Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
075a6c0c
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
075a6c0c
编写于
7月 02, 2018
作者:
E
eclipsess
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix result error
上级
6b22a7b9
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
96 addition
and
101 deletion
+96
-101
src/operators/kernel/central-arm-func/conv_arm_func.h
src/operators/kernel/central-arm-func/conv_arm_func.h
+24
-6
src/operators/kernel/central-arm-func/depthwise_conv_arm_func.h
...erators/kernel/central-arm-func/depthwise_conv_arm_func.h
+17
-84
src/operators/math/depthwise_conv_3x3.cpp
src/operators/math/depthwise_conv_3x3.cpp
+17
-11
tools/push2android.sh
tools/push2android.sh
+38
-0
未找到文件。
src/operators/kernel/central-arm-func/conv_arm_func.h
浏览文件 @
075a6c0c
...
...
@@ -15,19 +15,17 @@ limitations under the License. */
#ifdef CONV_OP
#pragma once
#include <operators/math/depthwise_conv_3x3.h>
#include <vector>
#include "operators/math/conv_func.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
P
>
void
ConvCompute
(
const
ConvParam
&
param
)
{
inline
void
ConvBasic
(
const
ConvParam
&
param
)
{
const
Tensor
*
input
=
param
.
Input
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
*
output
=
param
.
Output
();
output
->
mutable_data
<
float
>
();
int
groups
=
param
.
Groups
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
std
::
vector
<
int
>
paddings
=
param
.
Paddings
();
...
...
@@ -98,17 +96,37 @@ void ConvCompute(const ConvParam ¶m) {
// vol2col
vol2col
(
in_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
0
));
static_cast
<
float
>
(
1
));
}
}
}
template
<
typename
P
>
void
ConvCompute
(
const
ConvParam
&
param
)
{
Tensor
Bias
;
Bias
.
mutable_data
<
float
>
({
param
.
Groups
()});
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
)
{
math
::
DepthwiseConv3x3s1p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
&
Bias
,
false
);
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
math
::
DepthwiseConv3x3
(
param
.
Input
(),
param
.
Strides
(),
param
.
Paddings
(),
param
.
Filter
(),
&
Bias
,
param
.
Output
(),
false
);
}
else
{
ConvBasic
(
param
);
}
}
}
// namespace operators
}
// namespace paddle_mobile
...
...
src/operators/kernel/central-arm-func/depthwise_conv_arm_func.h
浏览文件 @
075a6c0c
...
...
@@ -15,8 +15,9 @@ limitations under the License. */
#ifdef DEPTHWISECONV_OP
#pragma once
#include <operators/math/depthwise_conv_3x3.h>
#include <vector>
#include "operators/
math/conv
_func.h"
#include "operators/
kernel/central-arm-func/conv_arm
_func.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
...
...
@@ -24,89 +25,21 @@ namespace operators {
template
<
typename
P
>
void
DepthwiseConvCompute
(
const
ConvParam
&
param
)
{
const
Tensor
*
input
=
param
.
Input
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
*
output
=
param
.
Output
();
output
->
mutable_data
<
float
>
();
int
groups
=
param
.
Groups
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
std
::
vector
<
int
>
paddings
=
param
.
Paddings
();
std
::
vector
<
int
>
dilations
=
param
.
Dilations
();
// DLOG << " compute end get Attrs " << strides[0];
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
input
->
dims
()[
1
]
/
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
1
+
data_dim
]
=
output_shape_vec
[
j
+
2
];
}
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
bool
is_expand
=
math
::
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
Tensor
col_matrix
;
if
(
is_expand
)
{
col
.
mutable_data
<
float
>
(
col_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
numel
()
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
framework
::
DDim
output_matrix_shape
=
{
output
->
dims
()[
1
],
output
->
numel
()
/
(
output
->
dims
()[
0
]
*
output
->
dims
()[
1
])};
// convolution operator: im2col(or vol2col) + gemm
int
in_step
=
static_cast
<
int
>
(
input
->
dims
()[
1
])
/
groups
;
int
out_step
=
static_cast
<
int
>
(
output
->
dims
()[
1
])
/
groups
;
math
::
Vol2ColFunctor
<
CPU
,
float
>
vol2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
float
>
im2col
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
in_slice
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
in_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
0
));
}
Tensor
Bias
;
Bias
.
mutable_data
<
float
>
({
param
.
Groups
()});
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
1
)
{
math
::
DepthwiseConv3x3s1p1
(
param
.
Input
(),
param
.
Filter
(),
param
.
Output
(),
&
Bias
,
false
);
}
else
if
(
param
.
Groups
()
==
param
.
Input
()
->
dims
()[
1
]
&&
param
.
Input
()
->
dims
()[
1
]
==
param
.
Output
()
->
dims
()[
1
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
param
.
Filter
()
->
dims
()[
3
]
&&
param
.
Filter
()
->
dims
()[
2
]
==
3
&&
param
.
Strides
()[
0
]
==
2
)
{
math
::
DepthwiseConv3x3
(
param
.
Input
(),
param
.
Strides
(),
param
.
Paddings
(),
param
.
Filter
(),
&
Bias
,
param
.
Output
(),
false
);
}
else
{
ConvBasic
(
param
);
}
}
...
...
src/operators/math/depthwise_conv_3x3.cpp
浏览文件 @
075a6c0c
...
...
@@ -275,33 +275,38 @@ void DepthwiseConv3x3s1p1(const Tensor *input, const Tensor *filter,
float
w22
=
filter_data_tmp
[
8
];
output_data
[
0
]
=
w11
*
input_data
[
0
]
+
w12
*
input_data
[
1
]
+
w21
*
input_data
[
l
]
+
w22
*
input_data
[
l
+
1
]
+
bias_data
[
j
];
w21
*
input_data
[
l
]
+
w22
*
input_data
[
l
+
1
];
output_data
[
l
-
1
]
=
w10
*
input_data
[
l
-
2
]
+
w11
*
input_data
[
l
-
1
]
+
w20
*
input_data
[
2
*
l
-
2
]
+
w21
*
input_data
[
2
*
l
-
1
]
+
bias_data
[
j
]
;
w21
*
input_data
[
2
*
l
-
1
];
output_data
[(
l
-
1
)
*
l
]
=
w01
*
input_data
[(
l
-
2
)
*
l
]
+
w02
*
input_data
[(
l
-
2
)
*
l
+
1
]
+
w11
*
input_data
[(
l
-
1
)
*
l
]
+
w12
*
input_data
[(
l
-
1
)
*
l
+
1
]
+
bias_data
[
j
];
w11
*
input_data
[(
l
-
1
)
*
l
]
+
w12
*
input_data
[(
l
-
1
)
*
l
+
1
];
output_data
[
l
*
l
-
1
]
=
w00
*
input_data
[(
l
-
2
)
*
(
l
+
1
)]
+
w01
*
input_data
[(
l
-
2
)
*
(
l
+
1
)
+
1
]
+
w10
*
input_data
[
l
*
l
-
2
]
+
w11
*
input_data
[
l
*
l
-
1
]
+
bias_data
[
j
];
w11
*
input_data
[
l
*
l
-
1
];
if
(
if_bias
)
{
output_data
[
0
]
+=
bias_data
[
j
];
output_data
[
l
-
1
]
+=
bias_data
[
j
];
output_data
[(
l
-
1
)
*
l
]
+=
bias_data
[
j
];
output_data
[
l
*
l
-
1
]
+=
bias_data
[
j
];
}
for
(
int
i
=
1
;
i
<
l
-
1
;
++
i
)
{
output_data
[
i
*
l
]
=
w01
*
input_data
[
i
*
l
-
l
]
+
w02
*
input_data
[
i
*
l
-
l
+
1
]
+
w11
*
input_data
[
i
*
l
]
+
w12
*
input_data
[
i
*
l
+
1
]
+
w21
*
input_data
[
i
*
l
+
l
]
+
w22
*
input_data
[
i
*
l
+
l
+
1
]
+
bias_data
[
j
];
w21
*
input_data
[
i
*
l
+
l
]
+
w22
*
input_data
[
i
*
l
+
l
+
1
];
output_data
[
i
*
l
+
l
-
1
]
=
w00
*
input_data
[
i
*
l
+
l
-
1
-
l
-
1
]
+
w01
*
input_data
[
i
*
l
+
l
-
1
-
l
]
+
w10
*
input_data
[
i
*
l
+
l
-
1
-
1
]
+
w11
*
input_data
[
i
*
l
+
l
-
1
]
+
w20
*
input_data
[
i
*
l
+
l
-
1
+
l
-
1
]
+
w21
*
input_data
[
i
*
l
+
l
-
1
+
l
]
+
bias_data
[
j
];
w21
*
input_data
[
i
*
l
+
l
-
1
+
l
];
if
(
if_bias
)
{
output_data
[
i
*
l
]
+=
bias_data
[
j
];
output_data
[
i
*
l
+
l
-
1
]
+=
bias_data
[
j
];
}
}
// top 1 row and bottom 1 row
...
...
@@ -502,6 +507,7 @@ void DepthwiseConv3x3s1p1(const Tensor *input, const Tensor *filter,
}
}
}
void
DepthwiseConvAddBNRelu3x3s1p1
(
const
Tensor
*
input
,
Tensor
filter
,
Tensor
*
output
,
Tensor
*
bias
,
bool
if_bias
,
Tensor
*
new_scale
,
Tensor
*
new_bias
,
...
...
tools/push2android.sh
0 → 100644
浏览文件 @
075a6c0c
#!/usr/bin/env sh
push_fn
()
{
sh build.sh android
MODELS_PATH
=
"../test/models/*"
MODELS_SRC
=
"../test/models"
IMAGE_PATH
=
"../test/images/*"
EXE_FILE
=
"../test/build/*"
EXE_DIR
=
"data/local/tmp/bin"
adb shell
mkdir
${
EXE_DIR
}
MODELS_DIR
=
"data/local/tmp/models"
adb shell
mkdir
${
MODELS_DIR
}
for
file
in
`
ls
${
MODELS_SRC
}
`
do
adb shell
mkdir
${
MODELS_DIR
}
"/"
${
file
}
done
if
[[
-d
"../src/operators/kernel/mali/ACL_Android/build"
]]
;
then
ACL_BUILD_PATH
=
"../src/operators/kernel/mali/ACL_Android/build/*"
adb push
${
ACL_BUILD_PATH
}
${
EXE_DIR
}
fi
IMAGES_DIR
=
"data/local/tmp/images"
adb shell
mkdir
${
IMAGES_DIR
}
LIB_PATH
=
"../build/release/arm-v7a/build/*"
adb push
${
EXE_FILE
}
${
EXE_DIR
}
adb push
${
LIB_PATH
}
${
EXE_DIR
}
if
[[
$1
!=
"npm"
]]
;
then
adb push
${
IMAGE_PATH
}
${
IMAGES_DIR
}
adb push
${
MODELS_PATH
}
${
MODELS_DIR
}
fi
}
if
[[
$1
==
"npm"
]]
;
then
push_fn
$1
else
push_fn
fi
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录