model.py 26.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains U2 model."""
import json
import os
import sys
import time
from collections import defaultdict
20
from contextlib import nullcontext
21 22 23 24 25 26 27 28 29 30 31 32 33 34
from pathlib import Path
from typing import Optional

import numpy as np
import paddle
from paddle import distributed as dist
from paddle.io import DataLoader
from yacs.config import CfgNode

from deepspeech.io.collator import SpeechCollator
from deepspeech.io.dataset import ManifestDataset
from deepspeech.io.sampler import SortagradBatchSampler
from deepspeech.io.sampler import SortagradDistributedBatchSampler
from deepspeech.models.u2 import U2Model
35 36
from deepspeech.training.optimizer import OptimizerFactory
from deepspeech.training.scheduler import LRSchedulerFactory
37
from deepspeech.training.trainer import Trainer
H
Hui Zhang 已提交
38
from deepspeech.utils import ctc_utils
39 40 41
from deepspeech.utils import error_rate
from deepspeech.utils import layer_tools
from deepspeech.utils import mp_tools
H
Hui Zhang 已提交
42
from deepspeech.utils import text_grid
H
Hui Zhang 已提交
43
from deepspeech.utils import utility
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
from deepspeech.utils.log import Log

logger = Log(__name__).getlog()


class U2Trainer(Trainer):
    @classmethod
    def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
        # training config
        default = CfgNode(
            dict(
                n_epoch=50,  # train epochs
                log_interval=100,  # steps
                accum_grad=1,  # accum grad by # steps
                global_grad_clip=5.0,  # the global norm clip
            ))
        default.optim = 'adam'
        default.optim_conf = CfgNode(
            dict(
                lr=5e-4,  # learning rate
                weight_decay=1e-6,  # the coeff of weight decay
            ))
        default.scheduler = 'warmuplr'
        default.scheduler_conf = CfgNode(
            dict(
                warmup_steps=25000,
                lr_decay=1.0,  # learning rate decay
            ))

        if config is not None:
            config.merge_from_other_cfg(default)
        return default

    def __init__(self, config, args):
        super().__init__(config, args)

    def train_batch(self, batch_index, batch_data, msg):
        train_conf = self.config.training
        start = time.time()

84 85
        # forward
        utt, audio, audio_len, text, text_len = batch_data
H
Haoxin Ma 已提交
86 87
        loss, attention_loss, ctc_loss = self.model(audio, audio_len, text,
                                                    text_len)
88

89 90 91 92 93 94 95 96
        # loss div by `batch_size * accum_grad`
        loss /= train_conf.accum_grad
        losses_np = {'loss': float(loss) * train_conf.accum_grad}
        if attention_loss:
            losses_np['att_loss'] = float(attention_loss)
        if ctc_loss:
            losses_np['ctc_loss'] = float(ctc_loss)

97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
        # loss backward
        if (batch_index + 1) % train_conf.accum_grad != 0:
            # Disable gradient synchronizations across DDP processes.
            # Within this context, gradients will be accumulated on module
            # variables, which will later be synchronized.
            context = self.model.no_sync
        else:
            # Used for single gpu training and DDP gradient synchronization
            # processes.
            context = nullcontext
        with context():
            loss.backward()
            layer_tools.print_grads(self.model, print_func=None)

        # optimizer step
112 113 114 115 116 117 118 119 120 121
        if (batch_index + 1) % train_conf.accum_grad == 0:
            self.optimizer.step()
            self.optimizer.clear_grad()
            self.lr_scheduler.step()
            self.iteration += 1

        iteration_time = time.time() - start

        if (batch_index + 1) % train_conf.log_interval == 0:
            msg += "train time: {:>.3f}s, ".format(iteration_time)
H
Haoxin Ma 已提交
122
            msg += "batch size: {}, ".format(self.config.collator.batch_size)
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
            msg += "accum: {}, ".format(train_conf.accum_grad)
            msg += ', '.join('{}: {:>.6f}'.format(k, v)
                             for k, v in losses_np.items())
            logger.info(msg)

            if dist.get_rank() == 0 and self.visualizer:
                losses_np_v = losses_np.copy()
                losses_np_v.update({"lr": self.lr_scheduler()})
                self.visualizer.add_scalars("step", losses_np_v,
                                            self.iteration - 1)

    @paddle.no_grad()
    def valid(self):
        self.model.eval()
        logger.info(f"Valid Total Examples: {len(self.valid_loader.dataset)}")
        valid_losses = defaultdict(list)
        num_seen_utts = 1
        total_loss = 0.0
        for i, batch in enumerate(self.valid_loader):
H
Haoxin Ma 已提交
142
            utt, audio, audio_len, text, text_len = batch
H
Haoxin Ma 已提交
143 144
            loss, attention_loss, ctc_loss = self.model(audio, audio_len, text,
                                                        text_len)
145
            if paddle.isfinite(loss):
H
Haoxin Ma 已提交
146
                num_utts = batch[1].shape[0]
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
                num_seen_utts += num_utts
                total_loss += float(loss) * num_utts
                valid_losses['val_loss'].append(float(loss))
                if attention_loss:
                    valid_losses['val_att_loss'].append(float(attention_loss))
                if ctc_loss:
                    valid_losses['val_ctc_loss'].append(float(ctc_loss))

            if (i + 1) % self.config.training.log_interval == 0:
                valid_dump = {k: np.mean(v) for k, v in valid_losses.items()}
                valid_dump['val_history_loss'] = total_loss / num_seen_utts

                # logging
                msg = f"Valid: Rank: {dist.get_rank()}, "
                msg += "epoch: {}, ".format(self.epoch)
                msg += "step: {}, ".format(self.iteration)
                msg += "batch: {}/{}, ".format(i + 1, len(self.valid_loader))
                msg += ', '.join('{}: {:>.6f}'.format(k, v)
                                 for k, v in valid_dump.items())
                logger.info(msg)

        logger.info('Rank {} Val info val_loss {}'.format(
            dist.get_rank(), total_loss / num_seen_utts))
        return total_loss, num_seen_utts

    def train(self):
        """The training process control by step."""
        # !!!IMPORTANT!!!
        # Try to export the model by script, if fails, we should refine
        # the code to satisfy the script export requirements
        # script_model = paddle.jit.to_static(self.model)
        # script_model_path = str(self.checkpoint_dir / 'init')
        # paddle.jit.save(script_model, script_model_path)

        from_scratch = self.resume_or_scratch()
        if from_scratch:
            # save init model, i.e. 0 epoch
            self.save(tag='init')

        self.lr_scheduler.step(self.iteration)
        if self.parallel:
            self.train_loader.batch_sampler.set_epoch(self.epoch)

        logger.info(f"Train Total Examples: {len(self.train_loader.dataset)}")
        while self.epoch < self.config.training.n_epoch:
            self.model.train()
            try:
                data_start_time = time.time()
                for batch_index, batch in enumerate(self.train_loader):
                    dataload_time = time.time() - data_start_time
                    msg = "Train: Rank: {}, ".format(dist.get_rank())
                    msg += "epoch: {}, ".format(self.epoch)
                    msg += "step: {}, ".format(self.iteration)
                    msg += "batch : {}/{}, ".format(batch_index + 1,
                                                    len(self.train_loader))
                    msg += "lr: {:>.8f}, ".format(self.lr_scheduler())
                    msg += "data time: {:>.3f}s, ".format(dataload_time)
                    self.train_batch(batch_index, batch, msg)
                    data_start_time = time.time()
            except Exception as e:
                logger.error(e)
                raise e

            total_loss, num_seen_utts = self.valid()
            if dist.get_world_size() > 1:
                num_seen_utts = paddle.to_tensor(num_seen_utts)
                # the default operator in all_reduce function is sum.
                dist.all_reduce(num_seen_utts)
                total_loss = paddle.to_tensor(total_loss)
                dist.all_reduce(total_loss)
                cv_loss = total_loss / num_seen_utts
                cv_loss = float(cv_loss)
            else:
                cv_loss = total_loss / num_seen_utts

            logger.info(
                'Epoch {} Val info val_loss {}'.format(self.epoch, cv_loss))
            if self.visualizer:
                self.visualizer.add_scalars(
                    'epoch', {'cv_loss': cv_loss,
                              'lr': self.lr_scheduler()}, self.epoch)
            self.save(tag=self.epoch, infos={'val_loss': cv_loss})
            self.new_epoch()

    def setup_dataloader(self):
        config = self.config.clone()
        config.defrost()
H
Haoxin Ma 已提交
234
        config.collator.keep_transcription_text = False
235 236 237 238 239 240 241 242

        # train/valid dataset, return token ids
        config.data.manifest = config.data.train_manifest
        train_dataset = ManifestDataset.from_config(config)

        config.data.manifest = config.data.dev_manifest
        dev_dataset = ManifestDataset.from_config(config)

H
Haoxin Ma 已提交
243
        collate_fn_train = SpeechCollator.from_config(config)
H
Haoxin Ma 已提交
244

H
Haoxin Ma 已提交
245 246 247
        config.collator.augmentation_config = ""
        collate_fn_dev = SpeechCollator.from_config(config)

248 249 250
        if self.parallel:
            batch_sampler = SortagradDistributedBatchSampler(
                train_dataset,
H
Haoxin Ma 已提交
251
                batch_size=config.collator.batch_size,
252 253 254 255
                num_replicas=None,
                rank=None,
                shuffle=True,
                drop_last=True,
H
Haoxin Ma 已提交
256 257
                sortagrad=config.collator.sortagrad,
                shuffle_method=config.collator.shuffle_method)
258 259 260 261
        else:
            batch_sampler = SortagradBatchSampler(
                train_dataset,
                shuffle=True,
H
Haoxin Ma 已提交
262
                batch_size=config.collator.batch_size,
263
                drop_last=True,
H
Haoxin Ma 已提交
264 265
                sortagrad=config.collator.sortagrad,
                shuffle_method=config.collator.shuffle_method)
266 267 268
        self.train_loader = DataLoader(
            train_dataset,
            batch_sampler=batch_sampler,
H
Haoxin Ma 已提交
269 270
            collate_fn=collate_fn_train,
            num_workers=config.collator.num_workers, )
271 272
        self.valid_loader = DataLoader(
            dev_dataset,
H
Haoxin Ma 已提交
273
            batch_size=config.collator.batch_size,
274 275
            shuffle=False,
            drop_last=False,
H
Haoxin Ma 已提交
276
            collate_fn=collate_fn_dev)
277 278 279 280 281

        # test dataset, return raw text
        config.data.manifest = config.data.test_manifest
        # filter test examples, will cause less examples, but no mismatch with training
        # and can use large batch size , save training time, so filter test egs now.
H
Hui Zhang 已提交
282 283 284 285 286 287
        config.data.min_input_len = 0.0  # second
        config.data.max_input_len = float('inf')  # second
        config.data.min_output_len = 0.0  # tokens
        config.data.max_output_len = float('inf')  # tokens
        config.data.min_output_input_ratio = 0.00
        config.data.max_output_input_ratio = float('inf')
H
Haoxin Ma 已提交
288

289 290
        test_dataset = ManifestDataset.from_config(config)
        # return text ord id
H
Haoxin Ma 已提交
291
        config.collator.keep_transcription_text = True
H
Haoxin Ma 已提交
292
        config.collator.augmentation_config = ""
293 294 295 296 297
        self.test_loader = DataLoader(
            test_dataset,
            batch_size=config.decoding.batch_size,
            shuffle=False,
            drop_last=False,
H
Haoxin Ma 已提交
298
            collate_fn=SpeechCollator.from_config(config))
H
Hui Zhang 已提交
299 300 301 302 303 304 305 306 307
        # return text token id
        config.collator.keep_transcription_text = False
        self.align_loader = DataLoader(
            test_dataset,
            batch_size=config.decoding.batch_size,
            shuffle=False,
            drop_last=False,
            collate_fn=SpeechCollator.from_config(config))
        logger.info("Setup train/valid/test/align Dataloader!")
308 309 310 311 312

    def setup_model(self):
        config = self.config
        model_conf = config.model
        model_conf.defrost()
H
Haoxin Ma 已提交
313 314
        model_conf.input_dim = self.train_loader.collate_fn.feature_size
        model_conf.output_dim = self.train_loader.collate_fn.vocab_size
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
        model_conf.freeze()
        model = U2Model.from_config(model_conf)

        if self.parallel:
            model = paddle.DataParallel(model)

        logger.info(f"{model}")
        layer_tools.print_params(model, logger.info)

        train_config = config.training
        optim_type = train_config.optim
        optim_conf = train_config.optim_conf
        scheduler_type = train_config.scheduler
        scheduler_conf = train_config.scheduler_conf

330
        scheduler_args = {
H
Hui Zhang 已提交
331 332 333 334 335
            "learning_rate": optim_conf.lr,
            "verbose": False,
            "warmup_steps": scheduler_conf.warmup_steps,
            "gamma": scheduler_conf.lr_decay,
            "d_model": model_conf.encoder_conf.output_size,
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
        }
        lr_scheduler = LRSchedulerFactory.from_args(scheduler_type,
                                                    scheduler_args)

        def optimizer_args(
                config,
                parameters,
                lr_scheduler=None, ):
            train_config = config.training
            optim_type = train_config.optim
            optim_conf = train_config.optim_conf
            scheduler_type = train_config.scheduler
            scheduler_conf = train_config.scheduler_conf
            return {
                "grad_clip": train_config.global_grad_clip,
                "weight_decay": optim_conf.weight_decay,
                "learning_rate": lr_scheduler
                if lr_scheduler else optim_conf.lr,
                "parameters": parameters,
H
Hui Zhang 已提交
355 356 357
                "epsilon": 1e-9 if optim_type == 'noam' else None,
                "beta1": 0.9 if optim_type == 'noam' else None,
                "beat2": 0.98 if optim_type == 'noam' else None,
358 359 360 361 362
            }

        optimzer_args = optimizer_args(config, model.parameters(), lr_scheduler)
        optimizer = OptimizerFactory.from_args(optim_type, optimzer_args)

363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
        self.model = model
        self.optimizer = optimizer
        self.lr_scheduler = lr_scheduler
        logger.info("Setup model/optimizer/lr_scheduler!")


class U2Tester(U2Trainer):
    @classmethod
    def params(cls, config: Optional[CfgNode]=None) -> CfgNode:
        # decoding config
        default = CfgNode(
            dict(
                alpha=2.5,  # Coef of LM for beam search.
                beta=0.3,  # Coef of WC for beam search.
                cutoff_prob=1.0,  # Cutoff probability for pruning.
                cutoff_top_n=40,  # Cutoff number for pruning.
                lang_model_path='models/lm/common_crawl_00.prune01111.trie.klm',  # Filepath for language model.
                decoding_method='attention',  # Decoding method. Options: 'attention', 'ctc_greedy_search',
                # 'ctc_prefix_beam_search', 'attention_rescoring'
                error_rate_type='wer',  # Error rate type for evaluation. Options `wer`, 'cer'
                num_proc_bsearch=8,  # # of CPUs for beam search.
                beam_size=10,  # Beam search width.
                batch_size=16,  # decoding batch size
                ctc_weight=0.0,  # ctc weight for attention rescoring decode mode.
                decoding_chunk_size=-1,  # decoding chunk size. Defaults to -1.
                # <0: for decoding, use full chunk.
                # >0: for decoding, use fixed chunk size as set.
H
Hui Zhang 已提交
390
                # 0: used for training, it's prohibited here.
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
                num_decoding_left_chunks=-1,  # number of left chunks for decoding. Defaults to -1.
                simulate_streaming=False,  # simulate streaming inference. Defaults to False.
            ))

        if config is not None:
            config.merge_from_other_cfg(default)
        return default

    def __init__(self, config, args):
        super().__init__(config, args)

    def ordid2token(self, texts, texts_len):
        """ ord() id to chr() chr """
        trans = []
        for text, n in zip(texts, texts_len):
            n = n.numpy().item()
            ids = text[:n]
            trans.append(''.join([chr(i) for i in ids]))
        return trans

H
Haoxin Ma 已提交
411 412 413 414 415 416 417
    def compute_metrics(self,
                        utts,
                        audio,
                        audio_len,
                        texts,
                        texts_len,
                        fout=None):
418 419 420 421 422 423
        cfg = self.config.decoding
        errors_sum, len_refs, num_ins = 0.0, 0, 0
        errors_func = error_rate.char_errors if cfg.error_rate_type == 'cer' else error_rate.word_errors
        error_rate_func = error_rate.cer if cfg.error_rate_type == 'cer' else error_rate.wer

        start_time = time.time()
H
Haoxin Ma 已提交
424
        text_feature = self.test_loader.collate_fn.text_feature
425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
        target_transcripts = self.ordid2token(texts, texts_len)
        result_transcripts = self.model.decode(
            audio,
            audio_len,
            text_feature=text_feature,
            decoding_method=cfg.decoding_method,
            lang_model_path=cfg.lang_model_path,
            beam_alpha=cfg.alpha,
            beam_beta=cfg.beta,
            beam_size=cfg.beam_size,
            cutoff_prob=cfg.cutoff_prob,
            cutoff_top_n=cfg.cutoff_top_n,
            num_processes=cfg.num_proc_bsearch,
            ctc_weight=cfg.ctc_weight,
            decoding_chunk_size=cfg.decoding_chunk_size,
            num_decoding_left_chunks=cfg.num_decoding_left_chunks,
            simulate_streaming=cfg.simulate_streaming)
        decode_time = time.time() - start_time

H
Haoxin Ma 已提交
444 445
        for utt, target, result in zip(utts, target_transcripts,
                                       result_transcripts):
446 447 448 449 450
            errors, len_ref = errors_func(target, result)
            errors_sum += errors
            len_refs += len_ref
            num_ins += 1
            if fout:
H
Haoxin Ma 已提交
451
                fout.write(utt + " " + result + "\n")
452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
            logger.info("\nTarget Transcription: %s\nOutput Transcription: %s" %
                        (target, result))
            logger.info("One example error rate [%s] = %f" %
                        (cfg.error_rate_type, error_rate_func(target, result)))

        return dict(
            errors_sum=errors_sum,
            len_refs=len_refs,
            num_ins=num_ins,  # num examples
            error_rate=errors_sum / len_refs,
            error_rate_type=cfg.error_rate_type,
            num_frames=audio_len.sum().numpy().item(),
            decode_time=decode_time)

    @mp_tools.rank_zero_only
    @paddle.no_grad()
    def test(self):
        assert self.args.result_file
        self.model.eval()
        logger.info(f"Test Total Examples: {len(self.test_loader.dataset)}")

H
Haoxin Ma 已提交
473
        stride_ms = self.test_loader.collate_fn.stride_ms
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
        error_rate_type = None
        errors_sum, len_refs, num_ins = 0.0, 0, 0
        num_frames = 0.0
        num_time = 0.0
        with open(self.args.result_file, 'w') as fout:
            for i, batch in enumerate(self.test_loader):
                metrics = self.compute_metrics(*batch, fout=fout)
                num_frames += metrics['num_frames']
                num_time += metrics["decode_time"]
                errors_sum += metrics['errors_sum']
                len_refs += metrics['len_refs']
                num_ins += metrics['num_ins']
                error_rate_type = metrics['error_rate_type']
                rtf = num_time / (num_frames * stride_ms)
                logger.info(
                    "RTF: %f, Error rate [%s] (%d/?) = %f" %
                    (rtf, error_rate_type, num_ins, errors_sum / len_refs))

        rtf = num_time / (num_frames * stride_ms)
        msg = "Test: "
        msg += "epoch: {}, ".format(self.epoch)
        msg += "step: {}, ".format(self.iteration)
        msg += "RTF: {}, ".format(rtf)
        msg += "Final error rate [%s] (%d/%d) = %f" % (
            error_rate_type, num_ins, num_ins, errors_sum / len_refs)
        logger.info(msg)

        # test meta results
H
Hui Zhang 已提交
502
        err_meta_path = os.path.splitext(self.args.result_file)[0] + '.err'
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
        err_type_str = "{}".format(error_rate_type)
        with open(err_meta_path, 'w') as f:
            data = json.dumps({
                "epoch":
                self.epoch,
                "step":
                self.iteration,
                "rtf":
                rtf,
                error_rate_type:
                errors_sum / len_refs,
                "dataset_hour": (num_frames * stride_ms) / 1000.0 / 3600.0,
                "process_hour":
                num_time / 1000.0 / 3600.0,
                "num_examples":
                num_ins,
                "err_sum":
                errors_sum,
                "ref_len":
                len_refs,
H
Hui Zhang 已提交
523 524
                "decode_method":
                self.config.decoding.decoding_method,
525 526 527 528 529 530 531 532 533 534
            })
            f.write(data + '\n')

    def run_test(self):
        self.resume_or_scratch()
        try:
            self.test()
        except KeyboardInterrupt:
            sys.exit(-1)

H
Hui Zhang 已提交
535 536 537 538 539 540 541
    @paddle.no_grad()
    def align(self):
        if self.config.decoding.batch_size > 1:
            logger.fatal('alignment mode must be running with batch_size == 1')
            sys.exit(1)

        # xxx.align
H
Hui Zhang 已提交
542 543
        assert self.args.result_file and self.args.result_file.endswith(
            '.align')
H
Hui Zhang 已提交
544 545

        self.model.eval()
H
Hui Zhang 已提交
546
        logger.info(f"Align Total Examples: {len(self.align_loader.dataset)}")
H
Hui Zhang 已提交
547

H
Hui Zhang 已提交
548 549
        stride_ms = self.align_loader.collate_fn.stride_ms
        token_dict = self.align_loader.collate_fn.vocab_list
H
Hui Zhang 已提交
550
        with open(self.args.result_file, 'w') as fout:
H
Hui Zhang 已提交
551
            # one example in batch
H
Hui Zhang 已提交
552
            for i, batch in enumerate(self.align_loader):
H
Hui Zhang 已提交
553
                key, feat, feats_length, target, target_length = batch
H
Hui Zhang 已提交
554

H
Hui Zhang 已提交
555 556 557 558 559 560 561 562 563 564 565
                # 1. Encoder
                encoder_out, encoder_mask = self.model._forward_encoder(
                    feat, feats_length)  # (B, maxlen, encoder_dim)
                maxlen = encoder_out.size(1)
                ctc_probs = self.model.ctc.log_softmax(
                    encoder_out)  # (1, maxlen, vocab_size)

                # 2. alignment
                ctc_probs = ctc_probs.squeeze(0)
                target = target.squeeze(0)
                alignment = ctc_utils.forced_align(ctc_probs, target)
H
Hui Zhang 已提交
566
                logger.info("align ids", key[0], alignment)
H
Hui Zhang 已提交
567 568 569 570 571
                fout.write('{} {}\n'.format(key[0], alignment))

                # 3. gen praat
                # segment alignment
                align_segs = text_grid.segment_alignment(alignment)
H
Hui Zhang 已提交
572
                logger.info("align tokens", key[0], align_segs)
H
Hui Zhang 已提交
573
                # IntervalTier, List["start end token\n"]
H
Hui Zhang 已提交
574
                subsample = utility.get_subsample(self.config)
H
Hui Zhang 已提交
575 576
                tierformat = text_grid.align_to_tierformat(
                    align_segs, subsample, token_dict)
H
Hui Zhang 已提交
577
                # write tier
H
Hui Zhang 已提交
578 579 580
                align_output_path = os.path.join(
                    os.path.dirname(self.args.result_file), "align")
                tier_path = os.path.join(align_output_path, key[0] + ".tier")
H
Hui Zhang 已提交
581 582
                with open(tier_path, 'w') as f:
                    f.writelines(tierformat)
H
Hui Zhang 已提交
583
                # write textgrid
H
Hui Zhang 已提交
584 585
                textgrid_path = os.path.join(align_output_path,
                                             key[0] + ".TextGrid")
H
Hui Zhang 已提交
586 587 588 589
                second_per_frame = 1. / (1000. /
                                         stride_ms)  # 25ms window, 10ms stride
                second_per_example = (
                    len(alignment) + 1) * subsample * second_per_frame
H
Hui Zhang 已提交
590
                text_grid.generate_textgrid(
H
Hui Zhang 已提交
591
                    maxtime=second_per_example,
H
Hui Zhang 已提交
592
                    intervals=tierformat,
H
Hui Zhang 已提交
593 594 595 596 597 598 599 600 601
                    output=textgrid_path)

    def run_align(self):
        self.resume_or_scratch()
        try:
            self.align()
        except KeyboardInterrupt:
            sys.exit(-1)

602 603 604 605 606 607 608 609
    def load_inferspec(self):
        """infer model and input spec.

        Returns:
            nn.Layer: inference model
            List[paddle.static.InputSpec]: input spec.
        """
        from deepspeech.models.u2 import U2InferModel
H
Haoxin Ma 已提交
610
        infer_model = U2InferModel.from_pretrained(self.test_loader,
611 612
                                                   self.config.model.clone(),
                                                   self.args.checkpoint_path)
H
Haoxin Ma 已提交
613
        feat_dim = self.test_loader.collate_fn.feature_size
614
        input_spec = [
615 616 617
            paddle.static.InputSpec(shape=[1, None, feat_dim],
                                    dtype='float32'),  # audio, [B,T,D]
            paddle.static.InputSpec(shape=[1],
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
                                    dtype='int64'),  # audio_length, [B]
        ]
        return infer_model, input_spec

    def export(self):
        infer_model, input_spec = self.load_inferspec()
        assert isinstance(input_spec, list), type(input_spec)
        infer_model.eval()
        static_model = paddle.jit.to_static(infer_model, input_spec=input_spec)
        logger.info(f"Export code: {static_model.forward.code}")
        paddle.jit.save(static_model, self.args.export_path)

    def run_export(self):
        try:
            self.export()
        except KeyboardInterrupt:
            sys.exit(-1)

    def setup(self):
        """Setup the experiment.
        """
        paddle.set_device(self.args.device)

        self.setup_output_dir()
        self.setup_checkpointer()

        self.setup_dataloader()
        self.setup_model()

        self.iteration = 0
        self.epoch = 0

    def setup_output_dir(self):
        """Create a directory used for output.
        """
        # output dir
        if self.args.output:
            output_dir = Path(self.args.output).expanduser()
            output_dir.mkdir(parents=True, exist_ok=True)
        else:
            output_dir = Path(
                self.args.checkpoint_path).expanduser().parent.parent
            output_dir.mkdir(parents=True, exist_ok=True)

        self.output_dir = output_dir