cxx_api_impl.cc 8.7 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/cxx_api.h"
16 17
#include <memory>
#include <mutex>  //NOLINT
18
#include <string>
Y
Yan Chunwei 已提交
19
#include "lite/api/paddle_api.h"
20
#include "lite/core/device_info.h"
21
#include "lite/core/version.h"
22 23 24 25

#ifndef LITE_ON_TINY_PUBLISH
#include "lite/api/paddle_use_passes.h"
#endif
J
jiweibo 已提交
26 27 28
#ifdef LITE_WITH_CUDA
#include "lite/backends/cuda/cuda_utils.h"
#endif
29
#if (defined LITE_WITH_X86) && (defined PADDLE_WITH_MKLML) && \
30
    !(defined LITE_ON_MODEL_OPTIMIZE_TOOL) && !defined(__APPLE__)
31 32 33
#include <omp.h>
#include "lite/backends/x86/mklml.h"
#endif
Y
Yan Chunwei 已提交
34 35 36 37
namespace paddle {
namespace lite {

void CxxPaddleApiImpl::Init(const lite_api::CxxConfig &config) {
38
  config_ = config;
J
jiweibo 已提交
39 40
  auto places = config.valid_places();
  std::vector<std::string> passes = config.get_passes_internal();
41
#ifdef LITE_WITH_CUDA
J
jiweibo 已提交
42 43 44 45 46 47
  // if kCUDA is included in valid places, it should be initialized first,
  // otherwise skip this step.
  for (auto &p : places) {
    if (p.target == TARGET(kCUDA)) {
      CudaEnvInit(&passes);
      break;
48
    }
J
jiweibo 已提交
49
  }
50
#endif
J
jiweibo 已提交
51 52

  if (!status_is_cloned_) {
53
#ifdef LITE_WITH_MLU
54 55 56 57 58 59 60
    Env<TARGET(kMLU)>::Init();
    lite::DeviceInfo::Global().SetMLURunMode(config.mlu_core_version(),
                                             config.mlu_core_number(),
                                             config.mlu_use_first_conv(),
                                             config.mlu_first_conv_mean(),
                                             config.mlu_first_conv_std(),
                                             config.mlu_input_layout());
61
#endif  // LITE_WITH_MLU
62 63 64 65 66 67 68 69 70 71 72 73
    auto use_layout_preprocess_pass =
        config.model_dir().find("OPENCL_PRE_PRECESS");
    VLOG(1) << "use_layout_preprocess_pass:" << use_layout_preprocess_pass;
    if (places[0].target == TARGET(kOpenCL) &&
        use_layout_preprocess_pass != std::string::npos) {
      passes = {"type_layout_cast_preprocess_pass"};
      VLOG(1) << "add pass:" << passes[0];
    }
    raw_predictor_->Build(config, places, passes);
  } else {
    raw_predictor_->PrepareFeedFetch();
    CHECK(raw_predictor_) << "The Predictor can not be nullptr in Clone mode.";
74
  }
J
jiweibo 已提交
75

T
TianXiaogang 已提交
76 77
  mode_ = config.power_mode();
  threads_ = config.threads();
78
#if (defined LITE_WITH_X86) && (defined PADDLE_WITH_MKLML) && \
79
    !(defined LITE_ON_MODEL_OPTIMIZE_TOOL)
80
  int num_threads = config.x86_math_library_num_threads();
81 82 83
  int real_num_threads = num_threads > 1 ? num_threads : 1;
  paddle::lite::x86::MKL_Set_Num_Threads(real_num_threads);
  omp_set_num_threads(real_num_threads);
84
  VLOG(3) << "set_x86_math_library_math_threads() is set successfully and the "
85
             "number of threads is:"
86
          << real_num_threads;
87
#endif
Y
Yan Chunwei 已提交
88 89
}

J
jiweibo 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
#ifdef LITE_WITH_CUDA
void CxxPaddleApiImpl::CudaEnvInit(std::vector<std::string> *passes) {
  Env<TARGET(kCUDA)>::Init();

  // init two streams for each predictor.
  if (config_.exec_stream()) {
    exec_stream_ = config_.exec_stream();
  } else {
    exec_stream_ = new cudaStream_t();
    TargetWrapperCuda::CreateStream(exec_stream_);
  }
  if (config_.io_stream()) {
    io_stream_ = config_.io_stream();
  } else {
    io_stream_ = new cudaStream_t();
    TargetWrapperCuda::CreateStream(io_stream_);
  }

  raw_predictor_->SetExecStream(exec_stream_);
  raw_predictor_->SetIoStream(io_stream_);

  // init sync events.
  if (config_.multi_stream()) {
    multi_stream_ = true;
    raw_predictor_->SetMultiStream(multi_stream_);
    passes->push_back("multi_stream_analysis_pass");
    VLOG(3) << "add pass: " << (*passes)[0];
    Env<TargetType::kCUDA>::Devs &devs = Env<TargetType::kCUDA>::Global();
    int dev_id = TargetWrapperCuda::GetCurDevice();
    for (size_t i = 0; i < lite::kMaxStream; ++i) {
      exec_streams_.push_back(
          const_cast<cudaStream_t *>(&devs[dev_id].exec_streams()[i]));
      cudaEvent_t out_event;
      TargetWrapperCuda::CreateEventWithFlags(&out_event);
      output_events_.push_back(out_event);
    }
  } else {
    cudaEvent_t out_event;
    TargetWrapperCuda::CreateEventWithFlags(&out_event);
    output_events_.push_back(out_event);
  }
  TargetWrapperCuda::CreateEventWithFlags(&input_event_);
}

void CxxPaddleApiImpl::InputSync() {
  TargetWrapperCuda::RecordEvent(input_event_, *io_stream_);
  if (multi_stream_) {
    for (int i = 0; i < lite::kMaxStream; ++i) {
      TargetWrapperCuda::StreamSync(*exec_streams_[i], input_event_);
    }
  } else {
    TargetWrapperCuda::StreamSync(*exec_stream_, input_event_);
  }
}

void CxxPaddleApiImpl::OutputSync() {
  if (multi_stream_) {
    for (size_t i = 0; i < output_events_.size(); ++i) {
      TargetWrapperCuda::RecordEvent(output_events_[i], *exec_streams_[i]);
      TargetWrapperCuda::StreamSync(*io_stream_, output_events_[i]);
    }
  } else {
    TargetWrapperCuda::RecordEvent(output_events_[0], *exec_stream_);
    TargetWrapperCuda::StreamSync(*io_stream_, output_events_[0]);
  }
}
#endif

Y
Yan Chunwei 已提交
158
std::unique_ptr<lite_api::Tensor> CxxPaddleApiImpl::GetInput(int i) {
159
  auto *x = raw_predictor_->GetInput(i);
160
#ifdef LITE_WITH_CUDA
J
jiweibo 已提交
161
  return std::unique_ptr<lite_api::Tensor>(new lite_api::Tensor(x, io_stream_));
162 163 164
#else
  return std::unique_ptr<lite_api::Tensor>(new lite_api::Tensor(x));
#endif
Y
Yan Chunwei 已提交
165 166 167 168
}

std::unique_ptr<const lite_api::Tensor> CxxPaddleApiImpl::GetOutput(
    int i) const {
169
  const auto *x = raw_predictor_->GetOutput(i);
170
#ifdef LITE_WITH_CUDA
J
jiweibo 已提交
171
  return std::unique_ptr<lite_api::Tensor>(new lite_api::Tensor(x, io_stream_));
172 173 174
#else
  return std::unique_ptr<lite_api::Tensor>(new lite_api::Tensor(x));
#endif
Y
Yan Chunwei 已提交
175 176
}

S
sangoly 已提交
177
std::vector<std::string> CxxPaddleApiImpl::GetInputNames() {
178
  return raw_predictor_->GetInputNames();
179 180
}

181
std::vector<std::string> CxxPaddleApiImpl::GetParamNames() {
182
  return raw_predictor_->GetParamNames();
183 184
}

S
sangoly 已提交
185
std::vector<std::string> CxxPaddleApiImpl::GetOutputNames() {
186
  return raw_predictor_->GetOutputNames();
187 188
}

T
TianXiaogang 已提交
189 190 191 192
void CxxPaddleApiImpl::Run() {
#ifdef LITE_WITH_ARM
  lite::DeviceInfo::Global().SetRunMode(mode_, threads_);
#endif
J
jiweibo 已提交
193 194 195 196
#ifdef LITE_WITH_CUDA
  InputSync();
#endif

197
  raw_predictor_->Run();
J
jiweibo 已提交
198 199 200 201

#ifdef LITE_WITH_CUDA
  OutputSync();
#endif
T
TianXiaogang 已提交
202
}
Y
Yan Chunwei 已提交
203

204 205
std::shared_ptr<lite_api::PaddlePredictor> CxxPaddleApiImpl::Clone() {
  std::lock_guard<std::mutex> lock(mutex_);
206 207 208 209 210 211 212 213 214 215 216
  auto predictor =
      std::make_shared<lite::CxxPaddleApiImpl>(raw_predictor_->Clone());
  predictor->Init(config_);
  return predictor;
}

std::shared_ptr<lite_api::PaddlePredictor> CxxPaddleApiImpl::Clone(
    const std::vector<std::string> &var_names) {
  std::lock_guard<std::mutex> lock(mutex_);
  auto predictor = std::make_shared<lite::CxxPaddleApiImpl>(
      raw_predictor_->Clone(var_names));
217 218 219 220
  predictor->Init(config_);
  return predictor;
}

221 222
std::string CxxPaddleApiImpl::GetVersion() const { return version(); }

Y
Yan Chunwei 已提交
223 224
std::unique_ptr<const lite_api::Tensor> CxxPaddleApiImpl::GetTensor(
    const std::string &name) const {
225
  auto *x = raw_predictor_->GetTensor(name);
Y
Yan Chunwei 已提交
226 227 228
  return std::unique_ptr<const lite_api::Tensor>(new lite_api::Tensor(x));
}

229 230 231
std::unique_ptr<lite_api::Tensor> CxxPaddleApiImpl::GetMutableTensor(
    const std::string &name) {
  return std::unique_ptr<lite_api::Tensor>(
232
      new lite_api::Tensor(raw_predictor_->GetMutableTensor(name)));
233 234
}

235 236 237
std::unique_ptr<lite_api::Tensor> CxxPaddleApiImpl::GetInputByName(
    const std::string &name) {
  return std::unique_ptr<lite_api::Tensor>(
238
      new lite_api::Tensor(raw_predictor_->GetInputByName(name)));
239 240
}

Y
Yan Chunwei 已提交
241
void CxxPaddleApiImpl::SaveOptimizedModel(const std::string &model_dir,
242 243
                                          lite_api::LiteModelType model_type,
                                          bool record_info) {
244
  raw_predictor_->SaveModel(model_dir, model_type, record_info);
Y
Yan Chunwei 已提交
245 246
}

J
jiweibo 已提交
247
CxxPaddleApiImpl::~CxxPaddleApiImpl() {
J
jiweibo 已提交
248
#ifdef LITE_WITH_CUDA
J
jiweibo 已提交
249 250 251 252 253 254 255 256
  TargetWrapperCuda::DestroyEvent(input_event_);
  for (size_t i = 0; i < output_events_.size(); ++i) {
    TargetWrapperCuda::DestroyEvent(output_events_[i]);
  }
  if (multi_stream_) {
    TargetWrapperCuda::DestroyStream(*io_stream_);
    TargetWrapperCuda::DestroyStream(*exec_stream_);
  }
J
jiweibo 已提交
257
#endif
J
jiweibo 已提交
258 259
}

Y
Yan Chunwei 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273
}  // namespace lite

namespace lite_api {

template <>
std::shared_ptr<PaddlePredictor> CreatePaddlePredictor(
    const CxxConfig &config) {
  auto x = std::make_shared<lite::CxxPaddleApiImpl>();
  x->Init(config);
  return x;
}

}  // namespace lite_api
}  // namespace paddle