conv_arm_func.h 7.1 KB
Newer Older
L
liuruilong 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
liuruilong 已提交
2

L
liuruilong 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
L
liuruilong 已提交
6

L
liuruilong 已提交
7 8 9 10 11 12 13 14 15 16 17
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef CONV_OP

#pragma once
18
#include <vector>
H
hjchen2 已提交
19
#include "operators/math/conv_arm_int8.h"
20 21 22 23
#include "operators/math/conv_func.h"
#include "operators/math/depthwise_conv_3x3.h"
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
24
#include "operators/math/pad.h"
25
#include "operators/math/vol2col.h"
L
liuruilong 已提交
26 27 28 29
#include "operators/op_param.h"

namespace paddle_mobile {
namespace operators {
30

31
template <typename Dtype>
N
nhzlx 已提交
32
inline void ConvBasic(const ConvParam<CPU> &param) {
L
liuruilong 已提交
33 34 35 36
  const Tensor *input = param.Input();
  Tensor filter = *param.Filter();
  Tensor *output = param.Output();
  int groups = param.Groups();
37 38 39
  const std::vector<int> strides = param.Strides();
  const std::vector<int> paddings = param.Paddings();
  const std::vector<int> dilations = param.Dilations();
L
liuruilong 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55

  const int batch_size = static_cast<int>(input->dims()[0]);

  std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));

  std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
  size_t data_dim = filter_shape_vec.size() - 2;
  std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
  col_shape_vec[0] = input->dims()[1] / groups;
  for (size_t j = 0; j < data_dim; ++j) {
    col_shape_vec[j + 1] = filter_shape_vec[j + 2];
    col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
  }
  framework::DDim col_shape(framework::make_ddim(col_shape_vec));

  framework::DDim col_matrix_shape =
L
liuruilong 已提交
56
      framework::flatten_to_2d(col_shape, data_dim + 1);
L
liuruilong 已提交
57

58 59
  bool is_expand =
      math::IsExpand(filter_shape_vec, strides, paddings, dilations);
L
liuruilong 已提交
60 61 62
  Tensor col;
  Tensor col_matrix;
  if (is_expand) {
63
    col.mutable_data<Dtype>(col_shape);
L
liuruilong 已提交
64 65 66 67 68
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);
  }

  framework::DDim input_shape = framework::slice_ddim(
L
liuruilong 已提交
69
      input->dims(), 1, static_cast<int>(input->dims().size()));
L
liuruilong 已提交
70 71 72 73 74

  framework::DDim filter_matrix_shape = {filter.dims()[0],
                                         filter.numel() / filter.dims()[0]};
  filter.Resize(filter_matrix_shape);
  framework::DDim output_matrix_shape = {
L
liuruilong 已提交
75 76
      output->dims()[1],
      output->numel() / (output->dims()[0] * output->dims()[1])};
L
liuruilong 已提交
77 78 79 80 81

  // convolution operator: im2col(or vol2col) + gemm
  int in_step = static_cast<int>(input->dims()[1]) / groups;
  int out_step = static_cast<int>(output->dims()[1]) / groups;

82 83
  math::Vol2ColFunctor<CPU, Dtype> vol2col;
  math::Im2ColFunctor<math::ColFormat::kCFO, CPU, Dtype> im2col;
L
liuruilong 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

  for (int i = 0; i < batch_size; i++) {
    Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
    Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);

    for (int g = 0; g < groups; g++) {
      Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);

      if (!is_expand) {
        col.ShareDataWith(in_slice);
        col_matrix.ShareDataWith(col);
        col_matrix.Resize(col_matrix_shape);
      } else if (data_dim == 2U) {
        // im2col
        im2col(in_slice, dilations, strides,
               std::vector<int>{paddings[0], paddings[1], paddings[0],
                                paddings[1]},
               &col);
102

L
liuruilong 已提交
103 104 105 106
      } else if (data_dim == 3U) {
        // vol2col
        vol2col(in_slice, dilations, strides, paddings, &col);
      }
L
liuruilong 已提交
107

L
liuruilong 已提交
108 109 110
      // gemm
      Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
      Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
111 112

      math::matmul<Dtype>(filter_slice, false, col_matrix, false,
L
liuruilong 已提交
113
                          static_cast<float>(1), &out_slice,
Z
zhaojiaying01 已提交
114
                          static_cast<float>(0));
L
liuruilong 已提交
115 116 117 118
    }
  }
}

H
hjchen2 已提交
119
inline void ConvCompute_int8(const ConvParam<CPU> &param) {
120 121 122
  typedef void (*ConvFunc)(const Tensor &input, const Tensor &kernel,
                           Tensor *output);
  static ConvFunc conv_funcs_table[7][5] = {
123 124 125 126 127 128 129 130 131
      {0, 0, 0, 0, 0},  // k = 1
      //      {0, 0, 0, 0, 0}, {conv3x3s1_int8, 0, 0, 0, 0},  // k = 3
      //      {0, 0, 0, 0, 0}, {conv5x5s1_int8, 0, 0, 0, 0},  // k = 5
      {0, 0, 0, 0, 0},
      {0, 0, 0, 0, 0},  // k = 3
      {0, 0, 0, 0, 0},
      {0, 0, 0, 0, 0},  // k = 5
      {0, 0, 0, 0, 0},
      {0, 0, 0, 0, 0},  // k = 7
132 133 134 135 136
  };
  const Tensor *input = param.Input();
  Tensor *filter = param.Filter();
  Tensor *output = param.Output();
  int groups = param.Groups();
137 138 139
  const std::vector<int> &strides = param.Strides();
  const std::vector<int> &paddings = param.Paddings();
  const std::vector<int> &dilations = param.Dilations();
140 141
  int kernel_h = filter->dims()[2];
  int kernel_w = filter->dims()[3];
142
  output->mutable_data<int32_t>();
H
hjchen2 已提交
143

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
  ConvFunc conv_func = 0;
  if (strides[1] == strides[0] && strides[1] < 6 && kernel_h == kernel_w &&
      kernel_h < 8 && groups == 1 && dilations[0] == dilations[1] &&
      dilations[1] == 1) {
    conv_func = conv_funcs_table[kernel_h - 1][strides[0] - 1];
  }
  if (conv_func) {
    int batch_size = input->dims()[0];
    math::PadFunctor<CPU, int8_t> pad;

    Tensor input_pad;
    for (int i = 0; i < batch_size; ++i) {
      Tensor in_batch = input->Slice(i, i + 1);
      Tensor out_batch = output->Slice(i, i + 1);
      if (paddings[0] == 0 && paddings[1] == 0) {
        input_pad = in_batch;
160
      } else {
161 162 163 164 165
        framework::DDim pad_shape = in_batch.dims();
        pad_shape[2] += 2 * paddings[0];
        pad_shape[3] += 2 * paddings[1];
        input_pad.mutable_data<int8_t>(pad_shape);
        pad(in_batch, paddings[0], paddings[1], &input_pad);
166
      }
167
      conv_func(input_pad, *filter, &out_batch);
168
    }
169 170
  } else {
    ConvBasic<int8_t>(param);
171 172 173
  }
}

E
eclipsess 已提交
174
template <typename P>
N
nhzlx 已提交
175
void ConvCompute(const ConvParam<CPU> &param) {
H
hjchen2 已提交
176 177
  if (param.Input()->type() == typeid(int8_t)) {
    ConvCompute_int8(param);
E
eclipsess 已提交
178
  } else {
179
    param.Output()->mutable_data<float>();
H
hjchen2 已提交
180 181 182 183 184 185 186 187 188 189 190 191
    if (param.Groups() == param.Input()->dims()[1] &&
        param.Input()->dims()[1] == param.Output()->dims()[1] &&
        param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
        param.Filter()->dims()[2] == 3 && param.Strides()[0] == 1) {
      math::DepthwiseConv3x3s1p1(param.Input(), param.Filter(), param.Output(),
                                 nullptr, false);
    } else if (param.Groups() == param.Input()->dims()[1] &&
               param.Input()->dims()[1] == param.Output()->dims()[1] &&
               param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
               param.Filter()->dims()[2] == 3) {
      math::DepthwiseConv3x3(param.Input(), param.Strides(), param.Paddings(),
                             param.Filter(), nullptr, param.Output(), false);
192
    } else {
193
      ConvBasic<float>(param);
194
    }
E
eclipsess 已提交
195 196 197
  }
}

L
liuruilong 已提交
198 199
}  // namespace operators
}  // namespace paddle_mobile
L
liuruilong 已提交
200 201

#endif