conv_arm_func.h 4.9 KB
Newer Older
L
liuruilong 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
liuruilong 已提交
2

L
liuruilong 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
L
liuruilong 已提交
6

L
liuruilong 已提交
7 8 9 10 11 12 13 14 15 16 17
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef CONV_OP

#pragma once
E
eclipsess 已提交
18
#include <operators/math/depthwise_conv_3x3.h>
19
#include <vector>
E
eclipsycn 已提交
20

L
liuruilong 已提交
21 22 23 24 25
#include "operators/op_param.h"

namespace paddle_mobile {
namespace operators {

E
eclipsess 已提交
26
inline void ConvBasic(const ConvParam &param) {
L
liuruilong 已提交
27 28 29
  const Tensor *input = param.Input();
  Tensor filter = *param.Filter();
  Tensor *output = param.Output();
E
eclipsycn 已提交
30

L
liuruilong 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
  int groups = param.Groups();
  std::vector<int> strides = param.Strides();
  std::vector<int> paddings = param.Paddings();
  std::vector<int> dilations = param.Dilations();

  const int batch_size = static_cast<int>(input->dims()[0]);

  std::vector<int64_t> filter_shape_vec(framework::vectorize(filter.dims()));

  std::vector<int64_t> output_shape_vec(framework::vectorize(output->dims()));
  size_t data_dim = filter_shape_vec.size() - 2;
  std::vector<int64_t> col_shape_vec(1 + 2 * data_dim);
  col_shape_vec[0] = input->dims()[1] / groups;
  for (size_t j = 0; j < data_dim; ++j) {
    col_shape_vec[j + 1] = filter_shape_vec[j + 2];
    col_shape_vec[j + 1 + data_dim] = output_shape_vec[j + 2];
  }
  framework::DDim col_shape(framework::make_ddim(col_shape_vec));

  framework::DDim col_matrix_shape =
L
liuruilong 已提交
51
      framework::flatten_to_2d(col_shape, data_dim + 1);
L
liuruilong 已提交
52

53 54
  bool is_expand =
      math::IsExpand(filter_shape_vec, strides, paddings, dilations);
L
liuruilong 已提交
55 56 57 58 59 60 61 62 63
  Tensor col;
  Tensor col_matrix;
  if (is_expand) {
    col.mutable_data<float>(col_shape);
    col_matrix.ShareDataWith(col);
    col_matrix.Resize(col_matrix_shape);
  }

  framework::DDim input_shape = framework::slice_ddim(
L
liuruilong 已提交
64
      input->dims(), 1, static_cast<int>(input->dims().size()));
L
liuruilong 已提交
65 66 67 68 69

  framework::DDim filter_matrix_shape = {filter.dims()[0],
                                         filter.numel() / filter.dims()[0]};
  filter.Resize(filter_matrix_shape);
  framework::DDim output_matrix_shape = {
L
liuruilong 已提交
70 71
      output->dims()[1],
      output->numel() / (output->dims()[0] * output->dims()[1])};
L
liuruilong 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

  // convolution operator: im2col(or vol2col) + gemm
  int in_step = static_cast<int>(input->dims()[1]) / groups;
  int out_step = static_cast<int>(output->dims()[1]) / groups;

  math::Vol2ColFunctor<CPU, float> vol2col;
  math::Im2ColFunctor<math::ColFormat::kCFO, CPU, float> im2col;

  for (int i = 0; i < batch_size; i++) {
    Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape);
    Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape);

    for (int g = 0; g < groups; g++) {
      Tensor in_slice = in_batch.Slice(g * in_step, (g + 1) * in_step);

      if (!is_expand) {
        col.ShareDataWith(in_slice);
        col_matrix.ShareDataWith(col);
        col_matrix.Resize(col_matrix_shape);
      } else if (data_dim == 2U) {
        // im2col
        im2col(in_slice, dilations, strides,
               std::vector<int>{paddings[0], paddings[1], paddings[0],
                                paddings[1]},
               &col);
      } else if (data_dim == 3U) {
        // vol2col
        vol2col(in_slice, dilations, strides, paddings, &col);
      }
L
liuruilong 已提交
101

L
liuruilong 已提交
102 103 104 105 106
      // gemm
      Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step);
      Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step);
      math::matmul<float>(filter_slice, false, col_matrix, false,
                          static_cast<float>(1), &out_slice,
E
eclipsess 已提交
107
                          static_cast<float>(0));
L
liuruilong 已提交
108 109 110 111
    }
  }
}

E
eclipsess 已提交
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
template <typename P>
void ConvCompute(const ConvParam &param) {
  Tensor Bias;
  Bias.mutable_data<float>({param.Groups()});
  if (param.Groups() == param.Input()->dims()[1] &&
      param.Input()->dims()[1] == param.Output()->dims()[1] &&
      param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
      param.Filter()->dims()[2] == 3 && param.Strides()[0] == 1) {
    math::DepthwiseConv3x3s1p1(param.Input(), param.Filter(), param.Output(),
                               &Bias, false);
  } else if (param.Groups() == param.Input()->dims()[1] &&
             param.Input()->dims()[1] == param.Output()->dims()[1] &&
             param.Filter()->dims()[2] == param.Filter()->dims()[3] &&
             param.Filter()->dims()[2] == 3 && param.Strides()[0] == 2) {
    math::DepthwiseConv3x3(param.Input(), param.Strides(), param.Paddings(),
                           param.Filter(), &Bias, param.Output(), false);
  } else {
    ConvBasic(param);
  }
}

L
liuruilong 已提交
133 134
}  // namespace operators
}  // namespace paddle_mobile
L
liuruilong 已提交
135 136

#endif