Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
4815efe4
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
332
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4815efe4
编写于
6月 28, 2018
作者:
L
liuruilong
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add Central arm folder
上级
1b1c20c1
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
498 addition
and
402 deletion
+498
-402
src/operators/fusion_conv_add.h
src/operators/fusion_conv_add.h
+13
-1
src/operators/fusion_conv_add_relu_op.h
src/operators/fusion_conv_add_relu_op.h
+5
-0
src/operators/fusion_fc_op.h
src/operators/fusion_fc_op.h
+9
-1
src/operators/kernel/arm/batchnorm_kernel.cpp
src/operators/kernel/arm/batchnorm_kernel.cpp
+2
-209
src/operators/kernel/arm/conv_add_relu_kernel.cpp
src/operators/kernel/arm/conv_add_relu_kernel.cpp
+2
-86
src/operators/kernel/arm/conv_kernel.cpp
src/operators/kernel/arm/conv_kernel.cpp
+2
-82
src/operators/kernel/central-arm-func/batchnorm_func.h
src/operators/kernel/central-arm-func/batchnorm_func.h
+231
-6
src/operators/kernel/central-arm-func/conv_add_relu_func.h
src/operators/kernel/central-arm-func/conv_add_relu_func.h
+114
-6
src/operators/kernel/central-arm-func/conv_func.h
src/operators/kernel/central-arm-func/conv_func.h
+110
-6
tools/android-debug-script/push2android.sh
tools/android-debug-script/push2android.sh
+10
-5
未找到文件。
src/operators/fusion_conv_add.h
浏览文件 @
4815efe4
...
...
@@ -68,11 +68,23 @@ class FusionConvAddOp : public framework::OperatorWithKernel<
};
#ifdef PADDLE_MOBILE_CPU
#ifndef CONV_ADD_REGISTER
static
framework
::
FusionOpRegistrar
convadd_registrar
(
new
FusionConvAddMatcher
());
new
FusionConvAddMatcher
());
#define CONV_ADD_REGISTER
#endif
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
#ifndef CONV_ADD_REGISTER
static
framework
::
FusionOpRegistrar
convadd_registrar
(
new
FusionConvAddMatcher
());
#define CONV_ADD_REGISTER
#endif
#endif
#ifdef PADDLE_MOBILE_FPGA
#endif
...
...
src/operators/fusion_conv_add_relu_op.h
浏览文件 @
4815efe4
...
...
@@ -64,8 +64,13 @@ class FusionConvAddReluOp : public framework::OperatorWithKernel<
};
#ifdef PADDLE_MOBILE_CPU
#ifndef CONV_ADD_RELU_REGISTER
#define CONV_ADD_RELU_REGISTER
// static framework::FusionOpRegistrar fusion_conv_add_relu_registrar(new
// FusionConvAddReluOpMatcher());
#endif
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
#endif
...
...
src/operators/fusion_fc_op.h
浏览文件 @
4815efe4
...
...
@@ -66,11 +66,19 @@ class FusionFcOp
};
#ifdef PADDLE_MOBILE_CPU
#ifndef CONV_CPU_REGISTER
#define CONV_CPU_REGISTER
static
framework
::
FusionOpRegistrar
fc_registrar
(
new
FusionFcMatcher
());
#endif
#endif
#ifdef PADDLE_MOBILE_MALI_GPU
// static framework::FusionOpRegistrar fc_registrar(new FusionFcMatcher());
#ifndef CONV_CPU_REGISTER
#define CONV_CPU_REGISTER
static
framework
::
FusionOpRegistrar
fc_registrar
(
new
FusionFcMatcher
());
#endif
#endif
#ifdef PADDLE_MOBILE_FPGA
#endif
...
...
src/operators/kernel/arm/batchnorm_kernel.cpp
浏览文件 @
4815efe4
...
...
@@ -17,6 +17,7 @@ limitations under the License. */
#pragma once
#include "operators/kernel/batchnorm_kernel.h"
#include "operators/kernel/central-arm-func/batchnorm_func.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -28,215 +29,7 @@ bool BatchNormKernel<CPU, float>::Init(const BatchNormParam ¶) const {
template
<
>
void
BatchNormKernel
<
CPU
,
float
>::
Compute
(
const
BatchNormParam
&
param
)
const
{
const
Tensor
*
input_x
=
param
.
InputX
();
auto
input_x_ptr
=
input_x
->
data
<
float
>
();
const
auto
&
x_dims
=
input_x
->
dims
();
const
int
N
=
x_dims
[
0
];
const
int
C
=
x_dims
[
1
];
const
int
H
=
x_dims
[
2
];
const
int
W
=
x_dims
[
3
];
const
int
stride0
=
C
*
H
*
W
;
const
int
stride1
=
H
*
W
;
const
int
stride2
=
W
;
Tensor
*
out
=
param
.
OutputY
();
auto
out_ptr
=
out
->
mutable_data
<
float
>
();
const
float
epsilon
=
param
.
Epsilon
();
const
Tensor
*
mean
=
param
.
InputMean
();
const
Tensor
*
variance
=
param
.
InputVariance
();
const
Tensor
*
scale
=
param
.
InputScale
();
const
Tensor
*
bias
=
param
.
InputBias
();
auto
mean_ptr
=
mean
->
data
<
float
>
();
auto
variance_ptr
=
variance
->
data
<
float
>
();
auto
scale_ptr
=
scale
->
data
<
float
>
();
auto
bias_ptr
=
bias
->
data
<
float
>
();
// Tensor inv_std;
// auto inv_std_ptr = inv_std.mutable_data<float>(make_ddim({C}));
PADDLE_MOBILE_ENFORCE
(
C
==
variance
->
numel
(),
"C must equal to variance.numel()"
);
int
HXW
=
H
*
W
;
if
(
HXW
>
32
)
{
int
NXC
=
N
*
C
;
float
*
inv_std_ptr
=
new
float
[
NXC
*
4
];
float
*
volatile
new_scale_ptr
=
new
float
[
NXC
*
4
];
float
*
volatile
new_bias_ptr
=
new
float
[
NXC
*
4
];
/// std = (var + epsilon).sqrt();
/// inv_std = 1 / std;
for
(
int
i
=
0
;
i
<
C
*
4
;
i
+=
4
)
{
int
index
=
i
/
4
;
inv_std_ptr
[
i
]
=
1
/
static_cast
<
float
>
(
pow
((
variance_ptr
[
index
]
+
epsilon
),
0.5
));
inv_std_ptr
[
i
+
1
]
=
inv_std_ptr
[
i
];
inv_std_ptr
[
i
+
2
]
=
inv_std_ptr
[
i
];
inv_std_ptr
[
i
+
3
]
=
inv_std_ptr
[
i
];
new_scale_ptr
[
i
]
=
inv_std_ptr
[
i
]
*
scale_ptr
[
index
];
new_scale_ptr
[
i
+
1
]
=
new_scale_ptr
[
i
];
new_scale_ptr
[
i
+
2
]
=
new_scale_ptr
[
i
];
new_scale_ptr
[
i
+
3
]
=
new_scale_ptr
[
i
];
new_bias_ptr
[
i
]
=
bias_ptr
[
index
]
-
mean_ptr
[
index
]
*
inv_std_ptr
[
i
]
*
scale_ptr
[
index
];
new_bias_ptr
[
i
+
1
]
=
new_bias_ptr
[
i
];
new_bias_ptr
[
i
+
2
]
=
new_bias_ptr
[
i
];
new_bias_ptr
[
i
+
3
]
=
new_bias_ptr
[
i
];
}
for
(
int
j
=
C
*
4
;
j
<
NXC
*
4
;
++
j
)
{
new_scale_ptr
[
j
]
=
new_scale_ptr
[
j
-
C
*
4
];
new_bias_ptr
[
j
]
=
new_bias_ptr
[
j
-
C
*
4
];
}
asm
volatile
(
"subs %[N], %[N], #1
\n\t
"
"blt end_n_%=
\n\t
"
"loop_n_%=:
\n\t
"
"subs %[C], %[C], #1
\n\t
"
"blt end_c_%=
\n\t
"
"loop_c_%=:
\n\t
"
"vld1.32 {q9}, [%[new_scale_ptr]]!
\n\t
"
"vld1.32 {q10}, [%[new_bias_ptr]]!
\n\t
"
"mov r6, %[HXW]
\n\t
"
"subs r6, r6, #32
\n\t
"
"blt end_hw_%=
\n\t
"
"loop_hw_%=:
\n\t
"
"vld1.32 {q1, q2}, [%[input_x_ptr]]!
\n\t
"
"vld1.32 {q3, q4}, [%[input_x_ptr]]!
\n\t
"
"vld1.32 {q5, q6}, [%[input_x_ptr]]!
\n\t
"
"vld1.32 {q7, q8}, [%[input_x_ptr]]!
\n\t
"
"vmul.f32 q1, q1, q9
\n\t
"
"vmul.f32 q2, q2, q9
\n\t
"
"vmul.f32 q3, q3, q9
\n\t
"
"vmul.f32 q4, q4, q9
\n\t
"
"vmul.f32 q5, q5, q9
\n\t
"
"vmul.f32 q6, q6, q9
\n\t
"
"vmul.f32 q7, q7, q9
\n\t
"
"vmul.f32 q8, q8, q9
\n\t
"
"vadd.f32 q1, q1, q10
\n\t
"
"vadd.f32 q2, q2, q10
\n\t
"
"vadd.f32 q3, q3, q10
\n\t
"
"vadd.f32 q4, q4, q10
\n\t
"
"vadd.f32 q5, q5, q10
\n\t
"
"vadd.f32 q6, q6, q10
\n\t
"
"vadd.f32 q7, q7, q10
\n\t
"
"vadd.f32 q8, q8, q10
\n\t
"
"vst1.32 {q1, q2}, [%[out_ptr]]!
\n\t
"
"vst1.32 {q3, q4}, [%[out_ptr]]!
\n\t
"
"vst1.32 {q5, q6}, [%[out_ptr]]!
\n\t
"
"vst1.32 {q7, q8}, [%[out_ptr]]!
\n\t
"
"subs r6, r6, #32
\n\t
"
"bge loop_hw_%=
\n\t
"
"end_hw_%=:
\n\t
"
"cmp r6, #0
\n\t
"
"bge end_remainder_%=
\n\t
"
"mov r5, #4
\n\t
"
"mul r6, r6, r5
\n\t
"
"add %[input_x_ptr], %[input_x_ptr], r6
\n\t
"
"vld1.32 {q1, q2}, [%[input_x_ptr]]!
\n\t
"
"vld1.32 {q3, q4}, [%[input_x_ptr]]!
\n\t
"
"vld1.32 {q5, q6}, [%[input_x_ptr]]!
\n\t
"
"vld1.32 {q7, q8}, [%[input_x_ptr]]!
\n\t
"
"vmul.f32 q1, q1, q9
\n\t
"
"vmul.f32 q2, q2, q9
\n\t
"
"vmul.f32 q3, q3, q9
\n\t
"
"vmul.f32 q4, q4, q9
\n\t
"
"vmul.f32 q5, q5, q9
\n\t
"
"vmul.f32 q6, q6, q9
\n\t
"
"vmul.f32 q7, q7, q9
\n\t
"
"vmul.f32 q8, q8, q9
\n\t
"
"vadd.f32 q1, q1, q10
\n\t
"
"vadd.f32 q2, q2, q10
\n\t
"
"vadd.f32 q3, q3, q10
\n\t
"
"vadd.f32 q4, q4, q10
\n\t
"
"vadd.f32 q5, q5, q10
\n\t
"
"vadd.f32 q6, q6, q10
\n\t
"
"vadd.f32 q7, q7, q10
\n\t
"
"vadd.f32 q8, q8, q10
\n\t
"
"add %[out_ptr], %[out_ptr], r6
\n\t
"
"vst1.32 {q1, q2}, [%[out_ptr]]!
\n\t
"
"vst1.32 {q3, q4}, [%[out_ptr]]!
\n\t
"
"vst1.32 {q5, q6}, [%[out_ptr]]!
\n\t
"
"vst1.32 {q7, q8}, [%[out_ptr]]!
\n\t
"
"end_remainder_%=:
\n\t
"
"subs %[C], %[C], #1
\n\t
"
"bge loop_c_%=
\n\t
"
"end_c_%=:
\n\t
"
"subs %[N], %[N], #1
\n\t
"
"bge loop_n_%=
\n\t
"
"end_n_%=:
\n\t
"
:
:
[
input_x_ptr
]
"r"
(
input_x_ptr
),
[
out_ptr
]
"r"
(
out_ptr
),
[
new_scale_ptr
]
"r"
(
new_scale_ptr
),
[
new_bias_ptr
]
"r"
(
new_bias_ptr
),
[
N
]
"r"
(
N
),
[
C
]
"r"
(
C
),
[
HXW
]
"r"
(
HXW
)
:
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"r5"
,
"r6"
);
delete
[]
inv_std_ptr
;
delete
[]
new_scale_ptr
;
delete
[]
new_bias_ptr
;
}
else
{
float
*
inv_std_ptr
=
new
float
[
C
];
for
(
int
i
=
0
;
i
<
C
;
i
++
)
{
inv_std_ptr
[
i
]
=
1
/
static_cast
<
float
>
(
pow
((
variance_ptr
[
i
]
+
epsilon
),
0.5
));
}
Tensor
new_scale
;
auto
new_scale_ptr
=
new_scale
.
mutable_data
<
float
>
(
make_ddim
({
C
}));
Tensor
new_bias
;
auto
new_bias_ptr
=
new_bias
.
mutable_data
<
float
>
(
make_ddim
({
C
}));
/// ((x - est_mean) * (inv_var) * scale + bias equal to
/// (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
for
(
int
i
=
0
;
i
<
C
;
i
++
)
{
new_scale_ptr
[
i
]
=
inv_std_ptr
[
i
]
*
scale_ptr
[
i
];
new_bias_ptr
[
i
]
=
bias_ptr
[
i
]
-
mean_ptr
[
i
]
*
inv_std_ptr
[
i
]
*
scale_ptr
[
i
];
{
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
for
(
int
h
=
0
;
h
<
H
;
h
++
)
{
int
tmp_index
=
n
*
stride0
+
i
*
stride1
+
h
*
stride2
;
for
(
int
w
=
0
;
w
<
W
;
w
++
)
{
int
index
=
tmp_index
+
w
;
out_ptr
[
index
]
=
input_x_ptr
[
index
]
*
new_scale_ptr
[
i
]
+
new_bias_ptr
[
i
];
}
}
}
}
}
delete
[]
inv_std_ptr
;
// DLOG << "input[2,5,1,0](input[102]) ,channel 5 :";
// DLOG << "input_x_ptr : " << input_x_ptr[102];
// DLOG << "variance : " << variance_ptr[5];
// DLOG << "inv_std_ptr : " << inv_std_ptr[5];
// DLOG << "new_scale_ptr : " << new_scale_ptr[5];
// DLOG << "new_bias_ptr : " << new_bias_ptr[5];
// DLOG << "out_ptr : " << out_ptr[102];
}
BatchnormCompute
<
float
>
(
param
);
}
}
// namespace operators
...
...
src/operators/kernel/arm/conv_add_relu_kernel.cpp
浏览文件 @
4815efe4
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef FUSION_CONVADD_RELU_OP
#include "operators/kernel/conv_add_relu_kernel.h"
#include "operators/kernel/central-arm-func/conv_add_relu_func.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -28,92 +29,7 @@ bool ConvAddReluKernel<CPU, float>::Init(
template
<
>
void
ConvAddReluKernel
<
CPU
,
float
>::
Compute
(
const
FusionConvAddReluParam
&
param
)
const
{
const
Tensor
*
input
=
param
.
Input
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
bias
=
*
param
.
Bias
();
int
axis
=
param
.
Axis
();
Tensor
*
output
=
param
.
Output
();
math
::
expand_bias
(
bias
,
axis
,
output
->
dims
());
output
->
ShareDataWith
(
bias
);
int
groups
=
param
.
Groups
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
std
::
vector
<
int
>
paddings
=
param
.
Paddings
();
std
::
vector
<
int
>
dilations
=
param
.
Dilations
();
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
input
->
dims
()[
1
]
/
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
1
+
data_dim
]
=
output_shape_vec
[
j
+
2
];
}
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
bool
is_expand
=
math
::
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
Tensor
col_matrix
;
if
(
is_expand
)
{
col
.
mutable_data
<
float
>
(
col_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
numel
()
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
framework
::
DDim
output_matrix_shape
=
{
output
->
dims
()[
1
],
output
->
numel
()
/
(
output
->
dims
()[
0
]
*
output
->
dims
()[
1
])};
// convolution operator: im2col(or vol2col) + gemm
int
in_step
=
static_cast
<
int
>
(
input
->
dims
()[
1
])
/
groups
;
int
out_step
=
static_cast
<
int
>
(
output
->
dims
()[
1
])
/
groups
;
math
::
Vol2ColFunctor
<
CPU
,
float
>
vol2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
float
>
im2col
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
in_slice
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
in_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
1
),
true
);
}
}
ConvAddReluCompute
<
float
>
(
param
);
}
template
class
ConvAddReluKernel
<
CPU
,
float
>;
...
...
src/operators/kernel/arm/conv_kernel.cpp
浏览文件 @
4815efe4
...
...
@@ -15,6 +15,7 @@ limitations under the License. */
#ifdef CONV_OP
#include "operators/kernel/conv_kernel.h"
#include "operators/kernel/central-arm-func/conv_func.h"
namespace
paddle_mobile
{
namespace
operators
{
...
...
@@ -26,88 +27,7 @@ bool ConvKernel<CPU, float>::Init(const ConvParam ¶) const {
template
<
>
void
ConvKernel
<
CPU
,
float
>::
Compute
(
const
ConvParam
&
param
)
const
{
const
Tensor
*
input
=
param
.
Input
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
*
output
=
param
.
Output
();
output
->
mutable_data
<
float
>
();
int
groups
=
param
.
Groups
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
std
::
vector
<
int
>
paddings
=
param
.
Paddings
();
std
::
vector
<
int
>
dilations
=
param
.
Dilations
();
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
input
->
dims
()[
1
]
/
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
1
+
data_dim
]
=
output_shape_vec
[
j
+
2
];
}
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
bool
is_expand
=
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
Tensor
col_matrix
;
if
(
is_expand
)
{
col
.
mutable_data
<
float
>
(
col_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
numel
()
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
framework
::
DDim
output_matrix_shape
=
{
output
->
dims
()[
1
],
output
->
numel
()
/
(
output
->
dims
()[
0
]
*
output
->
dims
()[
1
])};
// convolution operator: im2col(or vol2col) + gemm
int
in_step
=
static_cast
<
int
>
(
input
->
dims
()[
1
])
/
groups
;
int
out_step
=
static_cast
<
int
>
(
output
->
dims
()[
1
])
/
groups
;
math
::
Vol2ColFunctor
<
CPU
,
float
>
vol2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
float
>
im2col
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
in_slice
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
in_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
0
));
}
}
ConvCompute
<
float
>
(
param
);
}
template
class
ConvKernel
<
CPU
,
float
>;
...
...
src/operators/kernel/central-arm-func/batchnorm_func.h
浏览文件 @
4815efe4
//
// Created by liuRuiLong on 2018/6/28.
//
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#ifndef PADDLE_MOBILE_BATCHNORM_FUNC_H
#define PADDLE_MOBILE_BATCHNORM_FUNC_H
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#endif //PADDLE_MOBILE_BATCHNORM_FUNC_H
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef BATCHNORM_OP
#pragma once
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
P
>
void
BatchnormCompute
(
const
BatchNormParam
&
param
)
{
const
Tensor
*
input_x
=
param
.
InputX
();
auto
input_x_ptr
=
input_x
->
data
<
float
>
();
const
auto
&
x_dims
=
input_x
->
dims
();
const
int
N
=
x_dims
[
0
];
const
int
C
=
x_dims
[
1
];
const
int
H
=
x_dims
[
2
];
const
int
W
=
x_dims
[
3
];
const
int
stride0
=
C
*
H
*
W
;
const
int
stride1
=
H
*
W
;
const
int
stride2
=
W
;
Tensor
*
out
=
param
.
OutputY
();
auto
out_ptr
=
out
->
mutable_data
<
float
>
();
const
float
epsilon
=
param
.
Epsilon
();
const
Tensor
*
mean
=
param
.
InputMean
();
const
Tensor
*
variance
=
param
.
InputVariance
();
const
Tensor
*
scale
=
param
.
InputScale
();
const
Tensor
*
bias
=
param
.
InputBias
();
auto
mean_ptr
=
mean
->
data
<
float
>
();
auto
variance_ptr
=
variance
->
data
<
float
>
();
auto
scale_ptr
=
scale
->
data
<
float
>
();
auto
bias_ptr
=
bias
->
data
<
float
>
();
// Tensor inv_std;
// auto inv_std_ptr = inv_std.mutable_data<float>(make_ddim({C}));
PADDLE_MOBILE_ENFORCE
(
C
==
variance
->
numel
(),
"C must equal to variance.numel()"
);
int
HXW
=
H
*
W
;
if
(
HXW
>
32
)
{
int
NXC
=
N
*
C
;
float
*
inv_std_ptr
=
new
float
[
NXC
*
4
];
float
*
volatile
new_scale_ptr
=
new
float
[
NXC
*
4
];
float
*
volatile
new_bias_ptr
=
new
float
[
NXC
*
4
];
/// std = (var + epsilon).sqrt();
/// inv_std = 1 / std;
for
(
int
i
=
0
;
i
<
C
*
4
;
i
+=
4
)
{
int
index
=
i
/
4
;
inv_std_ptr
[
i
]
=
1
/
static_cast
<
float
>
(
pow
((
variance_ptr
[
index
]
+
epsilon
),
0.5
));
inv_std_ptr
[
i
+
1
]
=
inv_std_ptr
[
i
];
inv_std_ptr
[
i
+
2
]
=
inv_std_ptr
[
i
];
inv_std_ptr
[
i
+
3
]
=
inv_std_ptr
[
i
];
new_scale_ptr
[
i
]
=
inv_std_ptr
[
i
]
*
scale_ptr
[
index
];
new_scale_ptr
[
i
+
1
]
=
new_scale_ptr
[
i
];
new_scale_ptr
[
i
+
2
]
=
new_scale_ptr
[
i
];
new_scale_ptr
[
i
+
3
]
=
new_scale_ptr
[
i
];
new_bias_ptr
[
i
]
=
bias_ptr
[
index
]
-
mean_ptr
[
index
]
*
inv_std_ptr
[
i
]
*
scale_ptr
[
index
];
new_bias_ptr
[
i
+
1
]
=
new_bias_ptr
[
i
];
new_bias_ptr
[
i
+
2
]
=
new_bias_ptr
[
i
];
new_bias_ptr
[
i
+
3
]
=
new_bias_ptr
[
i
];
}
for
(
int
j
=
C
*
4
;
j
<
NXC
*
4
;
++
j
)
{
new_scale_ptr
[
j
]
=
new_scale_ptr
[
j
-
C
*
4
];
new_bias_ptr
[
j
]
=
new_bias_ptr
[
j
-
C
*
4
];
}
asm
volatile
(
"subs %[N], %[N], #1
\n\t
"
"blt end_n_%=
\n\t
"
"loop_n_%=:
\n\t
"
"subs %[C], %[C], #1
\n\t
"
"blt end_c_%=
\n\t
"
"loop_c_%=:
\n\t
"
"vld1.32 {q9}, [%[new_scale_ptr]]!
\n\t
"
"vld1.32 {q10}, [%[new_bias_ptr]]!
\n\t
"
"mov r6, %[HXW]
\n\t
"
"subs r6, r6, #32
\n\t
"
"blt end_hw_%=
\n\t
"
"loop_hw_%=:
\n\t
"
"vld1.32 {q1, q2}, [%[input_x_ptr]]!
\n\t
"
"vld1.32 {q3, q4}, [%[input_x_ptr]]!
\n\t
"
"vld1.32 {q5, q6}, [%[input_x_ptr]]!
\n\t
"
"vld1.32 {q7, q8}, [%[input_x_ptr]]!
\n\t
"
"vmul.f32 q1, q1, q9
\n\t
"
"vmul.f32 q2, q2, q9
\n\t
"
"vmul.f32 q3, q3, q9
\n\t
"
"vmul.f32 q4, q4, q9
\n\t
"
"vmul.f32 q5, q5, q9
\n\t
"
"vmul.f32 q6, q6, q9
\n\t
"
"vmul.f32 q7, q7, q9
\n\t
"
"vmul.f32 q8, q8, q9
\n\t
"
"vadd.f32 q1, q1, q10
\n\t
"
"vadd.f32 q2, q2, q10
\n\t
"
"vadd.f32 q3, q3, q10
\n\t
"
"vadd.f32 q4, q4, q10
\n\t
"
"vadd.f32 q5, q5, q10
\n\t
"
"vadd.f32 q6, q6, q10
\n\t
"
"vadd.f32 q7, q7, q10
\n\t
"
"vadd.f32 q8, q8, q10
\n\t
"
"vst1.32 {q1, q2}, [%[out_ptr]]!
\n\t
"
"vst1.32 {q3, q4}, [%[out_ptr]]!
\n\t
"
"vst1.32 {q5, q6}, [%[out_ptr]]!
\n\t
"
"vst1.32 {q7, q8}, [%[out_ptr]]!
\n\t
"
"subs r6, r6, #32
\n\t
"
"bge loop_hw_%=
\n\t
"
"end_hw_%=:
\n\t
"
"cmp r6, #0
\n\t
"
"bge end_remainder_%=
\n\t
"
"mov r5, #4
\n\t
"
"mul r6, r6, r5
\n\t
"
"add %[input_x_ptr], %[input_x_ptr], r6
\n\t
"
"vld1.32 {q1, q2}, [%[input_x_ptr]]!
\n\t
"
"vld1.32 {q3, q4}, [%[input_x_ptr]]!
\n\t
"
"vld1.32 {q5, q6}, [%[input_x_ptr]]!
\n\t
"
"vld1.32 {q7, q8}, [%[input_x_ptr]]!
\n\t
"
"vmul.f32 q1, q1, q9
\n\t
"
"vmul.f32 q2, q2, q9
\n\t
"
"vmul.f32 q3, q3, q9
\n\t
"
"vmul.f32 q4, q4, q9
\n\t
"
"vmul.f32 q5, q5, q9
\n\t
"
"vmul.f32 q6, q6, q9
\n\t
"
"vmul.f32 q7, q7, q9
\n\t
"
"vmul.f32 q8, q8, q9
\n\t
"
"vadd.f32 q1, q1, q10
\n\t
"
"vadd.f32 q2, q2, q10
\n\t
"
"vadd.f32 q3, q3, q10
\n\t
"
"vadd.f32 q4, q4, q10
\n\t
"
"vadd.f32 q5, q5, q10
\n\t
"
"vadd.f32 q6, q6, q10
\n\t
"
"vadd.f32 q7, q7, q10
\n\t
"
"vadd.f32 q8, q8, q10
\n\t
"
"add %[out_ptr], %[out_ptr], r6
\n\t
"
"vst1.32 {q1, q2}, [%[out_ptr]]!
\n\t
"
"vst1.32 {q3, q4}, [%[out_ptr]]!
\n\t
"
"vst1.32 {q5, q6}, [%[out_ptr]]!
\n\t
"
"vst1.32 {q7, q8}, [%[out_ptr]]!
\n\t
"
"end_remainder_%=:
\n\t
"
"subs %[C], %[C], #1
\n\t
"
"bge loop_c_%=
\n\t
"
"end_c_%=:
\n\t
"
"subs %[N], %[N], #1
\n\t
"
"bge loop_n_%=
\n\t
"
"end_n_%=:
\n\t
"
:
:
[
input_x_ptr
]
"r"
(
input_x_ptr
),
[
out_ptr
]
"r"
(
out_ptr
),
[
new_scale_ptr
]
"r"
(
new_scale_ptr
),
[
new_bias_ptr
]
"r"
(
new_bias_ptr
),
[
N
]
"r"
(
N
),
[
C
]
"r"
(
C
),
[
HXW
]
"r"
(
HXW
)
:
"memory"
,
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"r5"
,
"r6"
);
delete
[]
inv_std_ptr
;
delete
[]
new_scale_ptr
;
delete
[]
new_bias_ptr
;
}
else
{
float
*
inv_std_ptr
=
new
float
[
C
];
for
(
int
i
=
0
;
i
<
C
;
i
++
)
{
inv_std_ptr
[
i
]
=
1
/
static_cast
<
float
>
(
pow
((
variance_ptr
[
i
]
+
epsilon
),
0.5
));
}
Tensor
new_scale
;
auto
new_scale_ptr
=
new_scale
.
mutable_data
<
float
>
(
framework
::
make_ddim
({
C
}));
Tensor
new_bias
;
auto
new_bias_ptr
=
new_bias
.
mutable_data
<
float
>
(
framework
::
make_ddim
({
C
}));
/// ((x - est_mean) * (inv_var) * scale + bias equal to
/// (x * inv_var * scale) + (bias - est_mean * inv_var * scale)
for
(
int
i
=
0
;
i
<
C
;
i
++
)
{
new_scale_ptr
[
i
]
=
inv_std_ptr
[
i
]
*
scale_ptr
[
i
];
new_bias_ptr
[
i
]
=
bias_ptr
[
i
]
-
mean_ptr
[
i
]
*
inv_std_ptr
[
i
]
*
scale_ptr
[
i
];
{
for
(
int
n
=
0
;
n
<
N
;
n
++
)
{
for
(
int
h
=
0
;
h
<
H
;
h
++
)
{
int
tmp_index
=
n
*
stride0
+
i
*
stride1
+
h
*
stride2
;
for
(
int
w
=
0
;
w
<
W
;
w
++
)
{
int
index
=
tmp_index
+
w
;
out_ptr
[
index
]
=
input_x_ptr
[
index
]
*
new_scale_ptr
[
i
]
+
new_bias_ptr
[
i
];
}
}
}
}
}
delete
[]
inv_std_ptr
;
}
}
}
}
#endif
src/operators/kernel/central-arm-func/conv_add_relu_func.h
浏览文件 @
4815efe4
//
// Created by liuRuiLong on 2018/6/28.
//
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#ifndef PADDLE_MOBILE_CONV_ADD_RELU_FUNC_H
#define PADDLE_MOBILE_CONV_ADD_RELU_FUNC_H
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#endif //PADDLE_MOBILE_CONV_ADD_RELU_FUNC_H
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef FUSION_CONVADD_RELU_OP
#pragma once
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
P
>
void
ConvAddReluCompute
(
const
FusionConvAddReluParam
&
param
)
{
const
Tensor
*
input
=
param
.
Input
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
bias
=
*
param
.
Bias
();
int
axis
=
param
.
Axis
();
Tensor
*
output
=
param
.
Output
();
math
::
expand_bias
(
bias
,
axis
,
output
->
dims
());
output
->
ShareDataWith
(
bias
);
int
groups
=
param
.
Groups
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
std
::
vector
<
int
>
paddings
=
param
.
Paddings
();
std
::
vector
<
int
>
dilations
=
param
.
Dilations
();
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
input
->
dims
()[
1
]
/
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
1
+
data_dim
]
=
output_shape_vec
[
j
+
2
];
}
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
bool
is_expand
=
math
::
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
Tensor
col_matrix
;
if
(
is_expand
)
{
col
.
mutable_data
<
float
>
(
col_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
numel
()
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
framework
::
DDim
output_matrix_shape
=
{
output
->
dims
()[
1
],
output
->
numel
()
/
(
output
->
dims
()[
0
]
*
output
->
dims
()[
1
])};
// convolution operator: im2col(or vol2col) + gemm
int
in_step
=
static_cast
<
int
>
(
input
->
dims
()[
1
])
/
groups
;
int
out_step
=
static_cast
<
int
>
(
output
->
dims
()[
1
])
/
groups
;
math
::
Vol2ColFunctor
<
CPU
,
float
>
vol2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
float
>
im2col
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
in_slice
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
in_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
1
),
true
);
}
}
}
}
}
#endif
src/operators/kernel/central-arm-func/conv_func.h
浏览文件 @
4815efe4
//
// Created by liuRuiLong on 2018/6/28.
//
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#ifndef PADDLE_MOBILE_CONV_FUNC_H
#define PADDLE_MOBILE_CONV_FUNC_H
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#endif //PADDLE_MOBILE_CONV_FUNC_H
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef CONV_OP
#pragma once
#include "operators/op_param.h"
namespace
paddle_mobile
{
namespace
operators
{
template
<
typename
P
>
void
ConvCompute
(
const
ConvParam
&
param
)
{
const
Tensor
*
input
=
param
.
Input
();
Tensor
filter
=
*
param
.
Filter
();
Tensor
*
output
=
param
.
Output
();
output
->
mutable_data
<
float
>
();
int
groups
=
param
.
Groups
();
std
::
vector
<
int
>
strides
=
param
.
Strides
();
std
::
vector
<
int
>
paddings
=
param
.
Paddings
();
std
::
vector
<
int
>
dilations
=
param
.
Dilations
();
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
]);
std
::
vector
<
int64_t
>
filter_shape_vec
(
framework
::
vectorize
(
filter
.
dims
()));
std
::
vector
<
int64_t
>
output_shape_vec
(
framework
::
vectorize
(
output
->
dims
()));
size_t
data_dim
=
filter_shape_vec
.
size
()
-
2
;
std
::
vector
<
int64_t
>
col_shape_vec
(
1
+
2
*
data_dim
);
col_shape_vec
[
0
]
=
input
->
dims
()[
1
]
/
groups
;
for
(
size_t
j
=
0
;
j
<
data_dim
;
++
j
)
{
col_shape_vec
[
j
+
1
]
=
filter_shape_vec
[
j
+
2
];
col_shape_vec
[
j
+
1
+
data_dim
]
=
output_shape_vec
[
j
+
2
];
}
framework
::
DDim
col_shape
(
framework
::
make_ddim
(
col_shape_vec
));
framework
::
DDim
col_matrix_shape
=
framework
::
flatten_to_2d
(
col_shape
,
data_dim
+
1
);
bool
is_expand
=
IsExpand
(
filter_shape_vec
,
strides
,
paddings
,
dilations
);
Tensor
col
;
Tensor
col_matrix
;
if
(
is_expand
)
{
col
.
mutable_data
<
float
>
(
col_shape
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
framework
::
DDim
input_shape
=
framework
::
slice_ddim
(
input
->
dims
(),
1
,
static_cast
<
int
>
(
input
->
dims
().
size
()));
framework
::
DDim
filter_matrix_shape
=
{
filter
.
dims
()[
0
],
filter
.
numel
()
/
filter
.
dims
()[
0
]};
filter
.
Resize
(
filter_matrix_shape
);
framework
::
DDim
output_matrix_shape
=
{
output
->
dims
()[
1
],
output
->
numel
()
/
(
output
->
dims
()[
0
]
*
output
->
dims
()[
1
])};
// convolution operator: im2col(or vol2col) + gemm
int
in_step
=
static_cast
<
int
>
(
input
->
dims
()[
1
])
/
groups
;
int
out_step
=
static_cast
<
int
>
(
output
->
dims
()[
1
])
/
groups
;
math
::
Vol2ColFunctor
<
CPU
,
float
>
vol2col
;
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
CPU
,
float
>
im2col
;
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_shape
);
Tensor
out_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_matrix_shape
);
for
(
int
g
=
0
;
g
<
groups
;
g
++
)
{
Tensor
in_slice
=
in_batch
.
Slice
(
g
*
in_step
,
(
g
+
1
)
*
in_step
);
if
(
!
is_expand
)
{
col
.
ShareDataWith
(
in_slice
);
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
Resize
(
col_matrix_shape
);
}
else
if
(
data_dim
==
2U
)
{
// im2col
im2col
(
in_slice
,
dilations
,
strides
,
std
::
vector
<
int
>
{
paddings
[
0
],
paddings
[
1
],
paddings
[
0
],
paddings
[
1
]},
&
col
);
}
else
if
(
data_dim
==
3U
)
{
// vol2col
vol2col
(
in_slice
,
dilations
,
strides
,
paddings
,
&
col
);
}
// gemm
Tensor
out_slice
=
out_batch
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
Tensor
filter_slice
=
filter
.
Slice
(
g
*
out_step
,
(
g
+
1
)
*
out_step
);
math
::
matmul
<
float
>
(
filter_slice
,
false
,
col_matrix
,
false
,
static_cast
<
float
>
(
1
),
&
out_slice
,
static_cast
<
float
>
(
0
));
}
}
}
}
}
#endif
tools/android-debug-script/push2android.sh
浏览文件 @
4815efe4
#!/usr/bin/env sh
push_fn
()
{
MODELS_PATH
=
"../test/models/*"
MODELS_SRC
=
"../test/models"
IMAGE_PATH
=
"../test/images/*"
EXE_FILE
=
"../test/build/*"
MODELS_PATH
=
"../
../
test/models/*"
MODELS_SRC
=
"../
../
test/models"
IMAGE_PATH
=
"../
../
test/images/*"
EXE_FILE
=
"../
../
test/build/*"
EXE_DIR
=
"data/local/tmp/bin"
adb shell
mkdir
${
EXE_DIR
}
MODELS_DIR
=
"data/local/tmp/models"
...
...
@@ -14,9 +14,14 @@ do
adb shell
mkdir
${
MODELS_DIR
}
"/"
${
file
}
done
if
[[
-d
"../../src/operators/kernel/mali/ACL_Android/build"
]]
;
then
ACL_BUILD_PATH
=
"../../src/operators/kernel/mali/ACL_Android/build/*"
adb push
${
ACL_BUILD_PATH
}
${
EXE_DIR
}
fi
IMAGES_DIR
=
"data/local/tmp/images"
adb shell
mkdir
${
IMAGES_DIR
}
LIB_PATH
=
"../build/release/arm-v7a/build/*"
LIB_PATH
=
"../
../
build/release/arm-v7a/build/*"
adb push
${
EXE_FILE
}
${
EXE_DIR
}
adb push
${
LIB_PATH
}
${
EXE_DIR
}
if
[[
$1
!=
"npm"
]]
;
then
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录