model.py 27.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains U2 model."""
import json
import os
import sys
import time
from collections import defaultdict
H
Hui Zhang 已提交
20
from collections import OrderedDict
21
from contextlib import nullcontext
22 23 24 25 26 27 28 29 30 31 32 33 34 35
from pathlib import Path
from typing import Optional

import numpy as np
import paddle
from paddle import distributed as dist
from paddle.io import DataLoader
from yacs.config import CfgNode

from deepspeech.io.collator import SpeechCollator
from deepspeech.io.dataset import ManifestDataset
from deepspeech.io.sampler import SortagradBatchSampler
from deepspeech.io.sampler import SortagradDistributedBatchSampler
from deepspeech.models.u2 import U2Model
36
from deepspeech.training.optimizer import OptimizerFactory
H
format  
Hui Zhang 已提交
37 38
from deepspeech.training.reporter import ObsScope
from deepspeech.training.reporter import report
39
from deepspeech.training.scheduler import LRSchedulerFactory
40
from deepspeech.training.timer import Timer
41
from deepspeech.training.trainer import Trainer
H
Hui Zhang 已提交
42
from deepspeech.utils import ctc_utils
43 44 45
from deepspeech.utils import error_rate
from deepspeech.utils import layer_tools
from deepspeech.utils import mp_tools
H
Hui Zhang 已提交
46
from deepspeech.utils import text_grid
H
Hui Zhang 已提交
47
from deepspeech.utils import utility
48
from deepspeech.utils.log import Log
H
Hui Zhang 已提交
49
from deepspeech.utils.utility import UpdateConfig
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

logger = Log(__name__).getlog()


class U2Trainer(Trainer):
    @classmethod
    def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
        # training config
        default = CfgNode(
            dict(
                n_epoch=50,  # train epochs
                log_interval=100,  # steps
                accum_grad=1,  # accum grad by # steps
                global_grad_clip=5.0,  # the global norm clip
            ))
        default.optim = 'adam'
        default.optim_conf = CfgNode(
            dict(
                lr=5e-4,  # learning rate
                weight_decay=1e-6,  # the coeff of weight decay
            ))
        default.scheduler = 'warmuplr'
        default.scheduler_conf = CfgNode(
            dict(
                warmup_steps=25000,
                lr_decay=1.0,  # learning rate decay
            ))

        if config is not None:
            config.merge_from_other_cfg(default)
        return default

    def __init__(self, config, args):
        super().__init__(config, args)

    def train_batch(self, batch_index, batch_data, msg):
        train_conf = self.config.training
        start = time.time()

89 90
        # forward
        utt, audio, audio_len, text, text_len = batch_data
H
Haoxin Ma 已提交
91 92
        loss, attention_loss, ctc_loss = self.model(audio, audio_len, text,
                                                    text_len)
93

94 95 96 97 98 99 100 101
        # loss div by `batch_size * accum_grad`
        loss /= train_conf.accum_grad
        losses_np = {'loss': float(loss) * train_conf.accum_grad}
        if attention_loss:
            losses_np['att_loss'] = float(attention_loss)
        if ctc_loss:
            losses_np['ctc_loss'] = float(ctc_loss)

102 103 104 105 106
        # loss backward
        if (batch_index + 1) % train_conf.accum_grad != 0:
            # Disable gradient synchronizations across DDP processes.
            # Within this context, gradients will be accumulated on module
            # variables, which will later be synchronized.
H
Hui Zhang 已提交
107 108
            # When using cpu w/o DDP, model does not have `no_sync`
            context = self.model.no_sync if self.parallel else nullcontext
109 110 111 112 113 114 115 116 117
        else:
            # Used for single gpu training and DDP gradient synchronization
            # processes.
            context = nullcontext
        with context():
            loss.backward()
            layer_tools.print_grads(self.model, print_func=None)

        # optimizer step
118 119 120 121 122 123 124 125
        if (batch_index + 1) % train_conf.accum_grad == 0:
            self.optimizer.step()
            self.optimizer.clear_grad()
            self.lr_scheduler.step()
            self.iteration += 1

        iteration_time = time.time() - start

H
Hui Zhang 已提交
126 127 128 129 130
        for k, v in losses_np.items():
            report(k, v)
        report("batch_size", self.config.collator.batch_size)
        report("accum", train_conf.accum_grad)
        report("step_cost", iteration_time)
131

H
Hui Zhang 已提交
132
        if (batch_index + 1) % train_conf.accum_grad == 0:
133 134 135 136 137 138 139 140 141 142 143 144 145 146
            if dist.get_rank() == 0 and self.visualizer:
                losses_np_v = losses_np.copy()
                losses_np_v.update({"lr": self.lr_scheduler()})
                self.visualizer.add_scalars("step", losses_np_v,
                                            self.iteration - 1)

    @paddle.no_grad()
    def valid(self):
        self.model.eval()
        logger.info(f"Valid Total Examples: {len(self.valid_loader.dataset)}")
        valid_losses = defaultdict(list)
        num_seen_utts = 1
        total_loss = 0.0
        for i, batch in enumerate(self.valid_loader):
H
Haoxin Ma 已提交
147
            utt, audio, audio_len, text, text_len = batch
H
Haoxin Ma 已提交
148 149
            loss, attention_loss, ctc_loss = self.model(audio, audio_len, text,
                                                        text_len)
150
            if paddle.isfinite(loss):
H
Haoxin Ma 已提交
151
                num_utts = batch[1].shape[0]
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
                num_seen_utts += num_utts
                total_loss += float(loss) * num_utts
                valid_losses['val_loss'].append(float(loss))
                if attention_loss:
                    valid_losses['val_att_loss'].append(float(attention_loss))
                if ctc_loss:
                    valid_losses['val_ctc_loss'].append(float(ctc_loss))

            if (i + 1) % self.config.training.log_interval == 0:
                valid_dump = {k: np.mean(v) for k, v in valid_losses.items()}
                valid_dump['val_history_loss'] = total_loss / num_seen_utts

                # logging
                msg = f"Valid: Rank: {dist.get_rank()}, "
                msg += "epoch: {}, ".format(self.epoch)
                msg += "step: {}, ".format(self.iteration)
                msg += "batch: {}/{}, ".format(i + 1, len(self.valid_loader))
                msg += ', '.join('{}: {:>.6f}'.format(k, v)
                                 for k, v in valid_dump.items())
                logger.info(msg)

        logger.info('Rank {} Val info val_loss {}'.format(
            dist.get_rank(), total_loss / num_seen_utts))
        return total_loss, num_seen_utts

    def train(self):
        """The training process control by step."""
        # !!!IMPORTANT!!!
        # Try to export the model by script, if fails, we should refine
        # the code to satisfy the script export requirements
        # script_model = paddle.jit.to_static(self.model)
        # script_model_path = str(self.checkpoint_dir / 'init')
        # paddle.jit.save(script_model, script_model_path)

186
        self.before_train()
187 188 189

        logger.info(f"Train Total Examples: {len(self.train_loader.dataset)}")
        while self.epoch < self.config.training.n_epoch:
190 191 192
            with Timer("Epoch-Train Time Cost: {}"):
                self.model.train()
                try:
193
                    data_start_time = time.time()
194 195
                    for batch_index, batch in enumerate(self.train_loader):
                        dataload_time = time.time() - data_start_time
H
Hui Zhang 已提交
196 197 198 199 200 201 202 203 204
                        msg = "Train:"
                        observation = OrderedDict()
                        with ObsScope(observation):
                            report("Rank", dist.get_rank())
                            report("epoch", self.epoch)
                            report('step', self.iteration)
                            report("lr", self.lr_scheduler())
                            self.train_batch(batch_index, batch, msg)
                            self.after_train_batch()
H
Hui Zhang 已提交
205 206
                            report('iter', batch_index + 1)
                            report('total', len(self.train_loader))
H
Hui Zhang 已提交
207
                            report('reader_cost', dataload_time)
H
format  
Hui Zhang 已提交
208 209
                        observation['batch_cost'] = observation[
                            'reader_cost'] + observation['step_cost']
H
Hui Zhang 已提交
210
                        observation['samples'] = observation['batch_size']
H
format  
Hui Zhang 已提交
211 212
                        observation['ips[sent./sec]'] = observation[
                            'batch_size'] / observation['batch_cost']
H
Hui Zhang 已提交
213 214
                        for k, v in observation.items():
                            msg += f" {k}: "
H
format  
Hui Zhang 已提交
215 216
                            msg += f"{v:>.8f}" if isinstance(v,
                                                             float) else f"{v}"
H
Hui Zhang 已提交
217
                            msg += ","
H
Hui Zhang 已提交
218 219 220
                        if (batch_index + 1
                            ) % self.config.training.log_interval == 0:
                            logger.info(msg)
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
                        data_start_time = time.time()
                except Exception as e:
                    logger.error(e)
                    raise e

            with Timer("Eval Time Cost: {}"):
                total_loss, num_seen_utts = self.valid()
                if dist.get_world_size() > 1:
                    num_seen_utts = paddle.to_tensor(num_seen_utts)
                    # the default operator in all_reduce function is sum.
                    dist.all_reduce(num_seen_utts)
                    total_loss = paddle.to_tensor(total_loss)
                    dist.all_reduce(total_loss)
                    cv_loss = total_loss / num_seen_utts
                    cv_loss = float(cv_loss)
                else:
                    cv_loss = total_loss / num_seen_utts
238 239 240 241 242 243 244 245 246 247 248 249 250

            logger.info(
                'Epoch {} Val info val_loss {}'.format(self.epoch, cv_loss))
            if self.visualizer:
                self.visualizer.add_scalars(
                    'epoch', {'cv_loss': cv_loss,
                              'lr': self.lr_scheduler()}, self.epoch)
            self.save(tag=self.epoch, infos={'val_loss': cv_loss})
            self.new_epoch()

    def setup_dataloader(self):
        config = self.config.clone()
        config.defrost()
H
Haoxin Ma 已提交
251
        config.collator.keep_transcription_text = False
252 253 254 255 256 257 258 259

        # train/valid dataset, return token ids
        config.data.manifest = config.data.train_manifest
        train_dataset = ManifestDataset.from_config(config)

        config.data.manifest = config.data.dev_manifest
        dev_dataset = ManifestDataset.from_config(config)

H
Haoxin Ma 已提交
260
        collate_fn_train = SpeechCollator.from_config(config)
H
Haoxin Ma 已提交
261

H
Haoxin Ma 已提交
262 263 264
        config.collator.augmentation_config = ""
        collate_fn_dev = SpeechCollator.from_config(config)

265 266 267
        if self.parallel:
            batch_sampler = SortagradDistributedBatchSampler(
                train_dataset,
H
Haoxin Ma 已提交
268
                batch_size=config.collator.batch_size,
269 270 271 272
                num_replicas=None,
                rank=None,
                shuffle=True,
                drop_last=True,
H
Haoxin Ma 已提交
273 274
                sortagrad=config.collator.sortagrad,
                shuffle_method=config.collator.shuffle_method)
275 276 277 278
        else:
            batch_sampler = SortagradBatchSampler(
                train_dataset,
                shuffle=True,
H
Haoxin Ma 已提交
279
                batch_size=config.collator.batch_size,
280
                drop_last=True,
H
Haoxin Ma 已提交
281 282
                sortagrad=config.collator.sortagrad,
                shuffle_method=config.collator.shuffle_method)
283 284 285
        self.train_loader = DataLoader(
            train_dataset,
            batch_sampler=batch_sampler,
H
Haoxin Ma 已提交
286 287
            collate_fn=collate_fn_train,
            num_workers=config.collator.num_workers, )
288 289
        self.valid_loader = DataLoader(
            dev_dataset,
H
Haoxin Ma 已提交
290
            batch_size=config.collator.batch_size,
291 292
            shuffle=False,
            drop_last=False,
H
Haoxin Ma 已提交
293
            collate_fn=collate_fn_dev)
294 295 296 297 298

        # test dataset, return raw text
        config.data.manifest = config.data.test_manifest
        # filter test examples, will cause less examples, but no mismatch with training
        # and can use large batch size , save training time, so filter test egs now.
H
Hui Zhang 已提交
299 300 301 302 303 304
        config.data.min_input_len = 0.0  # second
        config.data.max_input_len = float('inf')  # second
        config.data.min_output_len = 0.0  # tokens
        config.data.max_output_len = float('inf')  # tokens
        config.data.min_output_input_ratio = 0.00
        config.data.max_output_input_ratio = float('inf')
H
Haoxin Ma 已提交
305

306 307
        test_dataset = ManifestDataset.from_config(config)
        # return text ord id
H
Haoxin Ma 已提交
308
        config.collator.keep_transcription_text = True
H
Haoxin Ma 已提交
309
        config.collator.augmentation_config = ""
310 311 312 313 314
        self.test_loader = DataLoader(
            test_dataset,
            batch_size=config.decoding.batch_size,
            shuffle=False,
            drop_last=False,
H
Haoxin Ma 已提交
315
            collate_fn=SpeechCollator.from_config(config))
H
Hui Zhang 已提交
316 317 318 319 320 321 322 323 324
        # return text token id
        config.collator.keep_transcription_text = False
        self.align_loader = DataLoader(
            test_dataset,
            batch_size=config.decoding.batch_size,
            shuffle=False,
            drop_last=False,
            collate_fn=SpeechCollator.from_config(config))
        logger.info("Setup train/valid/test/align Dataloader!")
325 326 327 328

    def setup_model(self):
        config = self.config
        model_conf = config.model
H
Hui Zhang 已提交
329 330 331 332 333

        with UpdateConfig(model_conf):
            model_conf.input_dim = self.train_loader.collate_fn.feature_size
            model_conf.output_dim = self.train_loader.collate_fn.vocab_size

334 335 336 337 338 339 340 341 342 343 344 345 346 347
        model = U2Model.from_config(model_conf)

        if self.parallel:
            model = paddle.DataParallel(model)

        logger.info(f"{model}")
        layer_tools.print_params(model, logger.info)

        train_config = config.training
        optim_type = train_config.optim
        optim_conf = train_config.optim_conf
        scheduler_type = train_config.scheduler
        scheduler_conf = train_config.scheduler_conf

348
        scheduler_args = {
H
Hui Zhang 已提交
349 350 351 352 353
            "learning_rate": optim_conf.lr,
            "verbose": False,
            "warmup_steps": scheduler_conf.warmup_steps,
            "gamma": scheduler_conf.lr_decay,
            "d_model": model_conf.encoder_conf.output_size,
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
        }
        lr_scheduler = LRSchedulerFactory.from_args(scheduler_type,
                                                    scheduler_args)

        def optimizer_args(
                config,
                parameters,
                lr_scheduler=None, ):
            train_config = config.training
            optim_type = train_config.optim
            optim_conf = train_config.optim_conf
            scheduler_type = train_config.scheduler
            scheduler_conf = train_config.scheduler_conf
            return {
                "grad_clip": train_config.global_grad_clip,
                "weight_decay": optim_conf.weight_decay,
                "learning_rate": lr_scheduler
                if lr_scheduler else optim_conf.lr,
                "parameters": parameters,
H
Hui Zhang 已提交
373 374 375
                "epsilon": 1e-9 if optim_type == 'noam' else None,
                "beta1": 0.9 if optim_type == 'noam' else None,
                "beat2": 0.98 if optim_type == 'noam' else None,
376 377 378 379 380
            }

        optimzer_args = optimizer_args(config, model.parameters(), lr_scheduler)
        optimizer = OptimizerFactory.from_args(optim_type, optimzer_args)

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
        self.model = model
        self.optimizer = optimizer
        self.lr_scheduler = lr_scheduler
        logger.info("Setup model/optimizer/lr_scheduler!")


class U2Tester(U2Trainer):
    @classmethod
    def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
        # decoding config
        default = CfgNode(
            dict(
                alpha=2.5,  # Coef of LM for beam search.
                beta=0.3,  # Coef of WC for beam search.
                cutoff_prob=1.0,  # Cutoff probability for pruning.
                cutoff_top_n=40,  # Cutoff number for pruning.
                lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm',  # Filepath for language model.
                decoding_method='attention',  # Decoding method. Options: 'attention', 'ctc_greedy_search',
                # 'ctc_prefix_beam_search', 'attention_rescoring'
                error_rate_type='wer',  # Error rate type for evaluation. Options `wer`, 'cer'
                num_proc_bsearch=8,  # # of CPUs for beam search.
                beam_size=10,  # Beam search width.
                batch_size=16,  # decoding batch size
                ctc_weight=0.0,  # ctc weight for attention rescoring decode mode.
                decoding_chunk_size=-1,  # decoding chunk size. Defaults to -1.
                # <0: for decoding, use full chunk.
                # >0: for decoding, use fixed chunk size as set.
H
Hui Zhang 已提交
408
                # 0: used for training, it's prohibited here.
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
                num_decoding_left_chunks=-1,  # number of left chunks for decoding. Defaults to -1.
                simulate_streaming=False,  # simulate streaming inference. Defaults to False.
            ))

        if config is not None:
            config.merge_from_other_cfg(default)
        return default

    def __init__(self, config, args):
        super().__init__(config, args)

    def ordid2token(self, texts, texts_len):
        """ ord() id to chr() chr """
        trans = []
        for text, n in zip(texts, texts_len):
            n = n.numpy().item()
            ids = text[:n]
            trans.append(''.join([chr(i) for i in ids]))
        return trans

H
Haoxin Ma 已提交
429 430 431 432 433 434 435
    def compute_metrics(self,
                        utts,
                        audio,
                        audio_len,
                        texts,
                        texts_len,
                        fout=None):
436 437 438 439 440 441
        cfg = self.config.decoding
        errors_sum, len_refs, num_ins = 0.0, 0, 0
        errors_func = error_rate.char_errors if cfg.error_rate_type == 'cer' else error_rate.word_errors
        error_rate_func = error_rate.cer if cfg.error_rate_type == 'cer' else error_rate.wer

        start_time = time.time()
H
Haoxin Ma 已提交
442
        text_feature = self.test_loader.collate_fn.text_feature
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
        target_transcripts = self.ordid2token(texts, texts_len)
        result_transcripts = self.model.decode(
            audio,
            audio_len,
            text_feature=text_feature,
            decoding_method=cfg.decoding_method,
            lang_model_path=cfg.lang_model_path,
            beam_alpha=cfg.alpha,
            beam_beta=cfg.beta,
            beam_size=cfg.beam_size,
            cutoff_prob=cfg.cutoff_prob,
            cutoff_top_n=cfg.cutoff_top_n,
            num_processes=cfg.num_proc_bsearch,
            ctc_weight=cfg.ctc_weight,
            decoding_chunk_size=cfg.decoding_chunk_size,
            num_decoding_left_chunks=cfg.num_decoding_left_chunks,
            simulate_streaming=cfg.simulate_streaming)
        decode_time = time.time() - start_time

H
Haoxin Ma 已提交
462 463
        for utt, target, result in zip(utts, target_transcripts,
                                       result_transcripts):
464 465 466 467 468
            errors, len_ref = errors_func(target, result)
            errors_sum += errors
            len_refs += len_ref
            num_ins += 1
            if fout:
H
Haoxin Ma 已提交
469
                fout.write(utt + " " + result + "\n")
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
            logger.info("\nTarget Transcription: %s\nOutput Transcription: %s" %
                        (target, result))
            logger.info("One example error rate [%s] = %f" %
                        (cfg.error_rate_type, error_rate_func(target, result)))

        return dict(
            errors_sum=errors_sum,
            len_refs=len_refs,
            num_ins=num_ins,  # num examples
            error_rate=errors_sum / len_refs,
            error_rate_type=cfg.error_rate_type,
            num_frames=audio_len.sum().numpy().item(),
            decode_time=decode_time)

    @mp_tools.rank_zero_only
    @paddle.no_grad()
    def test(self):
        assert self.args.result_file
        self.model.eval()
        logger.info(f"Test Total Examples: {len(self.test_loader.dataset)}")

H
Haoxin Ma 已提交
491
        stride_ms = self.test_loader.collate_fn.stride_ms
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
        error_rate_type = None
        errors_sum, len_refs, num_ins = 0.0, 0, 0
        num_frames = 0.0
        num_time = 0.0
        with open(self.args.result_file, 'w') as fout:
            for i, batch in enumerate(self.test_loader):
                metrics = self.compute_metrics(*batch, fout=fout)
                num_frames += metrics['num_frames']
                num_time += metrics["decode_time"]
                errors_sum += metrics['errors_sum']
                len_refs += metrics['len_refs']
                num_ins += metrics['num_ins']
                error_rate_type = metrics['error_rate_type']
                rtf = num_time / (num_frames * stride_ms)
                logger.info(
                    "RTF: %f, Error rate [%s] (%d/?) = %f" %
                    (rtf, error_rate_type, num_ins, errors_sum / len_refs))

        rtf = num_time / (num_frames * stride_ms)
        msg = "Test: "
        msg += "epoch: {}, ".format(self.epoch)
        msg += "step: {}, ".format(self.iteration)
        msg += "RTF: {}, ".format(rtf)
        msg += "Final error rate [%s] (%d/%d) = %f" % (
            error_rate_type, num_ins, num_ins, errors_sum / len_refs)
        logger.info(msg)

        # test meta results
H
Hui Zhang 已提交
520
        err_meta_path = os.path.splitext(self.args.result_file)[0] + '.err'
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
        err_type_str = "{}".format(error_rate_type)
        with open(err_meta_path, 'w') as f:
            data = json.dumps({
                "epoch":
                self.epoch,
                "step":
                self.iteration,
                "rtf":
                rtf,
                error_rate_type:
                errors_sum / len_refs,
                "dataset_hour": (num_frames * stride_ms) / 1000.0 / 3600.0,
                "process_hour":
                num_time / 1000.0 / 3600.0,
                "num_examples":
                num_ins,
                "err_sum":
                errors_sum,
                "ref_len":
                len_refs,
H
Hui Zhang 已提交
541 542
                "decode_method":
                self.config.decoding.decoding_method,
543 544 545 546 547 548 549 550 551 552
            })
            f.write(data + '\n')

    def run_test(self):
        self.resume_or_scratch()
        try:
            self.test()
        except KeyboardInterrupt:
            sys.exit(-1)

H
Hui Zhang 已提交
553 554 555 556 557 558 559
    @paddle.no_grad()
    def align(self):
        if self.config.decoding.batch_size > 1:
            logger.fatal('alignment mode must be running with batch_size == 1')
            sys.exit(1)

        # xxx.align
H
Hui Zhang 已提交
560 561
        assert self.args.result_file and self.args.result_file.endswith(
            '.align')
H
Hui Zhang 已提交
562 563

        self.model.eval()
H
Hui Zhang 已提交
564
        logger.info(f"Align Total Examples: {len(self.align_loader.dataset)}")
H
Hui Zhang 已提交
565

H
Hui Zhang 已提交
566 567
        stride_ms = self.align_loader.collate_fn.stride_ms
        token_dict = self.align_loader.collate_fn.vocab_list
H
Hui Zhang 已提交
568
        with open(self.args.result_file, 'w') as fout:
H
Hui Zhang 已提交
569
            # one example in batch
H
Hui Zhang 已提交
570
            for i, batch in enumerate(self.align_loader):
H
Hui Zhang 已提交
571
                key, feat, feats_length, target, target_length = batch
H
Hui Zhang 已提交
572

H
Hui Zhang 已提交
573 574 575
                # 1. Encoder
                encoder_out, encoder_mask = self.model._forward_encoder(
                    feat, feats_length)  # (B, maxlen, encoder_dim)
H
Hui Zhang 已提交
576
                maxlen = encoder_out.shape[1]
H
Hui Zhang 已提交
577 578 579 580 581 582 583
                ctc_probs = self.model.ctc.log_softmax(
                    encoder_out)  # (1, maxlen, vocab_size)

                # 2. alignment
                ctc_probs = ctc_probs.squeeze(0)
                target = target.squeeze(0)
                alignment = ctc_utils.forced_align(ctc_probs, target)
584
                logger.info(f"align ids: {key[0]} {alignment}")
H
Hui Zhang 已提交
585 586 587 588 589
                fout.write('{} {}\n'.format(key[0], alignment))

                # 3. gen praat
                # segment alignment
                align_segs = text_grid.segment_alignment(alignment)
590
                logger.info(f"align tokens: {key[0]}, {align_segs}")
H
Hui Zhang 已提交
591
                # IntervalTier, List["start end token\n"]
H
Hui Zhang 已提交
592
                subsample = utility.get_subsample(self.config)
H
Hui Zhang 已提交
593 594
                tierformat = text_grid.align_to_tierformat(
                    align_segs, subsample, token_dict)
H
Hui Zhang 已提交
595
                # write tier
596 597 598 599
                align_output_path = Path(self.args.result_file).parent / "align"
                align_output_path.mkdir(parents=True, exist_ok=True)
                tier_path = align_output_path / (key[0] + ".tier")
                with tier_path.open('w') as f:
H
Hui Zhang 已提交
600
                    f.writelines(tierformat)
H
Hui Zhang 已提交
601
                # write textgrid
602
                textgrid_path = align_output_path / (key[0] + ".TextGrid")
H
Hui Zhang 已提交
603 604 605 606
                second_per_frame = 1. / (1000. /
                                         stride_ms)  # 25ms window, 10ms stride
                second_per_example = (
                    len(alignment) + 1) * subsample * second_per_frame
H
Hui Zhang 已提交
607
                text_grid.generate_textgrid(
H
Hui Zhang 已提交
608
                    maxtime=second_per_example,
H
Hui Zhang 已提交
609
                    intervals=tierformat,
610
                    output=str(textgrid_path))
H
Hui Zhang 已提交
611 612 613 614 615 616 617 618

    def run_align(self):
        self.resume_or_scratch()
        try:
            self.align()
        except KeyboardInterrupt:
            sys.exit(-1)

619 620 621 622 623 624 625 626
    def load_inferspec(self):
        """infer model and input spec.

        Returns:
            nn.Layer: inference model
            List[paddle.static.InputSpec]: input spec.
        """
        from deepspeech.models.u2 import U2InferModel
H
Haoxin Ma 已提交
627
        infer_model = U2InferModel.from_pretrained(self.test_loader,
628 629
                                                   self.config.model.clone(),
                                                   self.args.checkpoint_path)
H
Haoxin Ma 已提交
630
        feat_dim = self.test_loader.collate_fn.feature_size
631
        input_spec = [
632 633 634
            paddle.static.InputSpec(shape=[1, None, feat_dim],
                                    dtype='float32'),  # audio, [B,T,D]
            paddle.static.InputSpec(shape=[1],
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
                                    dtype='int64'),  # audio_length, [B]
        ]
        return infer_model, input_spec

    def export(self):
        infer_model, input_spec = self.load_inferspec()
        assert isinstance(input_spec, list), type(input_spec)
        infer_model.eval()
        static_model = paddle.jit.to_static(infer_model, input_spec=input_spec)
        logger.info(f"Export code: {static_model.forward.code}")
        paddle.jit.save(static_model, self.args.export_path)

    def run_export(self):
        try:
            self.export()
        except KeyboardInterrupt:
            sys.exit(-1)

    def setup(self):
        """Setup the experiment.
        """
656
        paddle.set_device('gpu' if self.args.nprocs > 0 else 'cpu')
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679

        self.setup_output_dir()
        self.setup_checkpointer()

        self.setup_dataloader()
        self.setup_model()

        self.iteration = 0
        self.epoch = 0

    def setup_output_dir(self):
        """Create a directory used for output.
        """
        # output dir
        if self.args.output:
            output_dir = Path(self.args.output).expanduser()
            output_dir.mkdir(parents=True, exist_ok=True)
        else:
            output_dir = Path(
                self.args.checkpoint_path).expanduser().parent.parent
            output_dir.mkdir(parents=True, exist_ok=True)

        self.output_dir = output_dir