model.py 27.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains U2 model."""
import json
import os
import sys
import time
from collections import defaultdict
H
Hui Zhang 已提交
20
from collections import OrderedDict
21
from contextlib import nullcontext
22 23 24 25 26 27 28 29 30 31 32 33 34 35
from pathlib import Path
from typing import Optional

import numpy as np
import paddle
from paddle import distributed as dist
from paddle.io import DataLoader
from yacs.config import CfgNode

from deepspeech.io.collator import SpeechCollator
from deepspeech.io.dataset import ManifestDataset
from deepspeech.io.sampler import SortagradBatchSampler
from deepspeech.io.sampler import SortagradDistributedBatchSampler
from deepspeech.models.u2 import U2Model
36
from deepspeech.training.optimizer import OptimizerFactory
H
format  
Hui Zhang 已提交
37 38
from deepspeech.training.reporter import ObsScope
from deepspeech.training.reporter import report
39
from deepspeech.training.scheduler import LRSchedulerFactory
40
from deepspeech.training.timer import Timer
41
from deepspeech.training.trainer import Trainer
H
Hui Zhang 已提交
42
from deepspeech.utils import ctc_utils
43 44 45
from deepspeech.utils import error_rate
from deepspeech.utils import layer_tools
from deepspeech.utils import mp_tools
H
Hui Zhang 已提交
46
from deepspeech.utils import text_grid
H
Hui Zhang 已提交
47
from deepspeech.utils import utility
48
from deepspeech.utils.log import Log
H
Hui Zhang 已提交
49
from deepspeech.utils.utility import UpdateConfig
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

logger = Log(__name__).getlog()


class U2Trainer(Trainer):
    @classmethod
    def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
        # training config
        default = CfgNode(
            dict(
                n_epoch=50,  # train epochs
                log_interval=100,  # steps
                accum_grad=1,  # accum grad by # steps
                global_grad_clip=5.0,  # the global norm clip
            ))
        default.optim = 'adam'
        default.optim_conf = CfgNode(
            dict(
                lr=5e-4,  # learning rate
                weight_decay=1e-6,  # the coeff of weight decay
            ))
        default.scheduler = 'warmuplr'
        default.scheduler_conf = CfgNode(
            dict(
                warmup_steps=25000,
                lr_decay=1.0,  # learning rate decay
            ))

        if config is not None:
            config.merge_from_other_cfg(default)
        return default

    def __init__(self, config, args):
        super().__init__(config, args)

    def train_batch(self, batch_index, batch_data, msg):
        train_conf = self.config.training
        start = time.time()

89 90
        # forward
        utt, audio, audio_len, text, text_len = batch_data
H
Haoxin Ma 已提交
91 92
        loss, attention_loss, ctc_loss = self.model(audio, audio_len, text,
                                                    text_len)
93

94 95 96 97 98 99 100 101
        # loss div by `batch_size * accum_grad`
        loss /= train_conf.accum_grad
        losses_np = {'loss': float(loss) * train_conf.accum_grad}
        if attention_loss:
            losses_np['att_loss'] = float(attention_loss)
        if ctc_loss:
            losses_np['ctc_loss'] = float(ctc_loss)

102 103 104 105 106
        # loss backward
        if (batch_index + 1) % train_conf.accum_grad != 0:
            # Disable gradient synchronizations across DDP processes.
            # Within this context, gradients will be accumulated on module
            # variables, which will later be synchronized.
H
Hui Zhang 已提交
107 108
            # When using cpu w/o DDP, model does not have `no_sync`
            context = self.model.no_sync if self.parallel else nullcontext
109 110 111 112 113 114 115 116 117
        else:
            # Used for single gpu training and DDP gradient synchronization
            # processes.
            context = nullcontext
        with context():
            loss.backward()
            layer_tools.print_grads(self.model, print_func=None)

        # optimizer step
118 119 120 121 122 123 124 125 126
        if (batch_index + 1) % train_conf.accum_grad == 0:
            self.optimizer.step()
            self.optimizer.clear_grad()
            self.lr_scheduler.step()
            self.iteration += 1

        iteration_time = time.time() - start

        if (batch_index + 1) % train_conf.log_interval == 0:
H
Hui Zhang 已提交
127 128 129 130 131
            for k, v in losses_np.items():
                report(k, v)
            report("batch_size", self.config.collator.batch_size)
            report("accum", train_conf.accum_grad)
            report("step_cost", iteration_time)
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

            if dist.get_rank() == 0 and self.visualizer:
                losses_np_v = losses_np.copy()
                losses_np_v.update({"lr": self.lr_scheduler()})
                self.visualizer.add_scalars("step", losses_np_v,
                                            self.iteration - 1)

    @paddle.no_grad()
    def valid(self):
        self.model.eval()
        logger.info(f"Valid Total Examples: {len(self.valid_loader.dataset)}")
        valid_losses = defaultdict(list)
        num_seen_utts = 1
        total_loss = 0.0
        for i, batch in enumerate(self.valid_loader):
H
Haoxin Ma 已提交
147
            utt, audio, audio_len, text, text_len = batch
H
Haoxin Ma 已提交
148 149
            loss, attention_loss, ctc_loss = self.model(audio, audio_len, text,
                                                        text_len)
150
            if paddle.isfinite(loss):
H
Haoxin Ma 已提交
151
                num_utts = batch[1].shape[0]
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
                num_seen_utts += num_utts
                total_loss += float(loss) * num_utts
                valid_losses['val_loss'].append(float(loss))
                if attention_loss:
                    valid_losses['val_att_loss'].append(float(attention_loss))
                if ctc_loss:
                    valid_losses['val_ctc_loss'].append(float(ctc_loss))

            if (i + 1) % self.config.training.log_interval == 0:
                valid_dump = {k: np.mean(v) for k, v in valid_losses.items()}
                valid_dump['val_history_loss'] = total_loss / num_seen_utts

                # logging
                msg = f"Valid: Rank: {dist.get_rank()}, "
                msg += "epoch: {}, ".format(self.epoch)
                msg += "step: {}, ".format(self.iteration)
                msg += "batch: {}/{}, ".format(i + 1, len(self.valid_loader))
                msg += ', '.join('{}: {:>.6f}'.format(k, v)
                                 for k, v in valid_dump.items())
                logger.info(msg)

        logger.info('Rank {} Val info val_loss {}'.format(
            dist.get_rank(), total_loss / num_seen_utts))
        return total_loss, num_seen_utts

    def train(self):
        """The training process control by step."""
        # !!!IMPORTANT!!!
        # Try to export the model by script, if fails, we should refine
        # the code to satisfy the script export requirements
        # script_model = paddle.jit.to_static(self.model)
        # script_model_path = str(self.checkpoint_dir / 'init')
        # paddle.jit.save(script_model, script_model_path)

        from_scratch = self.resume_or_scratch()
        if from_scratch:
            # save init model, i.e. 0 epoch
189
            self.save(tag='init', infos=None)
190

191 192
        # lr will resotre from optimizer ckpt
        # self.lr_scheduler.step(self.iteration)
193
        if self.parallel and hasattr(self.train_loader, 'batch_sampler'):
194 195 196 197
            self.train_loader.batch_sampler.set_epoch(self.epoch)

        logger.info(f"Train Total Examples: {len(self.train_loader.dataset)}")
        while self.epoch < self.config.training.n_epoch:
198 199 200
            with Timer("Epoch-Train Time Cost: {}"):
                self.model.train()
                try:
201
                    data_start_time = time.time()
202 203
                    for batch_index, batch in enumerate(self.train_loader):
                        dataload_time = time.time() - data_start_time
H
Hui Zhang 已提交
204 205 206 207 208 209
                        msg = "Train:"
                        observation = OrderedDict()
                        with ObsScope(observation):
                            report("Rank", dist.get_rank())
                            report("epoch", self.epoch)
                            report('step', self.iteration)
H
format  
Hui Zhang 已提交
210 211
                            report('step/total',
                                   (batch_index + 1) / len(self.train_loader))
H
Hui Zhang 已提交
212 213 214 215
                            report("lr", self.lr_scheduler())
                            self.train_batch(batch_index, batch, msg)
                            self.after_train_batch()
                            report('reader_cost', dataload_time)
H
format  
Hui Zhang 已提交
216 217
                        observation['batch_cost'] = observation[
                            'reader_cost'] + observation['step_cost']
H
Hui Zhang 已提交
218
                        observation['samples'] = observation['batch_size']
H
format  
Hui Zhang 已提交
219 220
                        observation['ips[sent./sec]'] = observation[
                            'batch_size'] / observation['batch_cost']
H
Hui Zhang 已提交
221 222
                        for k, v in observation.items():
                            msg += f" {k}: "
H
format  
Hui Zhang 已提交
223 224
                            msg += f"{v:>.8f}" if isinstance(v,
                                                             float) else f"{v}"
H
Hui Zhang 已提交
225 226
                            msg += ","
                        logger.info(msg)
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
                        data_start_time = time.time()
                except Exception as e:
                    logger.error(e)
                    raise e

            with Timer("Eval Time Cost: {}"):
                total_loss, num_seen_utts = self.valid()
                if dist.get_world_size() > 1:
                    num_seen_utts = paddle.to_tensor(num_seen_utts)
                    # the default operator in all_reduce function is sum.
                    dist.all_reduce(num_seen_utts)
                    total_loss = paddle.to_tensor(total_loss)
                    dist.all_reduce(total_loss)
                    cv_loss = total_loss / num_seen_utts
                    cv_loss = float(cv_loss)
                else:
                    cv_loss = total_loss / num_seen_utts
244 245 246 247 248 249 250 251 252 253 254 255 256

            logger.info(
                'Epoch {} Val info val_loss {}'.format(self.epoch, cv_loss))
            if self.visualizer:
                self.visualizer.add_scalars(
                    'epoch', {'cv_loss': cv_loss,
                              'lr': self.lr_scheduler()}, self.epoch)
            self.save(tag=self.epoch, infos={'val_loss': cv_loss})
            self.new_epoch()

    def setup_dataloader(self):
        config = self.config.clone()
        config.defrost()
H
Haoxin Ma 已提交
257
        config.collator.keep_transcription_text = False
258 259 260 261 262 263 264 265

        # train/valid dataset, return token ids
        config.data.manifest = config.data.train_manifest
        train_dataset = ManifestDataset.from_config(config)

        config.data.manifest = config.data.dev_manifest
        dev_dataset = ManifestDataset.from_config(config)

H
Haoxin Ma 已提交
266
        collate_fn_train = SpeechCollator.from_config(config)
H
Haoxin Ma 已提交
267

H
Haoxin Ma 已提交
268 269 270
        config.collator.augmentation_config = ""
        collate_fn_dev = SpeechCollator.from_config(config)

271 272 273
        if self.parallel:
            batch_sampler = SortagradDistributedBatchSampler(
                train_dataset,
H
Haoxin Ma 已提交
274
                batch_size=config.collator.batch_size,
275 276 277 278
                num_replicas=None,
                rank=None,
                shuffle=True,
                drop_last=True,
H
Haoxin Ma 已提交
279 280
                sortagrad=config.collator.sortagrad,
                shuffle_method=config.collator.shuffle_method)
281 282 283 284
        else:
            batch_sampler = SortagradBatchSampler(
                train_dataset,
                shuffle=True,
H
Haoxin Ma 已提交
285
                batch_size=config.collator.batch_size,
286
                drop_last=True,
H
Haoxin Ma 已提交
287 288
                sortagrad=config.collator.sortagrad,
                shuffle_method=config.collator.shuffle_method)
289 290 291
        self.train_loader = DataLoader(
            train_dataset,
            batch_sampler=batch_sampler,
H
Haoxin Ma 已提交
292 293
            collate_fn=collate_fn_train,
            num_workers=config.collator.num_workers, )
294 295
        self.valid_loader = DataLoader(
            dev_dataset,
H
Haoxin Ma 已提交
296
            batch_size=config.collator.batch_size,
297 298
            shuffle=False,
            drop_last=False,
H
Haoxin Ma 已提交
299
            collate_fn=collate_fn_dev)
300 301 302 303 304

        # test dataset, return raw text
        config.data.manifest = config.data.test_manifest
        # filter test examples, will cause less examples, but no mismatch with training
        # and can use large batch size , save training time, so filter test egs now.
H
Hui Zhang 已提交
305 306 307 308 309 310
        config.data.min_input_len = 0.0  # second
        config.data.max_input_len = float('inf')  # second
        config.data.min_output_len = 0.0  # tokens
        config.data.max_output_len = float('inf')  # tokens
        config.data.min_output_input_ratio = 0.00
        config.data.max_output_input_ratio = float('inf')
H
Haoxin Ma 已提交
311

312 313
        test_dataset = ManifestDataset.from_config(config)
        # return text ord id
H
Haoxin Ma 已提交
314
        config.collator.keep_transcription_text = True
H
Haoxin Ma 已提交
315
        config.collator.augmentation_config = ""
316 317 318 319 320
        self.test_loader = DataLoader(
            test_dataset,
            batch_size=config.decoding.batch_size,
            shuffle=False,
            drop_last=False,
H
Haoxin Ma 已提交
321
            collate_fn=SpeechCollator.from_config(config))
H
Hui Zhang 已提交
322 323 324 325 326 327 328 329 330
        # return text token id
        config.collator.keep_transcription_text = False
        self.align_loader = DataLoader(
            test_dataset,
            batch_size=config.decoding.batch_size,
            shuffle=False,
            drop_last=False,
            collate_fn=SpeechCollator.from_config(config))
        logger.info("Setup train/valid/test/align Dataloader!")
331 332 333 334

    def setup_model(self):
        config = self.config
        model_conf = config.model
H
Hui Zhang 已提交
335 336 337 338 339

        with UpdateConfig(model_conf):
            model_conf.input_dim = self.train_loader.collate_fn.feature_size
            model_conf.output_dim = self.train_loader.collate_fn.vocab_size

340 341 342 343 344 345 346 347 348 349 350 351 352 353
        model = U2Model.from_config(model_conf)

        if self.parallel:
            model = paddle.DataParallel(model)

        logger.info(f"{model}")
        layer_tools.print_params(model, logger.info)

        train_config = config.training
        optim_type = train_config.optim
        optim_conf = train_config.optim_conf
        scheduler_type = train_config.scheduler
        scheduler_conf = train_config.scheduler_conf

354
        scheduler_args = {
H
Hui Zhang 已提交
355 356 357 358 359
            "learning_rate": optim_conf.lr,
            "verbose": False,
            "warmup_steps": scheduler_conf.warmup_steps,
            "gamma": scheduler_conf.lr_decay,
            "d_model": model_conf.encoder_conf.output_size,
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
        }
        lr_scheduler = LRSchedulerFactory.from_args(scheduler_type,
                                                    scheduler_args)

        def optimizer_args(
                config,
                parameters,
                lr_scheduler=None, ):
            train_config = config.training
            optim_type = train_config.optim
            optim_conf = train_config.optim_conf
            scheduler_type = train_config.scheduler
            scheduler_conf = train_config.scheduler_conf
            return {
                "grad_clip": train_config.global_grad_clip,
                "weight_decay": optim_conf.weight_decay,
                "learning_rate": lr_scheduler
                if lr_scheduler else optim_conf.lr,
                "parameters": parameters,
H
Hui Zhang 已提交
379 380 381
                "epsilon": 1e-9 if optim_type == 'noam' else None,
                "beta1": 0.9 if optim_type == 'noam' else None,
                "beat2": 0.98 if optim_type == 'noam' else None,
382 383 384 385 386
            }

        optimzer_args = optimizer_args(config, model.parameters(), lr_scheduler)
        optimizer = OptimizerFactory.from_args(optim_type, optimzer_args)

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
        self.model = model
        self.optimizer = optimizer
        self.lr_scheduler = lr_scheduler
        logger.info("Setup model/optimizer/lr_scheduler!")


class U2Tester(U2Trainer):
    @classmethod
    def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
        # decoding config
        default = CfgNode(
            dict(
                alpha=2.5,  # Coef of LM for beam search.
                beta=0.3,  # Coef of WC for beam search.
                cutoff_prob=1.0,  # Cutoff probability for pruning.
                cutoff_top_n=40,  # Cutoff number for pruning.
                lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm',  # Filepath for language model.
                decoding_method='attention',  # Decoding method. Options: 'attention', 'ctc_greedy_search',
                # 'ctc_prefix_beam_search', 'attention_rescoring'
                error_rate_type='wer',  # Error rate type for evaluation. Options `wer`, 'cer'
                num_proc_bsearch=8,  # # of CPUs for beam search.
                beam_size=10,  # Beam search width.
                batch_size=16,  # decoding batch size
                ctc_weight=0.0,  # ctc weight for attention rescoring decode mode.
                decoding_chunk_size=-1,  # decoding chunk size. Defaults to -1.
                # <0: for decoding, use full chunk.
                # >0: for decoding, use fixed chunk size as set.
H
Hui Zhang 已提交
414
                # 0: used for training, it's prohibited here.
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
                num_decoding_left_chunks=-1,  # number of left chunks for decoding. Defaults to -1.
                simulate_streaming=False,  # simulate streaming inference. Defaults to False.
            ))

        if config is not None:
            config.merge_from_other_cfg(default)
        return default

    def __init__(self, config, args):
        super().__init__(config, args)

    def ordid2token(self, texts, texts_len):
        """ ord() id to chr() chr """
        trans = []
        for text, n in zip(texts, texts_len):
            n = n.numpy().item()
            ids = text[:n]
            trans.append(''.join([chr(i) for i in ids]))
        return trans

H
Haoxin Ma 已提交
435 436 437 438 439 440 441
    def compute_metrics(self,
                        utts,
                        audio,
                        audio_len,
                        texts,
                        texts_len,
                        fout=None):
442 443 444 445 446 447
        cfg = self.config.decoding
        errors_sum, len_refs, num_ins = 0.0, 0, 0
        errors_func = error_rate.char_errors if cfg.error_rate_type == 'cer' else error_rate.word_errors
        error_rate_func = error_rate.cer if cfg.error_rate_type == 'cer' else error_rate.wer

        start_time = time.time()
H
Haoxin Ma 已提交
448
        text_feature = self.test_loader.collate_fn.text_feature
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
        target_transcripts = self.ordid2token(texts, texts_len)
        result_transcripts = self.model.decode(
            audio,
            audio_len,
            text_feature=text_feature,
            decoding_method=cfg.decoding_method,
            lang_model_path=cfg.lang_model_path,
            beam_alpha=cfg.alpha,
            beam_beta=cfg.beta,
            beam_size=cfg.beam_size,
            cutoff_prob=cfg.cutoff_prob,
            cutoff_top_n=cfg.cutoff_top_n,
            num_processes=cfg.num_proc_bsearch,
            ctc_weight=cfg.ctc_weight,
            decoding_chunk_size=cfg.decoding_chunk_size,
            num_decoding_left_chunks=cfg.num_decoding_left_chunks,
            simulate_streaming=cfg.simulate_streaming)
        decode_time = time.time() - start_time

H
Haoxin Ma 已提交
468 469
        for utt, target, result in zip(utts, target_transcripts,
                                       result_transcripts):
470 471 472 473 474
            errors, len_ref = errors_func(target, result)
            errors_sum += errors
            len_refs += len_ref
            num_ins += 1
            if fout:
H
Haoxin Ma 已提交
475
                fout.write(utt + " " + result + "\n")
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496
            logger.info("\nTarget Transcription: %s\nOutput Transcription: %s" %
                        (target, result))
            logger.info("One example error rate [%s] = %f" %
                        (cfg.error_rate_type, error_rate_func(target, result)))

        return dict(
            errors_sum=errors_sum,
            len_refs=len_refs,
            num_ins=num_ins,  # num examples
            error_rate=errors_sum / len_refs,
            error_rate_type=cfg.error_rate_type,
            num_frames=audio_len.sum().numpy().item(),
            decode_time=decode_time)

    @mp_tools.rank_zero_only
    @paddle.no_grad()
    def test(self):
        assert self.args.result_file
        self.model.eval()
        logger.info(f"Test Total Examples: {len(self.test_loader.dataset)}")

H
Haoxin Ma 已提交
497
        stride_ms = self.test_loader.collate_fn.stride_ms
498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
        error_rate_type = None
        errors_sum, len_refs, num_ins = 0.0, 0, 0
        num_frames = 0.0
        num_time = 0.0
        with open(self.args.result_file, 'w') as fout:
            for i, batch in enumerate(self.test_loader):
                metrics = self.compute_metrics(*batch, fout=fout)
                num_frames += metrics['num_frames']
                num_time += metrics["decode_time"]
                errors_sum += metrics['errors_sum']
                len_refs += metrics['len_refs']
                num_ins += metrics['num_ins']
                error_rate_type = metrics['error_rate_type']
                rtf = num_time / (num_frames * stride_ms)
                logger.info(
                    "RTF: %f, Error rate [%s] (%d/?) = %f" %
                    (rtf, error_rate_type, num_ins, errors_sum / len_refs))

        rtf = num_time / (num_frames * stride_ms)
        msg = "Test: "
        msg += "epoch: {}, ".format(self.epoch)
        msg += "step: {}, ".format(self.iteration)
        msg += "RTF: {}, ".format(rtf)
        msg += "Final error rate [%s] (%d/%d) = %f" % (
            error_rate_type, num_ins, num_ins, errors_sum / len_refs)
        logger.info(msg)

        # test meta results
H
Hui Zhang 已提交
526
        err_meta_path = os.path.splitext(self.args.result_file)[0] + '.err'
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546
        err_type_str = "{}".format(error_rate_type)
        with open(err_meta_path, 'w') as f:
            data = json.dumps({
                "epoch":
                self.epoch,
                "step":
                self.iteration,
                "rtf":
                rtf,
                error_rate_type:
                errors_sum / len_refs,
                "dataset_hour": (num_frames * stride_ms) / 1000.0 / 3600.0,
                "process_hour":
                num_time / 1000.0 / 3600.0,
                "num_examples":
                num_ins,
                "err_sum":
                errors_sum,
                "ref_len":
                len_refs,
H
Hui Zhang 已提交
547 548
                "decode_method":
                self.config.decoding.decoding_method,
549 550 551 552 553 554 555 556 557 558
            })
            f.write(data + '\n')

    def run_test(self):
        self.resume_or_scratch()
        try:
            self.test()
        except KeyboardInterrupt:
            sys.exit(-1)

H
Hui Zhang 已提交
559 560 561 562 563 564 565
    @paddle.no_grad()
    def align(self):
        if self.config.decoding.batch_size > 1:
            logger.fatal('alignment mode must be running with batch_size == 1')
            sys.exit(1)

        # xxx.align
H
Hui Zhang 已提交
566 567
        assert self.args.result_file and self.args.result_file.endswith(
            '.align')
H
Hui Zhang 已提交
568 569

        self.model.eval()
H
Hui Zhang 已提交
570
        logger.info(f"Align Total Examples: {len(self.align_loader.dataset)}")
H
Hui Zhang 已提交
571

H
Hui Zhang 已提交
572 573
        stride_ms = self.align_loader.collate_fn.stride_ms
        token_dict = self.align_loader.collate_fn.vocab_list
H
Hui Zhang 已提交
574
        with open(self.args.result_file, 'w') as fout:
H
Hui Zhang 已提交
575
            # one example in batch
H
Hui Zhang 已提交
576
            for i, batch in enumerate(self.align_loader):
H
Hui Zhang 已提交
577
                key, feat, feats_length, target, target_length = batch
H
Hui Zhang 已提交
578

H
Hui Zhang 已提交
579 580 581
                # 1. Encoder
                encoder_out, encoder_mask = self.model._forward_encoder(
                    feat, feats_length)  # (B, maxlen, encoder_dim)
H
Hui Zhang 已提交
582
                maxlen = encoder_out.shape[1]
H
Hui Zhang 已提交
583 584 585 586 587 588 589
                ctc_probs = self.model.ctc.log_softmax(
                    encoder_out)  # (1, maxlen, vocab_size)

                # 2. alignment
                ctc_probs = ctc_probs.squeeze(0)
                target = target.squeeze(0)
                alignment = ctc_utils.forced_align(ctc_probs, target)
590
                logger.info(f"align ids: {key[0]} {alignment}")
H
Hui Zhang 已提交
591 592 593 594 595
                fout.write('{} {}\n'.format(key[0], alignment))

                # 3. gen praat
                # segment alignment
                align_segs = text_grid.segment_alignment(alignment)
596
                logger.info(f"align tokens: {key[0]}, {align_segs}")
H
Hui Zhang 已提交
597
                # IntervalTier, List["start end token\n"]
H
Hui Zhang 已提交
598
                subsample = utility.get_subsample(self.config)
H
Hui Zhang 已提交
599 600
                tierformat = text_grid.align_to_tierformat(
                    align_segs, subsample, token_dict)
H
Hui Zhang 已提交
601
                # write tier
602 603 604 605
                align_output_path = Path(self.args.result_file).parent / "align"
                align_output_path.mkdir(parents=True, exist_ok=True)
                tier_path = align_output_path / (key[0] + ".tier")
                with tier_path.open('w') as f:
H
Hui Zhang 已提交
606
                    f.writelines(tierformat)
H
Hui Zhang 已提交
607
                # write textgrid
608
                textgrid_path = align_output_path / (key[0] + ".TextGrid")
H
Hui Zhang 已提交
609 610 611 612
                second_per_frame = 1. / (1000. /
                                         stride_ms)  # 25ms window, 10ms stride
                second_per_example = (
                    len(alignment) + 1) * subsample * second_per_frame
H
Hui Zhang 已提交
613
                text_grid.generate_textgrid(
H
Hui Zhang 已提交
614
                    maxtime=second_per_example,
H
Hui Zhang 已提交
615
                    intervals=tierformat,
616
                    output=str(textgrid_path))
H
Hui Zhang 已提交
617 618 619 620 621 622 623 624

    def run_align(self):
        self.resume_or_scratch()
        try:
            self.align()
        except KeyboardInterrupt:
            sys.exit(-1)

625 626 627 628 629 630 631 632
    def load_inferspec(self):
        """infer model and input spec.

        Returns:
            nn.Layer: inference model
            List[paddle.static.InputSpec]: input spec.
        """
        from deepspeech.models.u2 import U2InferModel
H
Haoxin Ma 已提交
633
        infer_model = U2InferModel.from_pretrained(self.test_loader,
634 635
                                                   self.config.model.clone(),
                                                   self.args.checkpoint_path)
H
Haoxin Ma 已提交
636
        feat_dim = self.test_loader.collate_fn.feature_size
637
        input_spec = [
638 639 640
            paddle.static.InputSpec(shape=[1, None, feat_dim],
                                    dtype='float32'),  # audio, [B,T,D]
            paddle.static.InputSpec(shape=[1],
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
                                    dtype='int64'),  # audio_length, [B]
        ]
        return infer_model, input_spec

    def export(self):
        infer_model, input_spec = self.load_inferspec()
        assert isinstance(input_spec, list), type(input_spec)
        infer_model.eval()
        static_model = paddle.jit.to_static(infer_model, input_spec=input_spec)
        logger.info(f"Export code: {static_model.forward.code}")
        paddle.jit.save(static_model, self.args.export_path)

    def run_export(self):
        try:
            self.export()
        except KeyboardInterrupt:
            sys.exit(-1)

    def setup(self):
        """Setup the experiment.
        """
        paddle.set_device(self.args.device)

        self.setup_output_dir()
        self.setup_checkpointer()

        self.setup_dataloader()
        self.setup_model()

        self.iteration = 0
        self.epoch = 0

    def setup_output_dir(self):
        """Create a directory used for output.
        """
        # output dir
        if self.args.output:
            output_dir = Path(self.args.output).expanduser()
            output_dir.mkdir(parents=True, exist_ok=True)
        else:
            output_dir = Path(
                self.args.checkpoint_path).expanduser().parent.parent
            output_dir.mkdir(parents=True, exist_ok=True)

        self.output_dir = output_dir