangliu 已提交
224
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
225

W
wangliu 已提交
226
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
227

228
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
229

朔-望's avatar
朔-望 已提交
230
 private:
231 232
  Tensor *input_;
  Tensor *output_;
E
eclipsess 已提交
233
  Tensor *filter_;
W
wangliu 已提交
234 235 236
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
237
  int groups;
朔-望's avatar
朔-望 已提交
238 239 240
};

Print &operator<<(Print &printer, const ConvParam &conv_param);
L
liuruilong 已提交
241
#endif
朔-望's avatar
朔-望 已提交
242 243

class ElementwiseAddParam : OpParam {
朔-望's avatar
朔-望 已提交
244
 public:
245
  ElementwiseAddParam(const VariableNameMap &inputs,
246 247 248 249 250
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    input_y_ = InputYFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
251 252 253 254 255 256 257 258 259 260 261
    axis_ = GetAttr<int>("axis", attrs);
  }

  const Tensor *InputX() const { return input_x_; }

  const Tensor *InputY() const { return input_y_; }

  Tensor *Out() const { return out_; }

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
262
 private:
263 264 265 266
  Tensor *input_x_;
  Tensor *input_y_;
  Tensor *out_;
  int axis_;
Z
zhangyang 已提交
267 268 269
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
270
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
271 272

 public:
H
hanbuhe 已提交
273 274
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
275
#endif
朔-望's avatar
朔-望 已提交
276 277
};

278 279
#ifdef FUSION_ELEMENTWISEADDRELU_OP
using ElementwiseAddReluParam = ElementwiseAddParam;
L
liuruilong 已提交
280 281 282
#endif

#ifdef MUL_OP
朔-望's avatar
朔-望 已提交
283
class MulParam : OpParam {
朔-望's avatar
朔-望 已提交
284
 public:
285
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
286 287 288 289
           const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    input_y_ = InputYFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
290 291 292
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
293

294
  const Tensor *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
295

296
  const Tensor *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
297

298
  Tensor *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
299

300
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
301

302
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
303

朔-望's avatar
朔-望 已提交
304
 private:
305 306 307 308 309
  Tensor *input_x_;
  Tensor *input_y_;
  Tensor *out_;
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
310
};
L
liuruilong 已提交
311
#endif
朔-望's avatar
朔-望 已提交
312

L
liuruilong 已提交
313
#ifdef CONCAT_OP
朔-望's avatar
朔-望 已提交
314
class ConcatParam : public OpParam {
朔-望's avatar
朔-望 已提交
315
 public:
316
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
317
              const AttributeMap &attrs, const Scope &scope) {
W
wangliu 已提交
318
    inputs_ = InputMultiFrom<LoDTensor>(inputs, scope);
319
    out_ = OutFrom<LoDTensor>(outputs, scope);
320 321
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
322

W
wangliu 已提交
323
  vector<LoDTensor *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
324

325
  Tensor *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
326

327
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
328

朔-望's avatar
朔-望 已提交
329
 private:
W
wangliu 已提交
330
  vector<LoDTensor *> inputs_;
331 332
  Tensor *out_;
  int axis_;
朔-望's avatar
朔-望 已提交
333
};
L
liuruilong 已提交
334
#endif
朔-望's avatar
朔-望 已提交
335

L
liuruilong 已提交
336
#ifdef LRN_OP
E
eclipsess 已提交
337
class LrnParam : public OpParam {
朔-望's avatar
朔-望 已提交
338
 public:
339
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
340 341 342 343
           const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
    mid_out_ = MidOutFrom<LoDTensor>(outputs, scope);
344 345 346 347
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
W
wangliu 已提交
348
    data_format_ = GetAttr<string>("data_format", attrs);
349
  }
E
eclipsess 已提交
350

351
  const Tensor *InputX() const { return input_x_; }
E
eclipsess 已提交
352

353
  Tensor *Out() const { return out_; }
E
eclipsess 已提交
354

355
  Tensor *MidOut() const { return mid_out_; }
E
eclipsess 已提交
356

357
  const int &N() const { return n_; }
E
eclipsess 已提交
358

359
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
360

361
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
362

363
  const float &K() const { return k_; }
E
eclipsess 已提交
364

W
wangliu 已提交
365
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
366

朔-望's avatar
朔-望 已提交
367
 private:
368 369 370 371 372 373 374
  Tensor *input_x_;
  Tensor *out_;
  Tensor *mid_out_;
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
375
  string data_format_;
E
eclipsess 已提交
376
};
L
liuruilong 已提交
377 378 379
#endif

#ifdef BATCHNORM_OP
E
eclipsess 已提交
380
class BatchNormParam : OpParam {
朔-望's avatar
朔-望 已提交
381
 public:
382
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
383 384 385 386 387 388 389
                 const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    output_y_ = OutputYFrom<LoDTensor>(outputs, scope);
    input_bias_ = InputBiasFrom<LoDTensor>(inputs, scope);
    input_mean_ = InputMeanFrom<LoDTensor>(inputs, scope);
    input_scale_ = InputScaleFrom<LoDTensor>(inputs, scope);
    input_variance_ = InputVarianceFrom<LoDTensor>(inputs, scope);
390 391
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
392
    //    is_test_ = GetAttr<bool>("is_test", attrs);
393
  }
E
eclipsess 已提交
394

395
  const Tensor *InputX() const { return input_x_; }
E
eclipsess 已提交
396

397
  Tensor *OutputY() const { return output_y_; }
E
eclipsess 已提交
398

399
  const Tensor *InputBias() const { return input_bias_; }
E
eclipsess 已提交
400

401
  const Tensor *InputMean() const { return input_mean_; }
E
eclipsess 已提交
402

403
  const Tensor *InputScale() const { return input_scale_; }
E
eclipsess 已提交
404

405
  const Tensor *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
406

407
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
408

409
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
410

411
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
412

W
wangliu 已提交
413
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
414

朔-望's avatar
朔-望 已提交
415
 private:
416 417 418 419 420 421 422 423 424
  Tensor *input_x_;
  Tensor *output_y_;
  Tensor *input_bias_;
  Tensor *input_mean_;
  Tensor *input_scale_;
  Tensor *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
425
  string data_format_;
E
eclipsess 已提交
426
};
L
liuruilong 已提交
427 428 429
#endif

#ifdef POOL_OP
430
class PoolParam : public OpParam {
朔-望's avatar
朔-望 已提交
431
 public:
432
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
433 434
            const AttributeMap &attrs, const Scope &scope) {
    input_ = InputXFrom<LoDTensor>(inputs, scope);
435

436
    output_ = OutFrom<LoDTensor>(outputs, scope);
W
wangliu 已提交
437 438 439 440
    pooling_type_ = GetAttr<string>("pooling_type", attrs);
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
441
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
442
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
443
  }
444

445
  const Tensor *Input() const { return input_; }
446

447
  Tensor *Output() const { return output_; }
448

W
wangliu 已提交
449
  const string &PoolingType() const { return pooling_type_; }
450

W
wangliu 已提交
451
  const vector<int> &Ksize() const { return ksize_; }
452

W
wangliu 已提交
453
  const vector<int> &Strides() const { return strides_; }
454

W
wangliu 已提交
455
  const vector<int> &Paddings() const { return paddings_; }
456

457
  bool isCeilMode() const { return ceil_mode_; }
458

Z
zhangyang 已提交
459
  bool isGlobalPooling() const { return global_pooling_; }
460

朔-望's avatar
朔-望 已提交
461
 private:
462 463
  Tensor *input_;
  Tensor *output_;
W
wangliu 已提交
464 465 466 467
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
468
  bool ceil_mode_;
469
  bool global_pooling_ = false;
Z
zhangyang 已提交
470
#ifdef PADDLE_MOBILE_FPGA
471 472

 private:
H
hanbuhe 已提交
473
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
474 475

 public:
H
hanbuhe 已提交
476 477
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
478
#endif
479
};
L
liuruilong 已提交
480 481 482
#endif

#ifdef PRIORBOX_OP
E
eclipsess 已提交
483 484 485
class PriorBoxParam : public OpParam {
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
486 487 488 489 490
                const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<LoDTensor>(inputs, scope);
    input_image_ = InputImageFrom<LoDTensor>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<LoDTensor>(outputs, scope);
    output_variances_ = OutputVariancesFrom<LoDTensor>(outputs, scope);
W
wangliu 已提交
491 492 493 494
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
E
eclipsess 已提交
495 496 497 498 499 500 501 502 503 504 505 506 507 508
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
  const Tensor *Input() const { return input_; }

  const Tensor *InputImage() const { return input_image_; }

  Tensor *OutputBoxes() const { return output_boxes_; }

  Tensor *OutputVariances() const { return output_variances_; }

W
wangliu 已提交
509
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
510

W
wangliu 已提交
511
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
512

W
wangliu 已提交
513
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
514

W
wangliu 已提交
515
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

 private:
  Tensor *input_;
  Tensor *input_image_;
  Tensor *output_boxes_;
  Tensor *output_variances_;
W
wangliu 已提交
532 533 534 535
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
536 537 538 539 540 541
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
};
L
liuruilong 已提交
542
#endif
E
eclipsess 已提交
543

L
liuruilong 已提交
544
#ifdef BOXCODER_OP
E
eclipsess 已提交
545 546 547
class BoxCoderParam : public OpParam {
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
548 549 550 551 552
                const AttributeMap &attrs, const Scope &scope) {
    input_priorbox_ = InputPriorBoxFrom<LoDTensor>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<LoDTensor>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<LoDTensor>(inputs, scope);
    output_box_ = OutputBoxFrom<LoDTensor>(outputs, scope);
E
eclipsess 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
    code_type_ = GetAttr<std::string>("code_type", attrs);
  }
  const Tensor *InputPriorBox() const { return input_priorbox_; }

  const Tensor *InputPriorBoxVar() const { return input_priorboxvar_; }

  const Tensor *InputTargetBox() const { return input_targetbox_; }

  Tensor *OutputBox() const { return output_box_; }

  const std::string &CodeType() const { return code_type_; }

 private:
  Tensor *input_priorbox_;
  Tensor *input_priorboxvar_;
  Tensor *input_targetbox_;
  Tensor *output_box_;
  std::string code_type_;
};
L
liuruilong 已提交
572
#endif
W
wangliu 已提交
573

L
liuruilong 已提交
574
#ifdef SOFTMAX_OP
W
wangliu 已提交
575 576 577
class SoftmaxParam : public OpParam {
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
578 579 580
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
W
wangliu 已提交
581 582 583 584 585 586 587 588
  }
  const Tensor *InputX() const { return input_x_; }
  Tensor *Out() const { return out_; }

 private:
  Tensor *input_x_;
  Tensor *out_;
};
L
liuruilong 已提交
589
#endif
W
wangliu 已提交
590

L
liuruilong 已提交
591
#ifdef SIGMOID_OP
W
wangliu 已提交
592 593 594
class SigmoidParam : public OpParam {
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
595 596 597
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
W
wangliu 已提交
598 599 600 601 602 603 604 605
  }
  const Tensor *InputX() const { return input_x_; }
  Tensor *Out() const { return out_; }

 private:
  Tensor *input_x_;
  Tensor *out_;
};
L
liuruilong 已提交
606 607 608
#endif

#ifdef MULTICLASSNMS_OP
E
eclipsess 已提交
609 610 611 612 613
class MultiClassNMSParam : public OpParam {
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
W
wangliu 已提交
614 615 616
    input_bboxes_ = InputBBoxesFrom<LoDTensor>(inputs, scope);
    input_scores_ = InputScoresFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
E
eclipsess 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

  const Tensor *InputBBoxes() const { return input_bboxes_; }

  const Tensor *InputScores() const { return input_scores_; }

  Tensor *Out() const { return out_; }

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
  Tensor *input_bboxes_;
  Tensor *input_scores_;
  Tensor *out_;
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
654
#endif
W
wangliu 已提交
655

L
liuruilong 已提交
656 657 658
class FeedParam : public OpParam {
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
659 660 661 662
            const AttributeMap &attrs, Scope *scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, *scope);
    out_ = OutFrom<LoDTensor>(outputs, *scope);
    auto var = scope->Var("batch_size");
W
wangliu 已提交
663
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
664 665 666
  }
  const Tensor *InputX() const { return input_x_; }
  Tensor *Out() const { return out_; }
W
wangliu 已提交
667
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
668

L
liuruilong 已提交
669 670 671
 private:
  Tensor *input_x_;
  Tensor *out_;
W
wangliu 已提交
672
  int batch_size;
Z
zhangyang 已提交
673 674 675 676 677 678 679 680 681 682

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
L
liuruilong 已提交
683 684 685 686 687
};

class FetchParam : public OpParam {
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
688 689 690
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
L
liuruilong 已提交
691 692 693
  }
  const Tensor *InputX() const { return input_x_; }
  Tensor *Out() const { return out_; }
L
liuruilong 已提交
694

L
liuruilong 已提交
695 696 697 698 699
 private:
  Tensor *input_x_;
  Tensor *out_;
};

L
liuruilong 已提交
700
#ifdef TRANSPOSE_OP
E
eclipsess 已提交
701 702 703 704
class TransposeParam : public OpParam {
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
W
wangliu 已提交
705 706
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
E
eclipsess 已提交
707 708 709 710 711 712 713 714 715 716 717 718 719 720
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

  const Tensor *InputX() const { return input_x_; }

  Tensor *Out() const { return out_; }

  const vector<int> &Axis() const { return axis_; }

 private:
  Tensor *input_x_;
  Tensor *out_;
  vector<int> axis_;
};
L
liuruilong 已提交
721
#endif
E
eclipsess 已提交
722

L
liuruilong 已提交
723
#ifdef RESHAPE_OP
E
eclipsess 已提交
724 725 726 727
class ReshapeParam : public OpParam {
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
W
wangliu 已提交
728 729 730
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    input_shape_ = InputShapeFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
E
eclipsess 已提交
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
    shape_ = GetAttr<vector<int>>("shape", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

  const Tensor *InputX() const { return input_x_; }

  const Tensor *InputShape() const { return input_shape_; }

  Tensor *Out() const { return out_; }

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
  Tensor *input_x_;
  Tensor *input_shape_;
  Tensor *out_;
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
752
#endif
E
eclipsess 已提交
753

T
Tian 已提交
754
#ifdef SCALE_OP
I
itminner 已提交
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
class ScaleParam : public OpParam {
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    input_bias_ = InputBiasFrom<framework::LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

  const Tensor *InputX() const { return input_x_; }

  const Tensor *InputBias() const { return input_bias_; }

  Tensor *Out() const { return out_; }

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
  Tensor *input_x_;
  Tensor *input_bias_;
  Tensor *out_;
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
791 792 793
#endif

#ifdef SLICE_OP
I
itminner 已提交
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
class SliceParam : public OpParam {
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    input_shape_ = InputShapeFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

  const Tensor *InputX() const { return input_x_; }

  const Tensor *InputShape() const { return input_shape_; }

  Tensor *Out() const { return out_; }

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
  Tensor *input_x_;
  Tensor *input_shape_;
  Tensor *out_;
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
826 827 828 829
#endif

#ifdef RESIZE_OP
class ResizeParam : public OpParam {
I
itminner 已提交
830 831 832 833 834 835 836 837 838 839 840 841
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    input_shape_ = InputShapeFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
842

I
itminner 已提交
843
  const Tensor *InputX() const { return input_x_; }
T
Tian 已提交
844

I
itminner 已提交
845
  const Tensor *InputShape() const { return input_shape_; }
T
Tian 已提交
846

I
itminner 已提交
847
  Tensor *Out() const { return out_; }
T
Tian 已提交
848

I
itminner 已提交
849
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
850

I
itminner 已提交
851
  const int &Height() const { return height_; }
T
Tian 已提交
852

I
itminner 已提交
853
  const int &Width() const { return width_; }
T
Tian 已提交
854

I
itminner 已提交
855
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
856

I
itminner 已提交
857
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
858

I
itminner 已提交
859 860 861 862 863 864 865 866 867
 private:
  Tensor *input_x_;
  Tensor *input_shape_;
  Tensor *out_;
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
868 869 870
};
#endif

L
liuruilong 已提交
871
#ifdef RELU_OP
L
liuruilong 已提交
872 873 874
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
E
eclipsess 已提交
875 876 877 878
class ReluParam : public OpParam {
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
W
wangliu 已提交
879 880
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
E
eclipsess 已提交
881 882 883 884 885 886 887 888 889 890
  }

  const Tensor *InputX() const { return input_x_; }

  Tensor *Out() const { return out_; }

 private:
  Tensor *input_x_;
  Tensor *out_;
};
L
liuruilong 已提交
891
#endif
E
eclipsess 已提交
892

T
Tian 已提交
893 894
#ifdef PRELU_OP
class PReluParam : public OpParam {
I
itminner 已提交
895 896 897
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
898
    DLOG << "PReluParam inputs before";
I
itminner 已提交
899
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
900 901
    alpha_ = InputAlphaFrom<LoDTensor>(inputs, scope);
    framework::DDim dims = alpha_->dims();
I
itminner 已提交
902
    out_ = OutFrom<LoDTensor>(outputs, scope);
903 904
    mode_ = GetAttr<std::string>("mode", attrs);
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
905 906
  }
  const Tensor *InputX() const { return input_x_; }
907
  const Tensor *InputAlpha() const { return alpha_; }
I
itminner 已提交
908
  Tensor *Out() const { return out_; }
909
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
910

I
itminner 已提交
911 912 913
 private:
  Tensor *input_x_;
  Tensor *out_;
914 915
  Tensor *alpha_;
  std::string mode_;
T
Tian 已提交
916 917 918
};
#endif

L
liuruilong 已提交
919
class FusionFcParam : public OpParam {
E
eclipsess 已提交
920
 public:
L
liuruilong 已提交
921
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
922
                const AttributeMap &attrs, const Scope &scope) {
E
eclipsess 已提交
923 924 925 926
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    input_y_ = InputYFrom<LoDTensor>(inputs, scope);
    input_z_ = InputZFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
E
eclipsess 已提交
927 928 929 930 931 932
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
  const Tensor *InputX() const { return input_x_; }

933 934 935
#ifdef PADDLE_MOBILE_FPGA
  Tensor *InputY() const { return input_y_; }
#else
E
eclipsess 已提交
936
  const Tensor *InputY() const { return input_y_; }
937
#endif
E
eclipsess 已提交
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956

  const Tensor *InputZ() const { return input_z_; }

  Tensor *Out() const { return out_; }

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
  Tensor *input_x_;
  Tensor *input_y_;
  Tensor *input_z_;
  Tensor *out_;
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
957 958 959
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
960
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
961 962

 public:
H
hanbuhe 已提交
963 964
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
965
#endif
E
eclipsess 已提交
966
};
967 968 969

#ifdef FUSION_FCRELU_OP
using FusionFcReluParam = FusionFcParam;
L
liuruilong 已提交
970
#endif
E
eclipsess 已提交
971

L
liuruilong 已提交
972
class FusionConvAddParam : public OpParam {
W
wangliu 已提交
973
 public:
L
liuruilong 已提交
974
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
975 976
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
W
wangliu 已提交
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
    bias_ = InputYFrom<LoDTensor>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<LoDTensor>(inputs, scope);
    input_ = InputFrom<LoDTensor>(inputs, scope);
    output_ = OutFrom<LoDTensor>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }
  Tensor *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  const Tensor *Input() const { return input_; }

993 994 995
#ifdef PADDLE_MOBILE_FPGA
  Tensor *Filter() const { return filter_; }
#else
W
wangliu 已提交
996
  const Tensor *Filter() const { return filter_; }
997
#endif
W
wangliu 已提交
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008

  Tensor *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

L
liuruilong 已提交
1009
 protected:
W
wangliu 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018
  Tensor *bias_;
  int axis_;
  Tensor *input_;
  Tensor *output_;
  Tensor *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
Z
zhangyang 已提交
1019 1020 1021
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1022
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1023 1024

 public:
H
hanbuhe 已提交
1025 1026
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1027
#endif
W
wangliu 已提交
1028 1029
};

L
liuruilong 已提交
1030
Print &operator<<(Print &printer, const FusionConvAddParam &conv_param);
W
wangliu 已提交
1031

Z
zhangyang 已提交
1032
#ifdef FUSION_CONVADDRELU_OP
L
liuruilong 已提交
1033
class FusionConvAddReluParam : public FusionConvAddParam {
L
liuruilong 已提交
1034
 public:
L
liuruilong 已提交
1035
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1036 1037
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
L
liuruilong 已提交
1038
      : FusionConvAddParam(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1039 1040 1041
};
#endif

E
eclipsess 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
#ifdef FUSION_CONVADDBNRELU_OP
class FusionConvAddBNReluParam : public OpParam {
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    bias_ = InputYFrom<LoDTensor>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<LoDTensor>(inputs, scope);
    input_ = InputFrom<LoDTensor>(inputs, scope);
    output_ = OutFrom<LoDTensor>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
1057 1058 1059 1060
    input_bias_ = InputBiasFrom<LoDTensor>(inputs, scope);
    input_mean_ = InputMeanFrom<LoDTensor>(inputs, scope);
    input_scale_ = InputScaleFrom<LoDTensor>(inputs, scope);
    input_variance_ = InputVarianceFrom<LoDTensor>(inputs, scope);
E
eclipsess 已提交
1061 1062
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
1063
    //    is_test_ = GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1064 1065 1066 1067 1068 1069 1070
  }
  Tensor *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  const Tensor *Input() const { return input_; }

1071 1072 1073
#ifdef PADDLE_MOBILE_FPGA
  Tensor *Filter() const { return filter_; }
#else
E
eclipsess 已提交
1074
  const Tensor *Filter() const { return filter_; }
1075
#endif
E
eclipsess 已提交
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127

  Tensor *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

  const Tensor *InputBias() const { return input_bias_; }

  const Tensor *InputMean() const { return input_mean_; }

  const Tensor *InputScale() const { return input_scale_; }

  const Tensor *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(Tensor *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(Tensor *new_bias) { new_bias_ = new_bias; }

  const Tensor *NewScale() const { return new_scale_; }

  const Tensor *NewBias() const { return new_bias_; }

 protected:
  Tensor *bias_;
  int axis_;
  Tensor *input_;
  Tensor *output_;
  Tensor *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  Tensor *input_bias_;
  Tensor *input_mean_;
  Tensor *input_scale_;
  Tensor *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  Tensor *new_bias_;
  Tensor *new_scale_;
Z
zhangyang 已提交
1128 1129 1130
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1131
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1132 1133

 public:
H
hanbuhe 已提交
1134 1135
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1136
#endif
E
eclipsess 已提交
1137
};
1138
#endif
E
eclipsess 已提交
1139

Z
zhangyang 已提交
1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
#ifdef FUSION_CONVBN_OP
class FusionConvBNParam : public OpParam {
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<LoDTensor>(inputs, scope);
    input_ = InputFrom<LoDTensor>(inputs, scope);
    output_y_ = OutputYFrom<LoDTensor>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    input_bias_ = InputBiasFrom<LoDTensor>(inputs, scope);
    input_mean_ = InputMeanFrom<LoDTensor>(inputs, scope);
    input_scale_ = InputScaleFrom<LoDTensor>(inputs, scope);
    input_variance_ = InputVarianceFrom<LoDTensor>(inputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }

  const int &Axis() const { return axis_; }

  const Tensor *Input() const { return input_; }

#ifdef PADDLE_MOBILE_FPGA
  Tensor *Filter() const { return filter_; }
#else
  const Tensor *Filter() const { return filter_; }
#endif
  Tensor *Output() const { return output_y_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

  const Tensor *InputBias() const { return input_bias_; }

  const Tensor *InputMean() const { return input_mean_; }

  const Tensor *InputScale() const { return input_scale_; }

  const Tensor *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(Tensor *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(Tensor *new_bias) { new_bias_ = new_bias; }

  const Tensor *NewScale() const { return new_scale_; }

  const Tensor *NewBias() const { return new_bias_; }

 protected:
  int axis_;
  Tensor *input_;
  Tensor *output_y_;
  Tensor *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  Tensor *input_bias_;
  Tensor *input_mean_;
  Tensor *input_scale_;
  Tensor *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  Tensor *new_bias_;
  Tensor *new_scale_;
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConvArgs fpga_conv_args;

 public:
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
};
#endif

1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
#ifdef FUSION_CONVADDBN_OP
class FusionConvAddBNParam : public OpParam {
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope) {
    bias_ = InputYFrom<LoDTensor>(inputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
    filter_ = FilterFrom<LoDTensor>(inputs, scope);
    input_ = InputFrom<LoDTensor>(inputs, scope);
    output_y_ = OutputYFrom<LoDTensor>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    input_bias_ = InputBiasFrom<LoDTensor>(inputs, scope);
    input_mean_ = InputMeanFrom<LoDTensor>(inputs, scope);
    input_scale_ = InputScaleFrom<LoDTensor>(inputs, scope);
    input_variance_ = InputVarianceFrom<LoDTensor>(inputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }
  Tensor *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  const Tensor *Input() const { return input_; }

1263 1264 1265
#ifdef PADDLE_MOBILE_FPGA
  Tensor *Filter() const { return filter_; }
#else
1266
  const Tensor *Filter() const { return filter_; }
1267
#endif
Z
zhangyang 已提交
1268
  Tensor *Output() const { return output_y_; }
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

  const Tensor *InputBias() const { return input_bias_; }

  const Tensor *InputMean() const { return input_mean_; }

  const Tensor *InputScale() const { return input_scale_; }

  const Tensor *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(Tensor *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(Tensor *new_bias) { new_bias_ = new_bias; }

  const Tensor *NewScale() const { return new_scale_; }

  const Tensor *NewBias() const { return new_bias_; }

 protected:
  Tensor *bias_;
  int axis_;
  Tensor *input_;
  Tensor *output_y_;
  Tensor *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  Tensor *input_bias_;
  Tensor *input_mean_;
  Tensor *input_scale_;
  Tensor *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  Tensor *new_bias_;
  Tensor *new_scale_;
Z
zhangyang 已提交
1319 1320 1321
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
1322
  fpga::ConvArgs fpga_conv_args;
Z
zhangyang 已提交
1323 1324

 public:
H
hanbuhe 已提交
1325 1326
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1327
#endif
1328
};
E
eclipsess 已提交
1329
#endif
Y
Yao,kun 已提交
1330

E
eclipsess 已提交
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
#ifdef FUSION_DWCONVBNRELU_OP
class FusionDWConvBNReluParam : public OpParam {
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope) {
    filter_ = FilterFrom<LoDTensor>(inputs, scope);
    input_ = InputFrom<LoDTensor>(inputs, scope);
    output_ = OutFrom<LoDTensor>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    input_bias_ = InputBiasFrom<LoDTensor>(inputs, scope);
    input_mean_ = InputMeanFrom<LoDTensor>(inputs, scope);
    input_scale_ = InputScaleFrom<LoDTensor>(inputs, scope);
    input_variance_ = InputVarianceFrom<LoDTensor>(inputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
1350
    //    is_test_ = GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
  }

  const Tensor *Input() const { return input_; }

  const Tensor *Filter() const { return filter_; }

  Tensor *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

  const Tensor *InputBias() const { return input_bias_; }

  const Tensor *InputMean() const { return input_mean_; }

  const Tensor *InputScale() const { return input_scale_; }

  const Tensor *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(Tensor *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(Tensor *new_bias) { new_bias_ = new_bias; }

  const Tensor *NewScale() const { return new_scale_; }

  const Tensor *NewBias() const { return new_bias_; }

 protected:
  Tensor *input_;
  Tensor *output_;
  Tensor *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  Tensor *input_bias_;
  Tensor *input_mean_;
  Tensor *input_scale_;
  Tensor *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  Tensor *new_bias_;
  Tensor *new_scale_;
};

Print &operator<<(Print &printer, const FusionConvAddParam &conv_param);
#endif

1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
#ifdef FUSION_CONVBNRELU_OP
class FusionConvBNReluParam : public OpParam {
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
                        const AttributeMap &attrs, const Scope &scope) {
    filter_ = FilterFrom<LoDTensor>(inputs, scope);
    input_ = InputFrom<LoDTensor>(inputs, scope);
    output_ = OutFrom<LoDTensor>(outputs, scope);

    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
    input_bias_ = InputBiasFrom<LoDTensor>(inputs, scope);
    input_mean_ = InputMeanFrom<LoDTensor>(inputs, scope);
    input_scale_ = InputScaleFrom<LoDTensor>(inputs, scope);
    input_variance_ = InputVarianceFrom<LoDTensor>(inputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
    //    is_test_ = GetAttr<bool>("is_test", attrs);
  }

  const Tensor *Input() const { return input_; }

Z
zhangyang 已提交
1436 1437 1438
#ifdef PADDLE_MOBILE_FPGA
  Tensor *Filter() const { return filter_; }
#else
1439
  const Tensor *Filter() const { return filter_; }
Z
zhangyang 已提交
1440
#endif
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490

  Tensor *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

  const Tensor *InputBias() const { return input_bias_; }

  const Tensor *InputMean() const { return input_mean_; }

  const Tensor *InputScale() const { return input_scale_; }

  const Tensor *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(Tensor *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(Tensor *new_bias) { new_bias_ = new_bias; }

  const Tensor *NewScale() const { return new_scale_; }

  const Tensor *NewBias() const { return new_bias_; }

 protected:
  Tensor *input_;
  Tensor *output_;
  Tensor *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
  Tensor *input_bias_;
  Tensor *input_mean_;
  Tensor *input_scale_;
  Tensor *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  Tensor *new_bias_;
  Tensor *new_scale_;
Z
zhangyang 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConvArgs fpga_conv_args;

 public:
  const fpga::ConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::ConvArgs &args) { fpga_conv_args = args; }
#endif
1500 1501 1502
};
#endif

Y
Yao,kun 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532
#ifdef IM2SEQUENCE_OP
class Im2SequenceParam : public OpParam {
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

  const Tensor *Input() const { return input_x_; }

  Tensor *Output() const { return out_; }

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
  Tensor *input_x_;
  Tensor *out_;
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
1533
#endif
Y
Yao,kun 已提交
1534

1535
#ifdef DROPOUT_OP
Y
Yao,kun 已提交
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
class DropoutParam : public OpParam {
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<LoDTensor>(outputs, scope);
  }

  const Tensor *InputX() const { return input_x_; }

  Tensor *Out() const { return out_; }

 private:
  Tensor *input_x_;
  Tensor *out_;
};
1552
#endif
Y
Yao,kun 已提交
1553

L
liuruilong 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
#ifdef CONV_TRANSPOSE
class ConvTransposeParam : public OpParam {
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
    filter_ = FilterFrom<LoDTensor>(inputs, scope);
    input_ = InputFrom<LoDTensor>(inputs, scope);
    output_ = OutputFrom<LoDTensor>(outputs, scope);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

  const Tensor *Input() const { return input_; }

  const Tensor *Filter() const { return filter_; }

  Tensor *Output() const { return output_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
  Tensor *input_;
  Tensor *output_;
  Tensor *filter_;
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

朔-望's avatar
朔-望 已提交
1594 1595
}  // namespace operators
}  // namespace paddle_mobile