model.py 27.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains U2 model."""
import json
import os
import sys
import time
from collections import defaultdict
H
Hui Zhang 已提交
20
from collections import OrderedDict
21
from contextlib import nullcontext
22 23
from pathlib import Path
from typing import Optional
H
Hui Zhang 已提交
24
import jsonlines
25 26 27 28 29 30 31 32 33 34 35 36

import numpy as np
import paddle
from paddle import distributed as dist
from paddle.io import DataLoader
from yacs.config import CfgNode

from deepspeech.io.collator import SpeechCollator
from deepspeech.io.dataset import ManifestDataset
from deepspeech.io.sampler import SortagradBatchSampler
from deepspeech.io.sampler import SortagradDistributedBatchSampler
from deepspeech.models.u2 import U2Model
37
from deepspeech.training.optimizer import OptimizerFactory
H
format  
Hui Zhang 已提交
38 39
from deepspeech.training.reporter import ObsScope
from deepspeech.training.reporter import report
40
from deepspeech.training.scheduler import LRSchedulerFactory
41
from deepspeech.training.timer import Timer
42
from deepspeech.training.trainer import Trainer
H
Hui Zhang 已提交
43
from deepspeech.utils import ctc_utils
44 45 46
from deepspeech.utils import error_rate
from deepspeech.utils import layer_tools
from deepspeech.utils import mp_tools
H
Hui Zhang 已提交
47
from deepspeech.utils import text_grid
H
Hui Zhang 已提交
48
from deepspeech.utils import utility
49
from deepspeech.utils.log import Log
H
Hui Zhang 已提交
50
from deepspeech.utils.utility import UpdateConfig
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89

logger = Log(__name__).getlog()


class U2Trainer(Trainer):
    @classmethod
    def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
        # training config
        default = CfgNode(
            dict(
                n_epoch=50,  # train epochs
                log_interval=100,  # steps
                accum_grad=1,  # accum grad by # steps
                global_grad_clip=5.0,  # the global norm clip
            ))
        default.optim = 'adam'
        default.optim_conf = CfgNode(
            dict(
                lr=5e-4,  # learning rate
                weight_decay=1e-6,  # the coeff of weight decay
            ))
        default.scheduler = 'warmuplr'
        default.scheduler_conf = CfgNode(
            dict(
                warmup_steps=25000,
                lr_decay=1.0,  # learning rate decay
            ))

        if config is not None:
            config.merge_from_other_cfg(default)
        return default

    def __init__(self, config, args):
        super().__init__(config, args)

    def train_batch(self, batch_index, batch_data, msg):
        train_conf = self.config.training
        start = time.time()

90 91
        # forward
        utt, audio, audio_len, text, text_len = batch_data
H
Haoxin Ma 已提交
92 93
        loss, attention_loss, ctc_loss = self.model(audio, audio_len, text,
                                                    text_len)
94

95 96 97 98 99 100 101 102
        # loss div by `batch_size * accum_grad`
        loss /= train_conf.accum_grad
        losses_np = {'loss': float(loss) * train_conf.accum_grad}
        if attention_loss:
            losses_np['att_loss'] = float(attention_loss)
        if ctc_loss:
            losses_np['ctc_loss'] = float(ctc_loss)

103 104 105 106 107
        # loss backward
        if (batch_index + 1) % train_conf.accum_grad != 0:
            # Disable gradient synchronizations across DDP processes.
            # Within this context, gradients will be accumulated on module
            # variables, which will later be synchronized.
H
Hui Zhang 已提交
108 109
            # When using cpu w/o DDP, model does not have `no_sync`
            context = self.model.no_sync if self.parallel else nullcontext
110 111 112 113 114 115 116 117 118
        else:
            # Used for single gpu training and DDP gradient synchronization
            # processes.
            context = nullcontext
        with context():
            loss.backward()
            layer_tools.print_grads(self.model, print_func=None)

        # optimizer step
119 120 121 122 123 124 125 126
        if (batch_index + 1) % train_conf.accum_grad == 0:
            self.optimizer.step()
            self.optimizer.clear_grad()
            self.lr_scheduler.step()
            self.iteration += 1

        iteration_time = time.time() - start

H
Hui Zhang 已提交
127 128 129 130 131
        for k, v in losses_np.items():
            report(k, v)
        report("batch_size", self.config.collator.batch_size)
        report("accum", train_conf.accum_grad)
        report("step_cost", iteration_time)
132

H
Hui Zhang 已提交
133
        if (batch_index + 1) % train_conf.accum_grad == 0:
134 135 136 137 138 139 140 141 142 143 144 145 146 147
            if dist.get_rank() == 0 and self.visualizer:
                losses_np_v = losses_np.copy()
                losses_np_v.update({"lr": self.lr_scheduler()})
                self.visualizer.add_scalars("step", losses_np_v,
                                            self.iteration - 1)

    @paddle.no_grad()
    def valid(self):
        self.model.eval()
        logger.info(f"Valid Total Examples: {len(self.valid_loader.dataset)}")
        valid_losses = defaultdict(list)
        num_seen_utts = 1
        total_loss = 0.0
        for i, batch in enumerate(self.valid_loader):
H
Haoxin Ma 已提交
148
            utt, audio, audio_len, text, text_len = batch
H
Haoxin Ma 已提交
149 150
            loss, attention_loss, ctc_loss = self.model(audio, audio_len, text,
                                                        text_len)
151
            if paddle.isfinite(loss):
H
Haoxin Ma 已提交
152
                num_utts = batch[1].shape[0]
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
                num_seen_utts += num_utts
                total_loss += float(loss) * num_utts
                valid_losses['val_loss'].append(float(loss))
                if attention_loss:
                    valid_losses['val_att_loss'].append(float(attention_loss))
                if ctc_loss:
                    valid_losses['val_ctc_loss'].append(float(ctc_loss))

            if (i + 1) % self.config.training.log_interval == 0:
                valid_dump = {k: np.mean(v) for k, v in valid_losses.items()}
                valid_dump['val_history_loss'] = total_loss / num_seen_utts

                # logging
                msg = f"Valid: Rank: {dist.get_rank()}, "
                msg += "epoch: {}, ".format(self.epoch)
                msg += "step: {}, ".format(self.iteration)
                msg += "batch: {}/{}, ".format(i + 1, len(self.valid_loader))
                msg += ', '.join('{}: {:>.6f}'.format(k, v)
                                 for k, v in valid_dump.items())
                logger.info(msg)

        logger.info('Rank {} Val info val_loss {}'.format(
            dist.get_rank(), total_loss / num_seen_utts))
        return total_loss, num_seen_utts

    def train(self):
        """The training process control by step."""
        # !!!IMPORTANT!!!
        # Try to export the model by script, if fails, we should refine
        # the code to satisfy the script export requirements
        # script_model = paddle.jit.to_static(self.model)
        # script_model_path = str(self.checkpoint_dir / 'init')
        # paddle.jit.save(script_model, script_model_path)

187
        self.before_train()
188 189 190

        logger.info(f"Train Total Examples: {len(self.train_loader.dataset)}")
        while self.epoch < self.config.training.n_epoch:
191 192 193
            with Timer("Epoch-Train Time Cost: {}"):
                self.model.train()
                try:
194
                    data_start_time = time.time()
195 196
                    for batch_index, batch in enumerate(self.train_loader):
                        dataload_time = time.time() - data_start_time
H
Hui Zhang 已提交
197 198 199 200 201 202 203 204 205
                        msg = "Train:"
                        observation = OrderedDict()
                        with ObsScope(observation):
                            report("Rank", dist.get_rank())
                            report("epoch", self.epoch)
                            report('step', self.iteration)
                            report("lr", self.lr_scheduler())
                            self.train_batch(batch_index, batch, msg)
                            self.after_train_batch()
H
Hui Zhang 已提交
206 207
                            report('iter', batch_index + 1)
                            report('total', len(self.train_loader))
H
Hui Zhang 已提交
208
                            report('reader_cost', dataload_time)
H
format  
Hui Zhang 已提交
209 210
                        observation['batch_cost'] = observation[
                            'reader_cost'] + observation['step_cost']
H
Hui Zhang 已提交
211
                        observation['samples'] = observation['batch_size']
H
format  
Hui Zhang 已提交
212 213
                        observation['ips[sent./sec]'] = observation[
                            'batch_size'] / observation['batch_cost']
H
Hui Zhang 已提交
214 215
                        for k, v in observation.items():
                            msg += f" {k}: "
H
format  
Hui Zhang 已提交
216 217
                            msg += f"{v:>.8f}" if isinstance(v,
                                                             float) else f"{v}"
H
Hui Zhang 已提交
218
                            msg += ","
H
Hui Zhang 已提交
219 220 221
                        if (batch_index + 1
                            ) % self.config.training.log_interval == 0:
                            logger.info(msg)
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
                        data_start_time = time.time()
                except Exception as e:
                    logger.error(e)
                    raise e

            with Timer("Eval Time Cost: {}"):
                total_loss, num_seen_utts = self.valid()
                if dist.get_world_size() > 1:
                    num_seen_utts = paddle.to_tensor(num_seen_utts)
                    # the default operator in all_reduce function is sum.
                    dist.all_reduce(num_seen_utts)
                    total_loss = paddle.to_tensor(total_loss)
                    dist.all_reduce(total_loss)
                    cv_loss = total_loss / num_seen_utts
                    cv_loss = float(cv_loss)
                else:
                    cv_loss = total_loss / num_seen_utts
239 240 241 242 243 244 245 246 247 248 249 250 251

            logger.info(
                'Epoch {} Val info val_loss {}'.format(self.epoch, cv_loss))
            if self.visualizer:
                self.visualizer.add_scalars(
                    'epoch', {'cv_loss': cv_loss,
                              'lr': self.lr_scheduler()}, self.epoch)
            self.save(tag=self.epoch, infos={'val_loss': cv_loss})
            self.new_epoch()

    def setup_dataloader(self):
        config = self.config.clone()
        config.defrost()
H
Haoxin Ma 已提交
252
        config.collator.keep_transcription_text = False
253 254 255 256 257 258 259 260

        # train/valid dataset, return token ids
        config.data.manifest = config.data.train_manifest
        train_dataset = ManifestDataset.from_config(config)

        config.data.manifest = config.data.dev_manifest
        dev_dataset = ManifestDataset.from_config(config)

H
Haoxin Ma 已提交
261
        collate_fn_train = SpeechCollator.from_config(config)
H
Haoxin Ma 已提交
262

H
Haoxin Ma 已提交
263 264 265
        config.collator.augmentation_config = ""
        collate_fn_dev = SpeechCollator.from_config(config)

266 267 268
        if self.parallel:
            batch_sampler = SortagradDistributedBatchSampler(
                train_dataset,
H
Haoxin Ma 已提交
269
                batch_size=config.collator.batch_size,
270 271 272 273
                num_replicas=None,
                rank=None,
                shuffle=True,
                drop_last=True,
H
Haoxin Ma 已提交
274 275
                sortagrad=config.collator.sortagrad,
                shuffle_method=config.collator.shuffle_method)
276 277 278 279
        else:
            batch_sampler = SortagradBatchSampler(
                train_dataset,
                shuffle=True,
H
Haoxin Ma 已提交
280
                batch_size=config.collator.batch_size,
281
                drop_last=True,
H
Haoxin Ma 已提交
282 283
                sortagrad=config.collator.sortagrad,
                shuffle_method=config.collator.shuffle_method)
284 285 286
        self.train_loader = DataLoader(
            train_dataset,
            batch_sampler=batch_sampler,
H
Haoxin Ma 已提交
287 288
            collate_fn=collate_fn_train,
            num_workers=config.collator.num_workers, )
289 290
        self.valid_loader = DataLoader(
            dev_dataset,
H
Haoxin Ma 已提交
291
            batch_size=config.collator.batch_size,
292 293
            shuffle=False,
            drop_last=False,
H
Haoxin Ma 已提交
294
            collate_fn=collate_fn_dev)
295 296 297 298 299

        # test dataset, return raw text
        config.data.manifest = config.data.test_manifest
        # filter test examples, will cause less examples, but no mismatch with training
        # and can use large batch size , save training time, so filter test egs now.
H
Hui Zhang 已提交
300 301 302 303 304 305
        config.data.min_input_len = 0.0  # second
        config.data.max_input_len = float('inf')  # second
        config.data.min_output_len = 0.0  # tokens
        config.data.max_output_len = float('inf')  # tokens
        config.data.min_output_input_ratio = 0.00
        config.data.max_output_input_ratio = float('inf')
H
Haoxin Ma 已提交
306

307 308
        test_dataset = ManifestDataset.from_config(config)
        # return text ord id
H
Haoxin Ma 已提交
309
        config.collator.keep_transcription_text = True
H
Haoxin Ma 已提交
310
        config.collator.augmentation_config = ""
311 312 313 314 315
        self.test_loader = DataLoader(
            test_dataset,
            batch_size=config.decoding.batch_size,
            shuffle=False,
            drop_last=False,
H
Haoxin Ma 已提交
316
            collate_fn=SpeechCollator.from_config(config))
H
Hui Zhang 已提交
317 318 319 320 321 322 323 324 325
        # return text token id
        config.collator.keep_transcription_text = False
        self.align_loader = DataLoader(
            test_dataset,
            batch_size=config.decoding.batch_size,
            shuffle=False,
            drop_last=False,
            collate_fn=SpeechCollator.from_config(config))
        logger.info("Setup train/valid/test/align Dataloader!")
326 327 328 329

    def setup_model(self):
        config = self.config
        model_conf = config.model
H
Hui Zhang 已提交
330 331 332 333 334

        with UpdateConfig(model_conf):
            model_conf.input_dim = self.train_loader.collate_fn.feature_size
            model_conf.output_dim = self.train_loader.collate_fn.vocab_size

335 336 337 338 339 340 341 342 343 344 345 346 347 348
        model = U2Model.from_config(model_conf)

        if self.parallel:
            model = paddle.DataParallel(model)

        logger.info(f"{model}")
        layer_tools.print_params(model, logger.info)

        train_config = config.training
        optim_type = train_config.optim
        optim_conf = train_config.optim_conf
        scheduler_type = train_config.scheduler
        scheduler_conf = train_config.scheduler_conf

349
        scheduler_args = {
H
Hui Zhang 已提交
350 351 352 353 354
            "learning_rate": optim_conf.lr,
            "verbose": False,
            "warmup_steps": scheduler_conf.warmup_steps,
            "gamma": scheduler_conf.lr_decay,
            "d_model": model_conf.encoder_conf.output_size,
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
        }
        lr_scheduler = LRSchedulerFactory.from_args(scheduler_type,
                                                    scheduler_args)

        def optimizer_args(
                config,
                parameters,
                lr_scheduler=None, ):
            train_config = config.training
            optim_type = train_config.optim
            optim_conf = train_config.optim_conf
            scheduler_type = train_config.scheduler
            scheduler_conf = train_config.scheduler_conf
            return {
                "grad_clip": train_config.global_grad_clip,
                "weight_decay": optim_conf.weight_decay,
                "learning_rate": lr_scheduler
                if lr_scheduler else optim_conf.lr,
                "parameters": parameters,
H
Hui Zhang 已提交
374 375 376
                "epsilon": 1e-9 if optim_type == 'noam' else None,
                "beta1": 0.9 if optim_type == 'noam' else None,
                "beat2": 0.98 if optim_type == 'noam' else None,
377 378 379 380 381
            }

        optimzer_args = optimizer_args(config, model.parameters(), lr_scheduler)
        optimizer = OptimizerFactory.from_args(optim_type, optimzer_args)

382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
        self.model = model
        self.optimizer = optimizer
        self.lr_scheduler = lr_scheduler
        logger.info("Setup model/optimizer/lr_scheduler!")


class U2Tester(U2Trainer):
    @classmethod
    def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
        # decoding config
        default = CfgNode(
            dict(
                alpha=2.5,  # Coef of LM for beam search.
                beta=0.3,  # Coef of WC for beam search.
                cutoff_prob=1.0,  # Cutoff probability for pruning.
                cutoff_top_n=40,  # Cutoff number for pruning.
                lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm',  # Filepath for language model.
                decoding_method='attention',  # Decoding method. Options: 'attention', 'ctc_greedy_search',
                # 'ctc_prefix_beam_search', 'attention_rescoring'
                error_rate_type='wer',  # Error rate type for evaluation. Options `wer`, 'cer'
                num_proc_bsearch=8,  # # of CPUs for beam search.
                beam_size=10,  # Beam search width.
                batch_size=16,  # decoding batch size
                ctc_weight=0.0,  # ctc weight for attention rescoring decode mode.
                decoding_chunk_size=-1,  # decoding chunk size. Defaults to -1.
                # <0: for decoding, use full chunk.
                # >0: for decoding, use fixed chunk size as set.
H
Hui Zhang 已提交
409
                # 0: used for training, it's prohibited here.
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
                num_decoding_left_chunks=-1,  # number of left chunks for decoding. Defaults to -1.
                simulate_streaming=False,  # simulate streaming inference. Defaults to False.
            ))

        if config is not None:
            config.merge_from_other_cfg(default)
        return default

    def __init__(self, config, args):
        super().__init__(config, args)

    def ordid2token(self, texts, texts_len):
        """ ord() id to chr() chr """
        trans = []
        for text, n in zip(texts, texts_len):
            n = n.numpy().item()
            ids = text[:n]
            trans.append(''.join([chr(i) for i in ids]))
        return trans

H
Haoxin Ma 已提交
430 431 432 433 434 435 436
    def compute_metrics(self,
                        utts,
                        audio,
                        audio_len,
                        texts,
                        texts_len,
                        fout=None):
437 438 439 440 441 442
        cfg = self.config.decoding
        errors_sum, len_refs, num_ins = 0.0, 0, 0
        errors_func = error_rate.char_errors if cfg.error_rate_type == 'cer' else error_rate.word_errors
        error_rate_func = error_rate.cer if cfg.error_rate_type == 'cer' else error_rate.wer

        start_time = time.time()
H
Haoxin Ma 已提交
443
        text_feature = self.test_loader.collate_fn.text_feature
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
        target_transcripts = self.ordid2token(texts, texts_len)
        result_transcripts = self.model.decode(
            audio,
            audio_len,
            text_feature=text_feature,
            decoding_method=cfg.decoding_method,
            lang_model_path=cfg.lang_model_path,
            beam_alpha=cfg.alpha,
            beam_beta=cfg.beta,
            beam_size=cfg.beam_size,
            cutoff_prob=cfg.cutoff_prob,
            cutoff_top_n=cfg.cutoff_top_n,
            num_processes=cfg.num_proc_bsearch,
            ctc_weight=cfg.ctc_weight,
            decoding_chunk_size=cfg.decoding_chunk_size,
            num_decoding_left_chunks=cfg.num_decoding_left_chunks,
            simulate_streaming=cfg.simulate_streaming)
        decode_time = time.time() - start_time

H
Haoxin Ma 已提交
463 464
        for utt, target, result in zip(utts, target_transcripts,
                                       result_transcripts):
465 466 467 468 469
            errors, len_ref = errors_func(target, result)
            errors_sum += errors
            len_refs += len_ref
            num_ins += 1
            if fout:
H
Hui Zhang 已提交
470 471 472 473
                fout.write({"utt": utt, "ref", target, "hyp": result})
            logger.info(f"Utt: {utt}")
            logger.info(f"Ref: {target}")
            logger.info(f"Hyp: {result}")
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
            logger.info("One example error rate [%s] = %f" %
                        (cfg.error_rate_type, error_rate_func(target, result)))

        return dict(
            errors_sum=errors_sum,
            len_refs=len_refs,
            num_ins=num_ins,  # num examples
            error_rate=errors_sum / len_refs,
            error_rate_type=cfg.error_rate_type,
            num_frames=audio_len.sum().numpy().item(),
            decode_time=decode_time)

    @mp_tools.rank_zero_only
    @paddle.no_grad()
    def test(self):
        assert self.args.result_file
        self.model.eval()
        logger.info(f"Test Total Examples: {len(self.test_loader.dataset)}")

H
Haoxin Ma 已提交
493
        stride_ms = self.test_loader.collate_fn.stride_ms
494 495 496 497
        error_rate_type = None
        errors_sum, len_refs, num_ins = 0.0, 0, 0
        num_frames = 0.0
        num_time = 0.0
H
Hui Zhang 已提交
498
        with jsonlines.open(self.args.result_file, 'w') as fout:
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
            for i, batch in enumerate(self.test_loader):
                metrics = self.compute_metrics(*batch, fout=fout)
                num_frames += metrics['num_frames']
                num_time += metrics["decode_time"]
                errors_sum += metrics['errors_sum']
                len_refs += metrics['len_refs']
                num_ins += metrics['num_ins']
                error_rate_type = metrics['error_rate_type']
                rtf = num_time / (num_frames * stride_ms)
                logger.info(
                    "RTF: %f, Error rate [%s] (%d/?) = %f" %
                    (rtf, error_rate_type, num_ins, errors_sum / len_refs))

        rtf = num_time / (num_frames * stride_ms)
        msg = "Test: "
        msg += "epoch: {}, ".format(self.epoch)
        msg += "step: {}, ".format(self.iteration)
        msg += "RTF: {}, ".format(rtf)
        msg += "Final error rate [%s] (%d/%d) = %f" % (
            error_rate_type, num_ins, num_ins, errors_sum / len_refs)
        logger.info(msg)

        # test meta results
H
Hui Zhang 已提交
522
        err_meta_path = os.path.splitext(self.args.result_file)[0] + '.err'
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
        err_type_str = "{}".format(error_rate_type)
        with open(err_meta_path, 'w') as f:
            data = json.dumps({
                "epoch":
                self.epoch,
                "step":
                self.iteration,
                "rtf":
                rtf,
                error_rate_type:
                errors_sum / len_refs,
                "dataset_hour": (num_frames * stride_ms) / 1000.0 / 3600.0,
                "process_hour":
                num_time / 1000.0 / 3600.0,
                "num_examples":
                num_ins,
                "err_sum":
                errors_sum,
                "ref_len":
                len_refs,
H
Hui Zhang 已提交
543 544
                "decode_method":
                self.config.decoding.decoding_method,
545 546 547 548 549 550 551 552 553 554
            })
            f.write(data + '\n')

    def run_test(self):
        self.resume_or_scratch()
        try:
            self.test()
        except KeyboardInterrupt:
            sys.exit(-1)

H
Hui Zhang 已提交
555 556 557 558 559 560 561
    @paddle.no_grad()
    def align(self):
        if self.config.decoding.batch_size > 1:
            logger.fatal('alignment mode must be running with batch_size == 1')
            sys.exit(1)

        # xxx.align
H
Hui Zhang 已提交
562 563
        assert self.args.result_file and self.args.result_file.endswith(
            '.align')
H
Hui Zhang 已提交
564 565

        self.model.eval()
H
Hui Zhang 已提交
566
        logger.info(f"Align Total Examples: {len(self.align_loader.dataset)}")
H
Hui Zhang 已提交
567

H
Hui Zhang 已提交
568 569
        stride_ms = self.align_loader.collate_fn.stride_ms
        token_dict = self.align_loader.collate_fn.vocab_list
H
Hui Zhang 已提交
570
        with open(self.args.result_file, 'w') as fout:
H
Hui Zhang 已提交
571
            # one example in batch
H
Hui Zhang 已提交
572
            for i, batch in enumerate(self.align_loader):
H
Hui Zhang 已提交
573
                key, feat, feats_length, target, target_length = batch
H
Hui Zhang 已提交
574

H
Hui Zhang 已提交
575 576 577
                # 1. Encoder
                encoder_out, encoder_mask = self.model._forward_encoder(
                    feat, feats_length)  # (B, maxlen, encoder_dim)
H
Hui Zhang 已提交
578
                maxlen = encoder_out.shape[1]
H
Hui Zhang 已提交
579 580 581 582 583 584 585
                ctc_probs = self.model.ctc.log_softmax(
                    encoder_out)  # (1, maxlen, vocab_size)

                # 2. alignment
                ctc_probs = ctc_probs.squeeze(0)
                target = target.squeeze(0)
                alignment = ctc_utils.forced_align(ctc_probs, target)
586
                logger.info(f"align ids: {key[0]} {alignment}")
H
Hui Zhang 已提交
587 588 589 590 591
                fout.write('{} {}\n'.format(key[0], alignment))

                # 3. gen praat
                # segment alignment
                align_segs = text_grid.segment_alignment(alignment)
592
                logger.info(f"align tokens: {key[0]}, {align_segs}")
H
Hui Zhang 已提交
593
                # IntervalTier, List["start end token\n"]
H
Hui Zhang 已提交
594
                subsample = utility.get_subsample(self.config)
H
Hui Zhang 已提交
595 596
                tierformat = text_grid.align_to_tierformat(
                    align_segs, subsample, token_dict)
H
Hui Zhang 已提交
597
                # write tier
598 599 600 601
                align_output_path = Path(self.args.result_file).parent / "align"
                align_output_path.mkdir(parents=True, exist_ok=True)
                tier_path = align_output_path / (key[0] + ".tier")
                with tier_path.open('w') as f:
H
Hui Zhang 已提交
602
                    f.writelines(tierformat)
H
Hui Zhang 已提交
603
                # write textgrid
604
                textgrid_path = align_output_path / (key[0] + ".TextGrid")
H
Hui Zhang 已提交
605 606 607 608
                second_per_frame = 1. / (1000. /
                                         stride_ms)  # 25ms window, 10ms stride
                second_per_example = (
                    len(alignment) + 1) * subsample * second_per_frame
H
Hui Zhang 已提交
609
                text_grid.generate_textgrid(
H
Hui Zhang 已提交
610
                    maxtime=second_per_example,
H
Hui Zhang 已提交
611
                    intervals=tierformat,
612
                    output=str(textgrid_path))
H
Hui Zhang 已提交
613 614 615 616 617 618 619 620

    def run_align(self):
        self.resume_or_scratch()
        try:
            self.align()
        except KeyboardInterrupt:
            sys.exit(-1)

621 622 623 624 625 626 627 628
    def load_inferspec(self):
        """infer model and input spec.

        Returns:
            nn.Layer: inference model
            List[paddle.static.InputSpec]: input spec.
        """
        from deepspeech.models.u2 import U2InferModel
H
Haoxin Ma 已提交
629
        infer_model = U2InferModel.from_pretrained(self.test_loader,
630 631
                                                   self.config.model.clone(),
                                                   self.args.checkpoint_path)
H
Haoxin Ma 已提交
632
        feat_dim = self.test_loader.collate_fn.feature_size
633
        input_spec = [
634 635 636
            paddle.static.InputSpec(shape=[1, None, feat_dim],
                                    dtype='float32'),  # audio, [B,T,D]
            paddle.static.InputSpec(shape=[1],
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
                                    dtype='int64'),  # audio_length, [B]
        ]
        return infer_model, input_spec

    def export(self):
        infer_model, input_spec = self.load_inferspec()
        assert isinstance(input_spec, list), type(input_spec)
        infer_model.eval()
        static_model = paddle.jit.to_static(infer_model, input_spec=input_spec)
        logger.info(f"Export code: {static_model.forward.code}")
        paddle.jit.save(static_model, self.args.export_path)

    def run_export(self):
        try:
            self.export()
        except KeyboardInterrupt:
            sys.exit(-1)

    def setup(self):
        """Setup the experiment.
        """
658
        paddle.set_device('gpu' if self.args.nprocs > 0 else 'cpu')
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681

        self.setup_output_dir()
        self.setup_checkpointer()

        self.setup_dataloader()
        self.setup_model()

        self.iteration = 0
        self.epoch = 0

    def setup_output_dir(self):
        """Create a directory used for output.
        """
        # output dir
        if self.args.output:
            output_dir = Path(self.args.output).expanduser()
            output_dir.mkdir(parents=True, exist_ok=True)
        else:
            output_dir = Path(
                self.args.checkpoint_path).expanduser().parent.parent
            output_dir.mkdir(parents=True, exist_ok=True)

        self.output_dir = output_dir