paddle_mobile.cpp 17.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "io/paddle_mobile.h"
16 17
#include <utility>
#include "common/common.h"
18 19 20
#ifdef _OPENMP
#include <omp.h>
#endif  // _OPENMP
21
#ifdef PADDLE_MOBILE_CL
22
#include <CL/cl.h>
23 24
#include <mutex>
#include "framework/cl/cl_engine.h"
25
#include "framework/cl/cl_tensor.h"
26
#endif
27
#include "operators/math/gemm.h"
28

29 30
namespace paddle_mobile {

31 32
template <typename Device, typename T>
void PaddleMobile<Device, T>::SetThreadNum(int num) {
33
  executor_->SetThreadNum(num);
34
}
35

36 37 38
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Load(const std::string &dirname,
                                       bool optimize, bool quantification,
39
                                       int batch_size, bool lod_mode) {
40
  if (loader_.get() == nullptr) {
41
    loader_ = std::make_shared<framework::Loader<Device, T>>();
42 43 44 45 46
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }

  if (executor_.get() == nullptr) {
47
    executor_ = std::make_shared<framework::Executor<Device, T>>(
L
liuruilong 已提交
48 49
        loader_->Load(dirname, optimize, quantification), config_, batch_size,
        optimize, lod_mode);
50 51 52 53
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

54
  return PMSuccess;
55 56
}

57 58 59 60
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Load(const std::string &model_path,
                                       const std::string &para_path,
                                       bool optimize, bool quantification,
61
                                       int batch_size, bool lod_mode) {
62
  if (loader_.get() == nullptr) {
63
    loader_ = std::make_shared<framework::Loader<Device, T>>();
64 65 66 67 68
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }

  if (executor_.get() == nullptr) {
69
    executor_ = std::make_shared<framework::Executor<Device, T>>(
L
liuruilong 已提交
70
        loader_->Load(model_path, para_path, optimize, quantification), config_,
71
        batch_size, optimize, lod_mode);
72 73 74 75
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

76
  return PMSuccess;
77 78
}

79
template <typename Device, typename T>
80 81 82 83 84 85 86 87 88 89 90 91 92 93
PMStatus PaddleMobile<Device, T>::Load(const PaddleMobileConfig &config) {
  if (!config.model_dir.empty()) {
    return this->Load(config.model_dir, config.optimize, config.quantification,
                      config.batch_size, config.lod_mode);
  } else if (!config.prog_file.empty() && !config.param_file.empty()) {
    return this->Load(config.prog_file, config.param_file, config.optimize,
                      config.quantification, config.batch_size,
                      config.lod_mode);
  } else {
    LOG(kLOG_ERROR) << "Failed to load inference model";
    return PMNotInitialized;
  }
}

94
template <typename Device, typename T>
L
liuruilong 已提交
95 96 97
bool PaddleMobile<Device, T>::LoadCombinedMemory(
    size_t model_len, const uint8_t *model_buf, size_t combined_params_len,
    uint8_t *combined_params_buf, bool optimize, bool quantification,
98
    int batch_size, bool lod_mode) {
99
  if (loader_.get() == nullptr) {
100
    loader_ = std::make_shared<framework::Loader<Device, T>>();
101 102 103 104
  } else {
    LOG(kLOG_INFO) << "loader inited";
  }
  if (executor_.get() == nullptr) {
105
    executor_ = std::make_shared<framework::Executor<Device, T>>(
106
        loader_->LoadCombinedMemory(model_len, model_buf, combined_params_len,
L
liuruilong 已提交
107
                                    combined_params_buf, optimize,
L
liuruilong 已提交
108 109
                                    quantification),
        config_, batch_size, optimize, lod_mode);
110 111 112 113
  } else {
    LOG(kLOG_INFO) << "executor inited";
  }

114 115 116 117 118 119 120 121
  return PMSuccess;
}

template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(const framework::Tensor &input) {
  std::vector<std::pair<std::string, framework::Tensor>> inputs;
  inputs.push_back(std::make_pair("feed", input));
  return this->Predict(inputs);
122
}
123 124 125 126 127 128 129 130 131 132 133 134

template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(const framework::LoDTensor &input) {
  std::vector<std::pair<std::string, framework::LoDTensor>> inputs;
  inputs.push_back(std::make_pair("feed", input));
  return this->Predict(inputs);
}

template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(
    const std::vector<std::pair<std::string, framework::Tensor>> &inputs) {
  return executor_->Predict(inputs);
135 136
}

137 138 139 140
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict(
    const std::vector<std::pair<std::string, framework::LoDTensor>> &inputs) {
  return executor_->Predict(inputs);
xiebaiyuan's avatar
xiebaiyuan 已提交
141 142
}

143 144 145
template <typename Device, typename T>
std::vector<T> PaddleMobile<Device, T>::Predict(
    const std::vector<T> &input, const std::vector<int64_t> &dims) {
146 147 148
  return executor_->Predict(input, dims);
}

149 150 151 152 153 154
template <typename Device, typename T>
PMStatus PaddleMobile<Device, T>::Predict() {
  return executor_->Predict();
}

template <typename Device, typename T>
H
update  
hjchen2 已提交
155 156
void PaddleMobile<Device, T>::Feed(const std::string &var_name,
                                   const framework::Tensor &input) {
157 158 159 160
  executor_->SetInput(input, var_name);
}

template <typename Device, typename T>
H
update  
hjchen2 已提交
161 162
void PaddleMobile<Device, T>::Feed(const std::string &var_name,
                                   const framework::LoDTensor &input) {
163 164 165 166 167 168 169 170 171 172 173
  executor_->SetInput(input, var_name);
}

typedef std::shared_ptr<framework::LoDTensor> LoDTensorPtr;
template <typename Device, typename T>
LoDTensorPtr PaddleMobile<Device, T>::Fetch(const std::string &var_name) {
  return executor_->GetOutput(var_name);
}

template <typename Device, typename T>
void PaddleMobile<Device, T>::Clear() {
174 175 176
  executor_ = nullptr;
  loader_ = nullptr;
}
177 178 179

template <typename Device, typename T>
double PaddleMobile<Device, T>::GetPredictTime() {}
Y
yangfei 已提交
180 181 182

#ifdef PADDLE_MOBILE_CPU
template <>
183
double PaddleMobile<CPU, float>::GetPredictTime() {
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
  int m = 32;
  int n = 224 * 224;
  int k = 27;
  int lda = k;
  int ldb = n;
  int ldc = n;
  float *a =
      static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * m * k));
  float *b =
      static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * k * n));
  float *c =
      static_cast<float *>(paddle_mobile::memory::Alloc(sizeof(float) * m * n));
  int t1 = 1;
  int t2 = 1;
  for (int i = 0; i < m * k; ++i) {
199
    a[i] = t1 + rand() % t2;  // NOLINT
200 201
  }
  for (int i = 0; i < k * n; ++i) {
202
    b[i] = t1 + rand() % t2;  // NOLINT
203
  }
204 205

  operators::math::Gemm gemm;
206
  auto time1 = paddle_mobile::time();
207 208 209 210 211 212 213
  int times = 4;
  for (int j = 0; j < times; ++j) {
    gemm.Sgemm(m, n, k, static_cast<float>(1), a, lda, b, ldb,
               static_cast<float>(0), c, ldc, false,
               static_cast<float *>(nullptr));
  }

214
  auto time2 = paddle_mobile::time();
215
  double cost = paddle_mobile::time_diff(time1, time2) / times;
216 217 218 219 220
  paddle_mobile::memory::Free(a);
  paddle_mobile::memory::Free(b);
  paddle_mobile::memory::Free(c);
  return cost;
}
Y
yangfei 已提交
221
#endif
222

223
#ifdef PADDLE_MOBILE_FPGA
H
hjchen2 已提交
224 225
template <typename Device, typename T>
void PaddleMobile<Device, T>::InjectVariable(const framework::Tensor &t,
226
                                             std::string var_name) {
227 228 229
  executor_->InjectVariable(t, var_name);
}

H
hjchen2 已提交
230 231
template <typename Device, typename T>
void PaddleMobile<Device, T>::FeedData(const framework::Tensor &t) {
232 233 234
  executor_->FeedData(t);
}

235
template <typename Device, typename T>
236
void PaddleMobile<Device, T>::FeedData(const std::vector<void *> &v) {
237
  executor_->FeedData(v);
H
hjchen2 已提交
238
}
239 240 241 242 243
template <typename Device, typename T>
void PaddleMobile<Device, T>::FeedTensorData(
    const std::vector<framework::Tensor> &v) {
  executor_->FeedTensorData(v);
}
H
hjchen2 已提交
244

245 246 247 248 249
template <typename Device, typename T>
void PaddleMobile<Device, T>::GetResults(std::vector<void *> *v) {
  executor_->GetResults(v);
}

250
template <typename Device, typename T>
251 252 253
void PaddleMobile<Device, T>::GetTensorResults(
    std::vector<framework::Tensor *> *v) {
  executor_->GetTensorResults(v);
254 255
}

256 257 258 259
template <typename Device, typename T>
framework::Tensor *PaddleMobile<Device, T>::GetTensorByName(
    const std::string &name) {
  return executor_->GetTensorByName(name);
H
hjchen2 已提交
260
}
261

H
hjchen2 已提交
262 263
template <typename Device, typename T>
std::shared_ptr<framework::Tensor> PaddleMobile<Device, T>::FetchResult(
264
    int id) {
265 266 267
  return executor_->FetchResult(id);
}

H
hjchen2 已提交
268 269
template <typename Device, typename T>
void PaddleMobile<Device, T>::Predict_From_To(int start, int end) {
270 271 272
  executor_->Predict_From_To(start, end);
}

H
hjchen2 已提交
273 274
template <typename Device, typename T>
void PaddleMobile<Device, T>::Predict_From(int start) {
275 276 277
  executor_->Predict_From(start);
}

H
hjchen2 已提交
278 279
template <typename Device, typename T>
void PaddleMobile<Device, T>::Predict_To(int end) {
280 281 282 283
  executor_->Predict_To(end);
}
#endif

Y
yangfei 已提交
284
#ifdef PADDLE_MOBILE_CL
Z
zhangyang 已提交
285
static std::mutex lc;
H
hjchen2 已提交
286 287
template <typename Device, typename T>
void PaddleMobile<Device, T>::SetCLPath(std::string path) {
Y
yangfei 已提交
288 289 290 291
  std::lock_guard<std::mutex> lock(lc);
  if (framework::CLEngine::Instance()->GetCLPath() == "") {
    framework::CLEngine::Instance()->setClPath(path);
  }
Y
yangfei 已提交
292
}
293
template <>
H
hjchen2 已提交
294
double PaddleMobile<GPU_CL, float>::GetPredictTime() {
295
  cl_int status;
296 297 298 299 300
  if (!framework::CLEngine::Instance()->isInitSuccess()) {
    return -1;
  }
  cl_context context = framework::CLEngine::Instance()->getContext();
  cl_command_queue queue = framework::CLEngine::Instance()->getClCommandQueue();
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

  int n = 1;
  int c = 3;
  int h = 224;
  int w = 224;
  float *input = static_cast<float *>(
      paddle_mobile::memory::Alloc(sizeof(float) * 3 * 224 * 224));
  float *filter = static_cast<float *>(
      paddle_mobile::memory::Alloc(sizeof(float) * 32 * 27));
  int input_w = w * (c + 3) / 4;
  int input_h = n * h;
  int filter_w = 3 * (3 + 3) / 4;
  int filter_h = 32 * 3;
  int output_w = 224 * (32 + 3) / 4;
  int output_h = 1 * 224;

  framework::DDim input_dims = {1, 3, 224, 224};
  framework::CLTensor input_cl_tensor(context, queue);
  input_cl_tensor.Resize(input_dims);
  cl_mem inputBuffer = input_cl_tensor.mutable_with_data<float>(input);

  framework::DDim filter_dims = {32, 3, 3, 3};
  framework::CLTensor filter_cl_tensor(context, queue);
  input_cl_tensor.Resize(filter_dims);
  cl_mem filterBuffer = filter_cl_tensor.mutable_with_data<float>(filter);

  cl_mem cl_filter_image = NULL;
  cl_mem cl_input_image = NULL;
  cl_mem cl_output_image = NULL;
  cl_image_format cf = {.image_channel_order = CL_RGBA,
                        .image_channel_data_type = CL_HALF_FLOAT};
  cl_input_image = clCreateImage2D(context, CL_MEM_READ_WRITE | 0, &cf, input_w,
                                   input_h, 0, NULL, &status);
  cl_filter_image = clCreateImage2D(context, CL_MEM_READ_WRITE | 0, &cf,
                                    filter_w, filter_h, 0, NULL, &status);
  cl_output_image = clCreateImage2D(context, CL_MEM_READ_WRITE | 0, &cf,
                                    output_w, output_h, 0, NULL, &status);
  char *code;
  std::string path = framework::CLEngine::Instance()->GetCLPath() +
                     "/cl_kernel/feed_kernel.cl";
  size_t length = readText(path.c_str(), &code);
  cl_program program = clCreateProgramWithSource(
      context, 1, (const char **)&code, &length, NULL);
  std::string path1 = "-cl-fast-relaxed-math -I " +
                      framework::CLEngine::Instance()->GetCLPath() +
                      "/cl_kernel";
  clBuildProgram(program, 0, 0, path1.c_str(), NULL, NULL);
  cl_kernel kernel = clCreateKernel(program, "feed", &status);

Y
yangfei 已提交
350 351 352 353 354 355
  int out_H = 224;
  int out_W = 224;
  int out_C = 3;
  int Stride2 = out_C * out_H * out_W;
  int Stride1 = out_H * out_W;
  int Stride0 = out_W;
356 357 358 359
  status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &inputBuffer);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_input_image);
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
360
  status = clSetKernelArg(kernel, 2, sizeof(cl_int), &out_H);
361
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
362
  status = clSetKernelArg(kernel, 3, sizeof(cl_int), &out_W);
363
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
364 365 366 367 368 369 370
  status = clSetKernelArg(kernel, 4, sizeof(cl_int), &out_C);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 5, sizeof(cl_int), &Stride0);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(cl_int), &Stride1);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(cl_int), &Stride2);
371 372
  CL_CHECK_ERRORS(status);

Y
yangfei 已提交
373
  size_t global_work_size[3] = {1, 224, 224};
374 375 376

  //  cl_event out_event = param.Out()->GetClEvent();

Y
yangfei 已提交
377
  status = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size,
378 379 380
                                  NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);

Y
yangfei 已提交
381 382 383 384 385 386 387
  out_H = 3;
  out_W = 3;
  out_C = 3;
  Stride2 = out_C * out_H * out_W;
  Stride1 = out_H * out_W;
  Stride0 = out_W;

388 389 390 391
  status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &filterBuffer);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &cl_filter_image);
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
392 393 394
  status = clSetKernelArg(kernel, 2, sizeof(cl_int), &out_H);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 3, sizeof(cl_int), &out_W);
395
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
396
  status = clSetKernelArg(kernel, 4, sizeof(cl_int), &out_C);
397
  CL_CHECK_ERRORS(status);
Y
yangfei 已提交
398 399 400 401 402
  status = clSetKernelArg(kernel, 5, sizeof(cl_int), &Stride0);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(cl_int), &Stride1);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(cl_int), &Stride2);
403 404
  CL_CHECK_ERRORS(status);

Y
yangfei 已提交
405
  size_t global_work_size1[3] = {1, 3, 96};
406 407 408

  //  cl_event out_event = param.Out()->GetClEvent();

Y
yangfei 已提交
409
  status = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size1,
410 411 412 413
                                  NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);

  clFinish(queue);
414
  //  queue = clCreateCommandQueue(context, listDevice[0], 0, &status);
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468

  path = framework::CLEngine::Instance()->GetCLPath() +
         "/cl_kernel/conv_kernel.cl";
  size_t length1 = readText(path.c_str(), &code);
  program = clCreateProgramWithSource(context, 1, (const char **)&code,
                                      &length1, &status);
  CL_CHECK_ERRORS(status);
  clBuildProgram(program, 0, 0, path1.c_str(), NULL, NULL);
  kernel = clCreateKernel(program, "conv_3x3", &status);
  CL_CHECK_ERRORS(status);

  int c_block = (32 + 3) / 4;
  int nh = n * h;
  int stride = 1;
  int offset = 0;
  int input_c = (c + 3) / 4;
  int dilation = 1;
  int input_width = 224;
  int input_height = 224;
  int output_width = 224;
  int output_height = 224;
  status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 1, sizeof(int), &w);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &cl_input_image);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &cl_filter_image);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &cl_output_image);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 6, sizeof(int), &stride);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 7, sizeof(int), &offset);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 8, sizeof(int), &input_c);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 9, sizeof(int), &dilation);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 10, sizeof(int), &input_width);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 11, sizeof(int), &input_height);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 12, sizeof(int), &output_width);
  CL_CHECK_ERRORS(status);
  status = clSetKernelArg(kernel, 13, sizeof(int), &output_height);
  CL_CHECK_ERRORS(status);

  //  cl_event out_event = param.Output()->GetClEvent();
  //  cl_event wait_event = param.Input()->GetClEvent();
  size_t global_work_size2[3] = {8, 224, 224};
  auto time1 = paddle_mobile::time();
469 470 471 472 473
  int times = 10;
  for (int i = 0; i < times; ++i) {
    status = clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size2,
                                    NULL, 0, NULL, NULL);
  }
474 475 476 477 478
  CL_CHECK_ERRORS(status);
  clFinish(queue);
  auto time2 = paddle_mobile::time();
  paddle_mobile::memory::Free(input);
  paddle_mobile::memory::Free(filter);
Y
yangfei 已提交
479
  if (status == CL_SUCCESS) {
480
    return paddle_mobile::time_diff(time1, time2) / times;
Y
yangfei 已提交
481 482 483
  } else {
    return -1;
  }
484
}
H
hjchen2 已提交
485 486
template <typename Device, typename T>
int PaddleMobile<Device, T>::readText(
487
    const char *kernelPath,
Y
yangfei 已提交
488
    char **pcode) {  // 读取文本文件放入 pcode,返回字符串长度
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
  FILE *fp;
  int size;
  // printf("<readText> File: %s\n", kernelPath);
  fp = fopen(kernelPath, "rb");
  if (!fp) {
    printf("<readText> Open file failed\n");
    return -1;
  }
  if (fseek(fp, 0, SEEK_END) != 0) {
    printf("<readText> Seek end of file failed\n");
    return -1;
  }
  if ((size = ftell(fp)) < 0) {
    printf("<readText> Get file position failed\n");
    return -1;
  }
  rewind(fp);
Y
yangfei 已提交
506
  if ((*pcode = reinterpret_cast<char *>(malloc(size + 1))) == NULL) {
507 508 509 510 511 512 513 514
    printf("<readText> Allocate space failed\n");
    return -1;
  }
  fread(*pcode, 1, size, fp);
  (*pcode)[size] = '\0';
  fclose(fp);
  return size + 1;
}
Y
yangfei 已提交
515 516
#endif

517 518 519 520
template class PaddleMobile<CPU, float>;
template class PaddleMobile<FPGA, float>;
template class PaddleMobile<GPU_MALI, float>;
template class PaddleMobile<GPU_CL, float>;
Y
yangfei 已提交
521

522
}  // namespace paddle_mobile