model.py 21.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains U2 model."""
import json
import os
import sys
import time
from collections import defaultdict
from pathlib import Path
from typing import Optional

import numpy as np
import paddle
from paddle import distributed as dist
from paddle.io import DataLoader
from yacs.config import CfgNode

from deepspeech.io.collator import SpeechCollator
from deepspeech.io.dataset import ManifestDataset
from deepspeech.io.sampler import SortagradBatchSampler
from deepspeech.io.sampler import SortagradDistributedBatchSampler
from deepspeech.models.u2 import U2Model
from deepspeech.training.gradclip import ClipGradByGlobalNormWithLog
from deepspeech.training.scheduler import WarmupLR
from deepspeech.training.trainer import Trainer
from deepspeech.utils import error_rate
from deepspeech.utils import layer_tools
from deepspeech.utils import mp_tools
from deepspeech.utils.log import Log

logger = Log(__name__).getlog()


class U2Trainer(Trainer):
    @classmethod
    def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
        # training config
        default = CfgNode(
            dict(
                n_epoch=50,  # train epochs
                log_interval=100,  # steps
                accum_grad=1,  # accum grad by # steps
                global_grad_clip=5.0,  # the global norm clip
            ))
        default.optim = 'adam'
        default.optim_conf = CfgNode(
            dict(
                lr=5e-4,  # learning rate
                weight_decay=1e-6,  # the coeff of weight decay
            ))
        default.scheduler = 'warmuplr'
        default.scheduler_conf = CfgNode(
            dict(
                warmup_steps=25000,
                lr_decay=1.0,  # learning rate decay
            ))

        if config is not None:
            config.merge_from_other_cfg(default)
        return default

    def __init__(self, config, args):
        super().__init__(config, args)

    def train_batch(self, batch_index, batch_data, msg):
        train_conf = self.config.training
        start = time.time()
H
Haoxin Ma 已提交
79
        utt, audio, audio_len, text, text_len = batch_data
80

H
Haoxin Ma 已提交
81 82
        loss, attention_loss, ctc_loss = self.model(audio, audio_len, text,
                                                    text_len)
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
        # loss div by `batch_size * accum_grad`
        loss /= train_conf.accum_grad
        loss.backward()
        layer_tools.print_grads(self.model, print_func=None)

        losses_np = {'loss': float(loss) * train_conf.accum_grad}
        if attention_loss:
            losses_np['att_loss'] = float(attention_loss)
        if ctc_loss:
            losses_np['ctc_loss'] = float(ctc_loss)

        if (batch_index + 1) % train_conf.accum_grad == 0:
            self.optimizer.step()
            self.optimizer.clear_grad()
            self.lr_scheduler.step()
            self.iteration += 1

        iteration_time = time.time() - start

        if (batch_index + 1) % train_conf.log_interval == 0:
            msg += "train time: {:>.3f}s, ".format(iteration_time)
H
Haoxin Ma 已提交
104
            msg += "batch size: {}, ".format(self.config.collator.batch_size)
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
            msg += "accum: {}, ".format(train_conf.accum_grad)
            msg += ', '.join('{}: {:>.6f}'.format(k, v)
                             for k, v in losses_np.items())
            logger.info(msg)

            if dist.get_rank() == 0 and self.visualizer:
                losses_np_v = losses_np.copy()
                losses_np_v.update({"lr": self.lr_scheduler()})
                self.visualizer.add_scalars("step", losses_np_v,
                                            self.iteration - 1)

    @paddle.no_grad()
    def valid(self):
        self.model.eval()
        logger.info(f"Valid Total Examples: {len(self.valid_loader.dataset)}")
        valid_losses = defaultdict(list)
        num_seen_utts = 1
        total_loss = 0.0
        for i, batch in enumerate(self.valid_loader):
H
Haoxin Ma 已提交
124
            utt, audio, audio_len, text, text_len = batch
H
Haoxin Ma 已提交
125 126
            loss, attention_loss, ctc_loss = self.model(audio, audio_len, text,
                                                        text_len)
127
            if paddle.isfinite(loss):
H
Haoxin Ma 已提交
128
                num_utts = batch[1].shape[0]
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
                num_seen_utts += num_utts
                total_loss += float(loss) * num_utts
                valid_losses['val_loss'].append(float(loss))
                if attention_loss:
                    valid_losses['val_att_loss'].append(float(attention_loss))
                if ctc_loss:
                    valid_losses['val_ctc_loss'].append(float(ctc_loss))

            if (i + 1) % self.config.training.log_interval == 0:
                valid_dump = {k: np.mean(v) for k, v in valid_losses.items()}
                valid_dump['val_history_loss'] = total_loss / num_seen_utts

                # logging
                msg = f"Valid: Rank: {dist.get_rank()}, "
                msg += "epoch: {}, ".format(self.epoch)
                msg += "step: {}, ".format(self.iteration)
                msg += "batch: {}/{}, ".format(i + 1, len(self.valid_loader))
                msg += ', '.join('{}: {:>.6f}'.format(k, v)
                                 for k, v in valid_dump.items())
                logger.info(msg)

        logger.info('Rank {} Val info val_loss {}'.format(
            dist.get_rank(), total_loss / num_seen_utts))
        return total_loss, num_seen_utts

    def train(self):
        """The training process control by step."""
        # !!!IMPORTANT!!!
        # Try to export the model by script, if fails, we should refine
        # the code to satisfy the script export requirements
        # script_model = paddle.jit.to_static(self.model)
        # script_model_path = str(self.checkpoint_dir / 'init')
        # paddle.jit.save(script_model, script_model_path)

        from_scratch = self.resume_or_scratch()
        if from_scratch:
            # save init model, i.e. 0 epoch
            self.save(tag='init')

        self.lr_scheduler.step(self.iteration)
        if self.parallel:
            self.train_loader.batch_sampler.set_epoch(self.epoch)

        logger.info(f"Train Total Examples: {len(self.train_loader.dataset)}")
        while self.epoch < self.config.training.n_epoch:
            self.model.train()
            try:
                data_start_time = time.time()
                for batch_index, batch in enumerate(self.train_loader):
                    dataload_time = time.time() - data_start_time
                    msg = "Train: Rank: {}, ".format(dist.get_rank())
                    msg += "epoch: {}, ".format(self.epoch)
                    msg += "step: {}, ".format(self.iteration)
                    msg += "batch : {}/{}, ".format(batch_index + 1,
                                                    len(self.train_loader))
                    msg += "lr: {:>.8f}, ".format(self.lr_scheduler())
                    msg += "data time: {:>.3f}s, ".format(dataload_time)
                    self.train_batch(batch_index, batch, msg)
                    data_start_time = time.time()
            except Exception as e:
                logger.error(e)
                raise e

            total_loss, num_seen_utts = self.valid()
            if dist.get_world_size() > 1:
                num_seen_utts = paddle.to_tensor(num_seen_utts)
                # the default operator in all_reduce function is sum.
                dist.all_reduce(num_seen_utts)
                total_loss = paddle.to_tensor(total_loss)
                dist.all_reduce(total_loss)
                cv_loss = total_loss / num_seen_utts
                cv_loss = float(cv_loss)
            else:
                cv_loss = total_loss / num_seen_utts

            logger.info(
                'Epoch {} Val info val_loss {}'.format(self.epoch, cv_loss))
            if self.visualizer:
                self.visualizer.add_scalars(
                    'epoch', {'cv_loss': cv_loss,
                              'lr': self.lr_scheduler()}, self.epoch)
            self.save(tag=self.epoch, infos={'val_loss': cv_loss})
            self.new_epoch()

    def setup_dataloader(self):
        config = self.config.clone()
        config.defrost()
H
Haoxin Ma 已提交
216
        config.collator.keep_transcription_text = False
217 218 219 220 221 222 223 224

        # train/valid dataset, return token ids
        config.data.manifest = config.data.train_manifest
        train_dataset = ManifestDataset.from_config(config)

        config.data.manifest = config.data.dev_manifest
        dev_dataset = ManifestDataset.from_config(config)

H
Haoxin Ma 已提交
225
        collate_fn_train = SpeechCollator.from_config(config)
H
Haoxin Ma 已提交
226

H
Haoxin Ma 已提交
227 228 229
        config.collator.augmentation_config = ""
        collate_fn_dev = SpeechCollator.from_config(config)

230 231 232
        if self.parallel:
            batch_sampler = SortagradDistributedBatchSampler(
                train_dataset,
H
Haoxin Ma 已提交
233
                batch_size=config.collator.batch_size,
234 235 236 237
                num_replicas=None,
                rank=None,
                shuffle=True,
                drop_last=True,
H
Haoxin Ma 已提交
238 239
                sortagrad=config.collator.sortagrad,
                shuffle_method=config.collator.shuffle_method)
240 241 242 243
        else:
            batch_sampler = SortagradBatchSampler(
                train_dataset,
                shuffle=True,
H
Haoxin Ma 已提交
244
                batch_size=config.collator.batch_size,
245
                drop_last=True,
H
Haoxin Ma 已提交
246 247
                sortagrad=config.collator.sortagrad,
                shuffle_method=config.collator.shuffle_method)
248 249 250
        self.train_loader = DataLoader(
            train_dataset,
            batch_sampler=batch_sampler,
H
Haoxin Ma 已提交
251 252
            collate_fn=collate_fn_train,
            num_workers=config.collator.num_workers, )
253 254
        self.valid_loader = DataLoader(
            dev_dataset,
H
Haoxin Ma 已提交
255
            batch_size=config.collator.batch_size,
256 257
            shuffle=False,
            drop_last=False,
H
Haoxin Ma 已提交
258
            collate_fn=collate_fn_dev)
259 260 261 262 263 264 265 266 267 268 269

        # test dataset, return raw text
        config.data.manifest = config.data.test_manifest
        # filter test examples, will cause less examples, but no mismatch with training
        # and can use large batch size , save training time, so filter test egs now.
        # config.data.min_input_len = 0.0  # second
        # config.data.max_input_len = float('inf')  # second
        # config.data.min_output_len = 0.0  # tokens
        # config.data.max_output_len = float('inf')  # tokens
        # config.data.min_output_input_ratio = 0.00
        # config.data.max_output_input_ratio = float('inf')
H
Haoxin Ma 已提交
270

271 272
        test_dataset = ManifestDataset.from_config(config)
        # return text ord id
H
Haoxin Ma 已提交
273
        config.collator.keep_transcription_text = True
H
Haoxin Ma 已提交
274
        config.collator.augmentation_config = ""
275 276 277 278 279
        self.test_loader = DataLoader(
            test_dataset,
            batch_size=config.decoding.batch_size,
            shuffle=False,
            drop_last=False,
H
Haoxin Ma 已提交
280
            collate_fn=SpeechCollator.from_config(config))
281 282 283 284 285 286
        logger.info("Setup train/valid/test Dataloader!")

    def setup_model(self):
        config = self.config
        model_conf = config.model
        model_conf.defrost()
H
Haoxin Ma 已提交
287 288
        model_conf.input_dim = self.train_loader.collate_fn.feature_size
        model_conf.output_dim = self.train_loader.collate_fn.vocab_size
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
        model_conf.freeze()
        model = U2Model.from_config(model_conf)

        if self.parallel:
            model = paddle.DataParallel(model)

        logger.info(f"{model}")
        layer_tools.print_params(model, logger.info)

        train_config = config.training
        optim_type = train_config.optim
        optim_conf = train_config.optim_conf
        scheduler_type = train_config.scheduler
        scheduler_conf = train_config.scheduler_conf

        grad_clip = ClipGradByGlobalNormWithLog(train_config.global_grad_clip)
        weight_decay = paddle.regularizer.L2Decay(optim_conf.weight_decay)

        if scheduler_type == 'expdecaylr':
            lr_scheduler = paddle.optimizer.lr.ExponentialDecay(
                learning_rate=optim_conf.lr,
                gamma=scheduler_conf.lr_decay,
                verbose=False)
        elif scheduler_type == 'warmuplr':
            lr_scheduler = WarmupLR(
                learning_rate=optim_conf.lr,
                warmup_steps=scheduler_conf.warmup_steps,
                verbose=False)
        else:
            raise ValueError(f"Not support scheduler: {scheduler_type}")

        if optim_type == 'adam':
            optimizer = paddle.optimizer.Adam(
                learning_rate=lr_scheduler,
                parameters=model.parameters(),
                weight_decay=weight_decay,
                grad_clip=grad_clip)
        else:
            raise ValueError(f"Not support optim: {optim_type}")

        self.model = model
        self.optimizer = optimizer
        self.lr_scheduler = lr_scheduler
        logger.info("Setup model/optimizer/lr_scheduler!")


class U2Tester(U2Trainer):
    @classmethod
    def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
        # decoding config
        default = CfgNode(
            dict(
                alpha=2.5,  # Coef of LM for beam search.
                beta=0.3,  # Coef of WC for beam search.
                cutoff_prob=1.0,  # Cutoff probability for pruning.
                cutoff_top_n=40,  # Cutoff number for pruning.
                lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm',  # Filepath for language model.
                decoding_method='attention',  # Decoding method. Options: 'attention', 'ctc_greedy_search',
                # 'ctc_prefix_beam_search', 'attention_rescoring'
                error_rate_type='wer',  # Error rate type for evaluation. Options `wer`, 'cer'
                num_proc_bsearch=8,  # # of CPUs for beam search.
                beam_size=10,  # Beam search width.
                batch_size=16,  # decoding batch size
                ctc_weight=0.0,  # ctc weight for attention rescoring decode mode.
                decoding_chunk_size=-1,  # decoding chunk size. Defaults to -1.
                # <0: for decoding, use full chunk.
                # >0: for decoding, use fixed chunk size as set.
                # 0: used for training, it's prohibited here. 
                num_decoding_left_chunks=-1,  # number of left chunks for decoding. Defaults to -1.
                simulate_streaming=False,  # simulate streaming inference. Defaults to False.
            ))

        if config is not None:
            config.merge_from_other_cfg(default)
        return default

    def __init__(self, config, args):
        super().__init__(config, args)

    def ordid2token(self, texts, texts_len):
        """ ord() id to chr() chr """
        trans = []
        for text, n in zip(texts, texts_len):
            n = n.numpy().item()
            ids = text[:n]
            trans.append(''.join([chr(i) for i in ids]))
        return trans

H
Haoxin Ma 已提交
377 378 379 380 381 382 383
    def compute_metrics(self,
                        utts,
                        audio,
                        audio_len,
                        texts,
                        texts_len,
                        fout=None):
384 385 386 387 388 389
        cfg = self.config.decoding
        errors_sum, len_refs, num_ins = 0.0, 0, 0
        errors_func = error_rate.char_errors if cfg.error_rate_type == 'cer' else error_rate.word_errors
        error_rate_func = error_rate.cer if cfg.error_rate_type == 'cer' else error_rate.wer

        start_time = time.time()
H
Haoxin Ma 已提交
390
        text_feature = self.test_loader.collate_fn.text_feature
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
        target_transcripts = self.ordid2token(texts, texts_len)
        result_transcripts = self.model.decode(
            audio,
            audio_len,
            text_feature=text_feature,
            decoding_method=cfg.decoding_method,
            lang_model_path=cfg.lang_model_path,
            beam_alpha=cfg.alpha,
            beam_beta=cfg.beta,
            beam_size=cfg.beam_size,
            cutoff_prob=cfg.cutoff_prob,
            cutoff_top_n=cfg.cutoff_top_n,
            num_processes=cfg.num_proc_bsearch,
            ctc_weight=cfg.ctc_weight,
            decoding_chunk_size=cfg.decoding_chunk_size,
            num_decoding_left_chunks=cfg.num_decoding_left_chunks,
            simulate_streaming=cfg.simulate_streaming)
        decode_time = time.time() - start_time

H
Haoxin Ma 已提交
410 411
        for utt, target, result in zip(utts, target_transcripts,
                                       result_transcripts):
412 413 414 415 416
            errors, len_ref = errors_func(target, result)
            errors_sum += errors
            len_refs += len_ref
            num_ins += 1
            if fout:
H
Haoxin Ma 已提交
417
                fout.write(utt + " " + result + "\n")
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
            logger.info("\nTarget Transcription: %s\nOutput Transcription: %s" %
                        (target, result))
            logger.info("One example error rate [%s] = %f" %
                        (cfg.error_rate_type, error_rate_func(target, result)))

        return dict(
            errors_sum=errors_sum,
            len_refs=len_refs,
            num_ins=num_ins,  # num examples
            error_rate=errors_sum / len_refs,
            error_rate_type=cfg.error_rate_type,
            num_frames=audio_len.sum().numpy().item(),
            decode_time=decode_time)

    @mp_tools.rank_zero_only
    @paddle.no_grad()
    def test(self):
        assert self.args.result_file
        self.model.eval()
        logger.info(f"Test Total Examples: {len(self.test_loader.dataset)}")

H
Haoxin Ma 已提交
439
        stride_ms = self.test_loader.collate_fn.stride_ms
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
        error_rate_type = None
        errors_sum, len_refs, num_ins = 0.0, 0, 0
        num_frames = 0.0
        num_time = 0.0
        with open(self.args.result_file, 'w') as fout:
            for i, batch in enumerate(self.test_loader):
                metrics = self.compute_metrics(*batch, fout=fout)
                num_frames += metrics['num_frames']
                num_time += metrics["decode_time"]
                errors_sum += metrics['errors_sum']
                len_refs += metrics['len_refs']
                num_ins += metrics['num_ins']
                error_rate_type = metrics['error_rate_type']
                rtf = num_time / (num_frames * stride_ms)
                logger.info(
                    "RTF: %f, Error rate [%s] (%d/?) = %f" %
                    (rtf, error_rate_type, num_ins, errors_sum / len_refs))

        rtf = num_time / (num_frames * stride_ms)
        msg = "Test: "
        msg += "epoch: {}, ".format(self.epoch)
        msg += "step: {}, ".format(self.iteration)
        msg += "RTF: {}, ".format(rtf)
        msg += "Final error rate [%s] (%d/%d) = %f" % (
            error_rate_type, num_ins, num_ins, errors_sum / len_refs)
        logger.info(msg)

        # test meta results
H
Hui Zhang 已提交
468
        err_meta_path = os.path.splitext(self.args.result_file)[0] + '.err'
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
        err_type_str = "{}".format(error_rate_type)
        with open(err_meta_path, 'w') as f:
            data = json.dumps({
                "epoch":
                self.epoch,
                "step":
                self.iteration,
                "rtf":
                rtf,
                error_rate_type:
                errors_sum / len_refs,
                "dataset_hour": (num_frames * stride_ms) / 1000.0 / 3600.0,
                "process_hour":
                num_time / 1000.0 / 3600.0,
                "num_examples":
                num_ins,
                "err_sum":
                errors_sum,
                "ref_len":
                len_refs,
H
Hui Zhang 已提交
489 490
                "decode_method":
                self.config.decoding.decoding_method,
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
            })
            f.write(data + '\n')

    def run_test(self):
        self.resume_or_scratch()
        try:
            self.test()
        except KeyboardInterrupt:
            sys.exit(-1)

    def load_inferspec(self):
        """infer model and input spec.

        Returns:
            nn.Layer: inference model
            List[paddle.static.InputSpec]: input spec.
        """
        from deepspeech.models.u2 import U2InferModel
        infer_model = U2InferModel.from_pretrained(self.test_loader.dataset,
                                                   self.config.model.clone(),
                                                   self.args.checkpoint_path)
H
Haoxin Ma 已提交
512
        feat_dim = self.test_loader.collate_fn.feature_size
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
        input_spec = [
            paddle.static.InputSpec(
                shape=[None, feat_dim, None],
                dtype='float32'),  # audio, [B,D,T]
            paddle.static.InputSpec(shape=[None],
                                    dtype='int64'),  # audio_length, [B]
        ]
        return infer_model, input_spec

    def export(self):
        infer_model, input_spec = self.load_inferspec()
        assert isinstance(input_spec, list), type(input_spec)
        infer_model.eval()
        static_model = paddle.jit.to_static(infer_model, input_spec=input_spec)
        logger.info(f"Export code: {static_model.forward.code}")
        paddle.jit.save(static_model, self.args.export_path)

    def run_export(self):
        try:
            self.export()
        except KeyboardInterrupt:
            sys.exit(-1)

    def setup(self):
        """Setup the experiment.
        """
        paddle.set_device(self.args.device)

        self.setup_output_dir()
        self.setup_checkpointer()

        self.setup_dataloader()
        self.setup_model()

        self.iteration = 0
        self.epoch = 0

    def setup_output_dir(self):
        """Create a directory used for output.
        """
        # output dir
        if self.args.output:
            output_dir = Path(self.args.output).expanduser()
            output_dir.mkdir(parents=True, exist_ok=True)
        else:
            output_dir = Path(
                self.args.checkpoint_path).expanduser().parent.parent
            output_dir.mkdir(parents=True, exist_ok=True)

        self.output_dir = output_dir