conv_arm_func.h 4.9 KB
Newer Older
L
liuruilong 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
liuruilong 已提交
2

L
liuruilong 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
L
liuruilong 已提交
6

L
liuruilong 已提交
7 8 9 10 11 12 13 14 15 16 17
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef CONV_OP

#pragma once
18
#include <vector>
19 20 21 22 23
#include "operators/math/conv_func.h"
#include "operators/math/depthwise_conv_3x3.h"
#include "operators/math/im2col.h"
#include "operators/math/math_function.h"
#include "operators/math/vol2col.h"
L
liuruilong 已提交
24 25 26 27
#include "operators/op_param.h"

namespace paddle_mobile {
namespace operators {
E
eclipsess 已提交
28
inline void ConvBasic(const ConvParam &param) {
L
liuruilong 已提交
29 30 31
  const Tensor *input = param.Input();
  Tensor filter = *param.Filter();
  Tensor *output = param.Output();
32
  output->mutable_data<float>();
L
liuruilong 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
  int groups = param.Groups();
  std::vector<int> strides = param.Strides();
  std::vector<int> paddings = param.Paddings();
  std::vector<int> dilations = param.Dilations();

  const int batch_size = static_cast<int>(input->dims()[0]);

  std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));

  std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
  size_t data_dim = filter_shape_vec.size() - 2;
  std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
  col_shape_vec[0] = input->dims()[1] / groups;
  for (size_t j = 0; j < data_dim; ++j) {
    col_shape_vec[j + 1] = filter_shape_vec[j + 2];
    col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
  }
  framework::DDim col_shape(framework::make_ddim(col_shape_vec));

  framework::DDim col_matrix_shape =
L
liuruilong 已提交
53
      framework::flatten_to_2d(col_shape, data_dim + 1);
L
liuruilong 已提交
54

55 56
  bool is_expand =
      math::IsExpand(filter_shape_vec, strides, paddings, dilations);
L
liuruilong 已提交
57 58 59 60 61 62 63 64 65
  Tensor col;
  Tensor col_matrix;
  if (is_expand) {
    col.mutable_data<float>(col_shape);
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);
  }

  framework::DDim input_shape = framework::slice_ddim(
L
liuruilong 已提交
66
      input->dims(), 1, static_cast<int>(input->dims().size()));
L
liuruilong 已提交
67 68 69 70 71

  framework::DDim filter_matrix_shape = {filter.dims()[0],
                                         filter.numel() / filter.dims()[0]};
  filter.Resize(filter_matrix_shape);
  framework::DDim output_matrix_shape = {
L
liuruilong 已提交
72 73
      output->dims()[1],
      output->numel() / (output->dims()[0] * output->dims()[1])};
L
liuruilong 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102

  // convolution operator: im2col(or vol2col) + gemm
  int in_step = static_cast<int>(input->dims()[1]) / groups;
  int out_step = static_cast<int>(output->dims()[1]) / groups;

  math::Vol2ColFunctor<CPU, float> vol2col;
  math::Im2ColFunctor<math::ColFormat::kCFO, CPU, float> im2col;

  for (int i = 0; i < batch_size; i++) {
    Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
    Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);

    for (int g = 0; g < groups; g++) {
      Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);

      if (!is_expand) {
        col.ShareDataWith(in_slice);
        col_matrix.ShareDataWith(col);
        col_matrix.Resize(col_matrix_shape);
      } else if (data_dim == 2U) {
        // im2col
        im2col(in_slice, dilations, strides,
               std::vector<int>{paddings[0], paddings[1], paddings[0],
                                paddings[1]},
               &col);
      } else if (data_dim == 3U) {
        // vol2col
        vol2col(in_slice, dilations, strides, paddings, &col);
      }
L
liuruilong 已提交
103

L
liuruilong 已提交
104 105 106 107 108
      // gemm
      Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
      Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
      math::matmul<float>(filter_slice, false, col_matrix, false,
                          static_cast<float>(1), &out_slice,
Z
zhaojiaying01 已提交
109
                          static_cast<float>(0));
L
liuruilong 已提交
110 111 112 113
    }
  }
}

E
eclipsess 已提交
114 115 116 117 118 119 120
template <typename P>
void ConvCompute(const ConvParam &param) {
  if (param.Groups() == param.Input()->dims()[1] &&
      param.Input()->dims()[1] == param.Output()->dims()[1] &&
      param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
      param.Filter()->dims()[2] == 3 && param.Strides()[0] == 1) {
    math::DepthwiseConv3x3s1p1(param.Input(), param.Filter(), param.Output(),
121
                               nullptr, false);
E
eclipsess 已提交
122 123 124
  } else if (param.Groups() == param.Input()->dims()[1] &&
             param.Input()->dims()[1] == param.Output()->dims()[1] &&
             param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
125
             param.Filter()->dims()[2] == 3) {
E
eclipsess 已提交
126
    math::DepthwiseConv3x3(param.Input(), param.Strides(), param.Paddings(),
127
                           param.Filter(), nullptr, param.Output(), false);
E
eclipsess 已提交
128 129 130 131 132
  } else {
    ConvBasic(param);
  }
}

L
liuruilong 已提交
133 134
}  // namespace operators
}  // namespace paddle_mobile
L
liuruilong 已提交
135 136

#endif