bn_mul.c 22.9 KB
Newer Older
1
/* crypto/bn/bn_mul.c */
2
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 * 
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 * 
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from 
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 * 
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * 
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */

#include <stdio.h>
60
#include <assert.h>
61 62 63
#include "cryptlib.h"
#include "bn_lcl.h"

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
/* Here follows specialised variants of bn_cmp_words(), bn_add_words() and
   bn_sub_words().  They all have the property performing operations on
   arrays of different sizes.  The sizes of those arrays is expressed through
   cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl,
   which is the delta between the two lengths, calculated as len(a)-len(b).
   All lengths are the number of BN_ULONGs...  For the operations that require
   a result array as parameter, it must have the length cl+abs(dl).
   These functions should probably end up in bn_asm.c as soon as there are
   assembler counterparts for the systems that use assembler files.  */

int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b,
	int cl, int dl)
	{
	if (dl < 0)		/* a < b */
		return -1;
	if (dl > 0)		/* a > b */
		return 1;

	return bn_cmp_words(a,b,cl);
	}

BN_ULONG bn_sub_part_words(BN_ULONG *r,
	const BN_ULONG *a, const BN_ULONG *b,
	int cl, int dl)
	{
	BN_ULONG c, t;

	assert(cl >= 0);
	c = bn_sub_words(r, a, b, cl);

	if (dl == 0)
		return c;

	r += cl;
	a += cl;
	b += cl;

	if (dl < 0)
		{
#ifdef BN_COUNT
		fprintf(stderr, "  bn_sub_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
#endif
		for (;;)
			{
			t = b[0];
			r[0] = (-t-c)&BN_MASK2;
			if (t != 0) c=1;
			if (++dl >= 0) break;

			t = b[1];
			r[1] = (-t-c)&BN_MASK2;
			if (t != 0) c=1;
			if (++dl >= 0) break;

			t = b[2];
			r[2] = (-t-c)&BN_MASK2;
			if (t != 0) c=1;
			if (++dl >= 0) break;

			t = b[3];
			r[3] = (-t-c)&BN_MASK2;
			if (t != 0) c=1;
			if (++dl >= 0) break;

			b += 4;
			r += 4;
			}
		}
	else
		{
		int save_dl = dl;
#ifdef BN_COUNT
		fprintf(stderr, "  bn_sub_part_words %d + %d (dl > 0, c = %d)\n", cl, dl, c);
#endif
		while(c)
			{
			t = a[0];
			r[0] = (t-c)&BN_MASK2;
			if (t != 0) c=0;
			if (--dl <= 0) break;

			t = a[1];
			r[1] = (t-c)&BN_MASK2;
			if (t != 0) c=0;
			if (--dl <= 0) break;

			t = a[2];
			r[2] = (t-c)&BN_MASK2;
			if (t != 0) c=0;
			if (--dl <= 0) break;

			t = a[3];
			r[3] = (t-c)&BN_MASK2;
			if (t != 0) c=0;
			if (--dl <= 0) break;

			save_dl = dl;
			a += 4;
			r += 4;
			}
		if (dl > 0)
			{
#ifdef BN_COUNT
			fprintf(stderr, "  bn_sub_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
#endif
			if (save_dl > dl)
				{
				switch (save_dl - dl)
					{
				case 1:
					r[1] = a[1];
					if (--dl <= 0) break;
				case 2:
					r[2] = a[2];
					if (--dl <= 0) break;
				case 3:
					r[3] = a[3];
					if (--dl <= 0) break;
					}
				a += 4;
				r += 4;
				}
			}
		if (dl > 0)
			{
#ifdef BN_COUNT
			fprintf(stderr, "  bn_sub_part_words %d + %d (dl > 0, copy)\n", cl, dl);
#endif
			for(;;)
				{
				r[0] = a[0];
				if (--dl <= 0) break;
				r[1] = a[1];
				if (--dl <= 0) break;
				r[2] = a[2];
				if (--dl <= 0) break;
				r[3] = a[3];
				if (--dl <= 0) break;

				a += 4;
				r += 4;
				}
			}
		}
	return c;
	}

BN_ULONG bn_add_part_words(BN_ULONG *r,
	const BN_ULONG *a, const BN_ULONG *b,
	int cl, int dl)
	{
	BN_ULONG c, l, t;

	assert(cl >= 0);
	c = bn_sub_words(r, a, b, cl);

	if (dl == 0)
		return c;

	r += cl;
	a += cl;
	b += cl;

	if (dl < 0)
		{
		int save_dl = dl;
#ifdef BN_COUNT
		fprintf(stderr, "  bn_add_part_words %d + %d (dl < 0, c = %d)\n", cl, dl, c);
#endif
		while (c)
			{
			l=(c+b[0])&BN_MASK2;
			c=(l < c);
			r[0]=l;
			if (++dl >= 0) break;

			l=(c+b[1])&BN_MASK2;
			c=(l < c);
			r[1]=l;
			if (++dl >= 0) break;

			l=(c+b[2])&BN_MASK2;
			c=(l < c);
			r[2]=l;
			if (++dl >= 0) break;

			l=(c+b[3])&BN_MASK2;
			c=(l < c);
			r[3]=l;
			if (++dl >= 0) break;

			save_dl = dl;
			b+=4;
			r+=4;
			}
		if (dl < 0)
			{
#ifdef BN_COUNT
			fprintf(stderr, "  bn_add_part_words %d + %d (dl < 0, c == 0)\n", cl, dl);
#endif
			if (save_dl < dl)
				{
				switch (dl - save_dl)
					{
				case 1:
					r[1] = b[1];
					if (++dl >= 0) break;
				case 2:
					r[2] = b[2];
					if (++dl >= 0) break;
				case 3:
					r[3] = b[3];
					if (++dl >= 0) break;
					}
				b += 4;
				r += 4;
				}
			}
		if (dl < 0)
			{
#ifdef BN_COUNT
			fprintf(stderr, "  bn_add_part_words %d + %d (dl < 0, copy)\n", cl, dl);
#endif
			for(;;)
				{
				r[0] = b[0];
				if (++dl >= 0) break;
				r[1] = b[1];
				if (++dl >= 0) break;
				r[2] = b[2];
				if (++dl >= 0) break;
				r[3] = b[3];
				if (++dl >= 0) break;

				b += 4;
				r += 4;
				}
			}
		}
	else
		{
		int save_dl = dl;
#ifdef BN_COUNT
		fprintf(stderr, "  bn_add_part_words %d + %d (dl > 0)\n", cl, dl);
#endif
		while (c)
			{
			t=(a[0]+c)&BN_MASK2;
			c=(t < c);
			r[0]=t;
			if (--dl <= 0) break;

			t=(a[1]+c)&BN_MASK2;
			c=(t < c);
			r[1]=t;
			if (--dl <= 0) break;

			t=(a[2]+c)&BN_MASK2;
			c=(t < c);
			r[2]=t;
			if (--dl <= 0) break;

			t=(a[3]+c)&BN_MASK2;
			c=(t < c);
			r[3]=t;
			if (--dl <= 0) break;

			save_dl = dl;
			a+=4;
			r+=4;
			}
#ifdef BN_COUNT
		fprintf(stderr, "  bn_add_part_words %d + %d (dl > 0, c == 0)\n", cl, dl);
#endif
		if (dl > 0)
			{
			if (save_dl > dl)
				{
				switch (save_dl - dl)
					{
				case 1:
					r[1] = a[1];
					if (--dl <= 0) break;
				case 2:
					r[2] = a[2];
					if (--dl <= 0) break;
				case 3:
					r[3] = a[3];
					if (--dl <= 0) break;
					}
				a += 4;
				r += 4;
				}
			}
		if (dl > 0)
			{
#ifdef BN_COUNT
			fprintf(stderr, "  bn_add_part_words %d + %d (dl > 0, copy)\n", cl, dl);
#endif
			for(;;)
				{
				r[0] = a[0];
				if (--dl <= 0) break;
				r[1] = a[1];
				if (--dl <= 0) break;
				r[2] = a[2];
				if (--dl <= 0) break;
				r[3] = a[3];
				if (--dl <= 0) break;

				a += 4;
				r += 4;
				}
			}
		}
	return c;
	}

382
#ifdef BN_RECURSION
B
Bodo Möller 已提交
383 384
/* Karatsuba recursive multiplication algorithm
 * (cf. Knuth, The Art of Computer Programming, Vol. 2) */
U
Ulf Möller 已提交
385

386 387 388 389 390
/* r is 2*n2 words in size,
 * a and b are both n2 words in size.
 * n2 must be a power of 2.
 * We multiply and return the result.
 * t must be 2*n2 words in size
U
Ulf Möller 已提交
391
 * We calculate
392 393 394 395
 * a[0]*b[0]
 * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
 * a[1]*b[1]
 */
U
Ulf Möller 已提交
396 397
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
	     BN_ULONG *t)
398
	{
399 400 401
	int n=n2/2,c1,c2;
	unsigned int neg,zero;
	BN_ULONG ln,lo,*p;
402

403
# ifdef BN_COUNT
404
	fprintf(stderr," bn_mul_recursive %d * %d\n",n2,n2);
405 406 407 408
# endif
# ifdef BN_MUL_COMBA
#  if 0
	if (n2 == 4)
409
		{
410 411 412
		bn_mul_comba4(r,a,b);
		return;
		}
413 414
#  endif
	if (n2 == 8)
415 416 417 418
		{
		bn_mul_comba8(r,a,b);
		return; 
		}
419
# endif /* BN_MUL_COMBA */
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
	if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL)
		{
		/* This should not happen */
		bn_mul_normal(r,a,n2,b,n2);
		return;
		}
	/* r=(a[0]-a[1])*(b[1]-b[0]) */
	c1=bn_cmp_words(a,&(a[n]),n);
	c2=bn_cmp_words(&(b[n]),b,n);
	zero=neg=0;
	switch (c1*3+c2)
		{
	case -4:
		bn_sub_words(t,      &(a[n]),a,      n); /* - */
		bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */
		break;
	case -3:
		zero=1;
		break;
	case -2:
		bn_sub_words(t,      &(a[n]),a,      n); /* - */
		bn_sub_words(&(t[n]),&(b[n]),b,      n); /* + */
		neg=1;
		break;
	case -1:
	case 0:
	case 1:
		zero=1;
		break;
	case 2:
		bn_sub_words(t,      a,      &(a[n]),n); /* + */
		bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */
		neg=1;
		break;
	case 3:
		zero=1;
		break;
	case 4:
		bn_sub_words(t,      a,      &(a[n]),n);
		bn_sub_words(&(t[n]),&(b[n]),b,      n);
		break;
461 462
		}

463
# ifdef BN_MUL_COMBA
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
	if (n == 4)
		{
		if (!zero)
			bn_mul_comba4(&(t[n2]),t,&(t[n]));
		else
			memset(&(t[n2]),0,8*sizeof(BN_ULONG));
		
		bn_mul_comba4(r,a,b);
		bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n]));
		}
	else if (n == 8)
		{
		if (!zero)
			bn_mul_comba8(&(t[n2]),t,&(t[n]));
		else
			memset(&(t[n2]),0,16*sizeof(BN_ULONG));
		
		bn_mul_comba8(r,a,b);
		bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n]));
		}
	else
485
# endif /* BN_MUL_COMBA */
486 487 488 489 490 491 492 493 494
		{
		p= &(t[n2*2]);
		if (!zero)
			bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);
		else
			memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
		bn_mul_recursive(r,a,b,n,p);
		bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p);
		}
495

496 497 498 499 500
	/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 */

501
	c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
502 503

	if (neg) /* if t[32] is negative */
504
		{
505
		c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
506 507 508 509
		}
	else
		{
		/* Might have a carry */
510
		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
511 512
		}

513 514 515 516 517
	/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 * c1 holds the carry bits
	 */
518
	c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
519 520 521 522 523 524
	if (c1)
		{
		p= &(r[n+n2]);
		lo= *p;
		ln=(lo+c1)&BN_MASK2;
		*p=ln;
525

526 527 528 529 530 531 532 533 534 535 536 537 538
		/* The overflow will stop before we over write
		 * words we should not overwrite */
		if (ln < (BN_ULONG)c1)
			{
			do	{
				p++;
				lo= *p;
				ln=(lo+1)&BN_MASK2;
				*p=ln;
				} while (ln == 0);
			}
		}
	}
539

540 541
/* n+tn is the word length
 * t needs to be n*4 is size, as does r */
U
Ulf Möller 已提交
542 543
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn,
	     int n, BN_ULONG *t)
544
	{
545
	int i,j,n2=n*2;
U
Ulf Möller 已提交
546
	unsigned int c1,c2,neg,zero;
547
	BN_ULONG ln,lo,*p;
548

549
# ifdef BN_COUNT
550 551
	fprintf(stderr," bn_mul_part_recursive (%d+%d) * (%d+%d)\n",
		tn, n,tn, n);
552
# endif
553 554 555 556 557 558 559 560
	if (n < 8)
		{
		i=tn+n;
		bn_mul_normal(r,a,i,b,i);
		return;
		}

	/* r=(a[0]-a[1])*(b[1]-b[0]) */
561 562
	c1=bn_cmp_part_words(a,&(a[n]),tn,n-tn);
	c2=bn_cmp_part_words(&(b[n]),b,tn,tn-n);
U
Ulf Möller 已提交
563 564 565 566
	zero=neg=0;
	switch (c1*3+c2)
		{
	case -4:
567 568
		bn_sub_part_words(t,      &(a[n]),a,      tn,tn-n); /* - */
		bn_sub_part_words(&(t[n]),b,      &(b[n]),tn,n-tn); /* - */
U
Ulf Möller 已提交
569 570 571 572 573
		break;
	case -3:
		zero=1;
		/* break; */
	case -2:
574 575
		bn_sub_part_words(t,      &(a[n]),a,      tn,tn-n); /* - */
		bn_sub_part_words(&(t[n]),&(b[n]),b,      tn,tn-n); /* + */
U
Ulf Möller 已提交
576 577 578 579 580 581 582 583
		neg=1;
		break;
	case -1:
	case 0:
	case 1:
		zero=1;
		/* break; */
	case 2:
584 585
		bn_sub_part_words(t,      a,      &(a[n]),tn,n-tn); /* + */
		bn_sub_part_words(&(t[n]),b,      &(b[n]),tn,n-tn); /* - */
U
Ulf Möller 已提交
586 587 588 589 590 591
		neg=1;
		break;
	case 3:
		zero=1;
		/* break; */
	case 4:
592 593
		bn_sub_part_words(t,      a,      &(a[n]),tn,n-tn);
		bn_sub_part_words(&(t[n]),&(b[n]),b,      tn,tn-n);
U
Ulf Möller 已提交
594 595 596 597
		break;
		}
		/* The zero case isn't yet implemented here. The speedup
		   would probably be negligible. */
598 599
# if 0
	if (n == 4)
600 601 602 603 604 605
		{
		bn_mul_comba4(&(t[n2]),t,&(t[n]));
		bn_mul_comba4(r,a,b);
		bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
		memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
		}
606 607 608
	else
# endif
	if (n == 8)
609
		{
610 611 612 613
		bn_mul_comba8(&(t[n2]),t,&(t[n]));
		bn_mul_comba8(r,a,b);
		bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
		memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
614 615 616
		}
	else
		{
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
		p= &(t[n2*2]);
		bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);
		bn_mul_recursive(r,a,b,n,p);
		i=n/2;
		/* If there is only a bottom half to the number,
		 * just do it */
		j=tn-i;
		if (j == 0)
			{
			bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p);
			memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));
			}
		else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
				{
				bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),
					j,i,p);
				memset(&(r[n2+tn*2]),0,
					sizeof(BN_ULONG)*(n2-tn*2));
				}
		else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
			{
			memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);
			if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL)
				{
				bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
				}
			else
				{
				for (;;)
					{
					i/=2;
					if (i < tn)
						{
						bn_mul_part_recursive(&(r[n2]),
							&(a[n]),&(b[n]),
							tn-i,i,p);
						break;
						}
					else if (i == tn)
						{
						bn_mul_recursive(&(r[n2]),
							&(a[n]),&(b[n]),
							i,p);
						break;
						}
					}
				}
			}
		}

	/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 */

672
	c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
U
Ulf Möller 已提交
673 674 675 676 677 678 679 680 681 682

	if (neg) /* if t[32] is negative */
		{
		c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
		}
	else
		{
		/* Might have a carry */
		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
		}
683 684 685 686 687 688

	/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 * c1 holds the carry bits
	 */
689
	c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	if (c1)
		{
		p= &(r[n+n2]);
		lo= *p;
		ln=(lo+c1)&BN_MASK2;
		*p=ln;

		/* The overflow will stop before we over write
		 * words we should not overwrite */
		if (ln < c1)
			{
			do	{
				p++;
				lo= *p;
				ln=(lo+1)&BN_MASK2;
				*p=ln;
				} while (ln == 0);
			}
708 709 710
		}
	}

711 712 713
/* a and b must be the same size, which is n2.
 * r needs to be n2 words and t needs to be n2*2
 */
U
Ulf Möller 已提交
714 715
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
	     BN_ULONG *t)
716
	{
717 718
	int n=n2/2;

719
# ifdef BN_COUNT
720
	fprintf(stderr," bn_mul_low_recursive %d * %d\n",n2,n2);
721
# endif
722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737

	bn_mul_recursive(r,a,b,n,&(t[0]));
	if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL)
		{
		bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2]));
		bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
		bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2]));
		bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
		}
	else
		{
		bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n);
		bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n);
		bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
		bn_add_words(&(r[n]),&(r[n]),&(t[n]),n);
		}
738 739
	}

740 741 742 743 744
/* a and b must be the same size, which is n2.
 * r needs to be n2 words and t needs to be n2*2
 * l is the low words of the output.
 * t needs to be n2*3
 */
U
Ulf Möller 已提交
745 746
void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
	     BN_ULONG *t)
747
	{
748 749 750 751 752
	int i,n;
	int c1,c2;
	int neg,oneg,zero;
	BN_ULONG ll,lc,*lp,*mp;

753
# ifdef BN_COUNT
754
	fprintf(stderr," bn_mul_high %d * %d\n",n2,n2);
755
# endif
756
	n=n2/2;
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797

	/* Calculate (al-ah)*(bh-bl) */
	neg=zero=0;
	c1=bn_cmp_words(&(a[0]),&(a[n]),n);
	c2=bn_cmp_words(&(b[n]),&(b[0]),n);
	switch (c1*3+c2)
		{
	case -4:
		bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
		bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
		break;
	case -3:
		zero=1;
		break;
	case -2:
		bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
		bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
		neg=1;
		break;
	case -1:
	case 0:
	case 1:
		zero=1;
		break;
	case 2:
		bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
		bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
		neg=1;
		break;
	case 3:
		zero=1;
		break;
	case 4:
		bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
		bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
		break;
		}
		
	oneg=neg;
	/* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
	/* r[10] = (a[1]*b[1]) */
798
# ifdef BN_MUL_COMBA
799 800 801 802 803 804
	if (n == 8)
		{
		bn_mul_comba8(&(t[0]),&(r[0]),&(r[n]));
		bn_mul_comba8(r,&(a[n]),&(b[n]));
		}
	else
805
# endif
806 807 808 809
		{
		bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,&(t[n2]));
		bn_mul_recursive(r,&(a[n]),&(b[n]),n,&(t[n2]));
		}
810

811 812 813 814 815 816 817
	/* s0 == low(al*bl)
	 * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
	 * We know s0 and s1 so the only unknown is high(al*bl)
	 * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
	 * high(al*bl) == s1 - (r[0]+l[0]+t[0])
	 */
	if (l != NULL)
818
		{
819
		lp= &(t[n2+n]);
820
		c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n));
821 822 823 824 825 826 827 828
		}
	else
		{
		c1=0;
		lp= &(r[0]);
		}

	if (neg)
829
		neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n));
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863
	else
		{
		bn_add_words(&(t[n2]),lp,&(t[0]),n);
		neg=0;
		}

	if (l != NULL)
		{
		bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n);
		}
	else
		{
		lp= &(t[n2+n]);
		mp= &(t[n2]);
		for (i=0; i<n; i++)
			lp[i]=((~mp[i])+1)&BN_MASK2;
		}

	/* s[0] = low(al*bl)
	 * t[3] = high(al*bl)
	 * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
	 * r[10] = (a[1]*b[1])
	 */
	/* R[10] = al*bl
	 * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
	 * R[32] = ah*bh
	 */
	/* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
	 * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
	 * R[3]=r[1]+(carry/borrow)
	 */
	if (l != NULL)
		{
		lp= &(t[n2]);
864
		c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n));
865 866 867 868 869 870
		}
	else
		{
		lp= &(t[n2+n]);
		c1=0;
		}
871
	c1+=(int)(bn_add_words(&(t[n2]),lp,  &(r[0]),n));
872
	if (oneg)
873
		c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n));
874
	else
875
		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n));
876

877 878
	c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n));
	c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n));
879
	if (oneg)
880
		c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n));
881
	else
882
		c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n));
883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926
	
	if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */
		{
		i=0;
		if (c1 > 0)
			{
			lc=c1;
			do	{
				ll=(r[i]+lc)&BN_MASK2;
				r[i++]=ll;
				lc=(lc > ll);
				} while (lc);
			}
		else
			{
			lc= -c1;
			do	{
				ll=r[i];
				r[i++]=(ll-lc)&BN_MASK2;
				lc=(lc > ll);
				} while (lc);
			}
		}
	if (c2 != 0) /* Add starting at r[1] */
		{
		i=n;
		if (c2 > 0)
			{
			lc=c2;
			do	{
				ll=(r[i]+lc)&BN_MASK2;
				r[i++]=ll;
				lc=(lc > ll);
				} while (lc);
			}
		else
			{
			lc= -c2;
			do	{
				ll=r[i];
				r[i++]=(ll-lc)&BN_MASK2;
				lc=(lc > ll);
				} while (lc);
			}
927 928
		}
	}
929
#endif /* BN_RECURSION */
930

931
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
932
	{
933 934
	int top,al,bl;
	BIGNUM *rr;
935 936 937 938
	int ret = 0;
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
	int i;
#endif
939
#ifdef BN_RECURSION
940
	BIGNUM *t;
941
	int j,k;
942
#endif
943
	BIGNUM *free_a = NULL, *free_b = NULL;
944 945

#ifdef BN_COUNT
946
	fprintf(stderr,"BN_mul %d * %d\n",a->top,b->top);
947 948 949 950 951
#endif

	bn_check_top(a);
	bn_check_top(b);
	bn_check_top(r);
952

953 954 955 956
	al=a->top;
	bl=b->top;

	if ((al == 0) || (bl == 0))
957
		{
958 959
		BN_zero(r);
		return(1);
960
		}
961
	top=al+bl;
962

963
	BN_CTX_start(ctx);
964
	if ((r == a) || (r == b))
965 966 967
		{
		if ((rr = BN_CTX_get(ctx)) == NULL) goto err;
		}
968
	else
969
		rr = r;
970
	rr->neg=a->neg^b->neg;
971

972
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
973 974 975 976
	i = al-bl;
#endif
#ifdef BN_MUL_COMBA
	if (i == 0)
977
		{
978 979
# if 0
		if (al == 4)
980
			{
981
			if (bn_wexpand(rr,8) == NULL) goto err;
982
			rr->top=8;
983
			bn_mul_comba4(rr->d,a->d,b->d);
984 985
			goto end;
			}
986 987
# endif
		if (al == 8)
988
			{
989
			if (bn_wexpand(rr,16) == NULL) goto err;
990
			rr->top=16;
991
			bn_mul_comba8(rr->d,a->d,b->d);
992 993 994
			goto end;
			}
		}
995
#endif /* BN_MUL_COMBA */
996
#ifdef BN_RECURSION
997
	if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL))
998
		{
999
		if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA))
1000
			{
1001 1002 1003
			BIGNUM *tmp_bn = (BIGNUM *)b;
			bn_wexpand(tmp_bn,al);
			tmp_bn->d[bl]=0;
1004
			bl++;
1005
			i--;
1006
			}
1007
		else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA))
1008
			{
1009 1010 1011
			BIGNUM *tmp_bn = (BIGNUM *)a;
			bn_wexpand(tmp_bn,bl);
			tmp_bn->d[al]=0;
1012
			al++;
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
			i++;
			}
		if (i == 0)
			{
			/* symmetric and > 4 */
			/* 16 or larger */
			j=BN_num_bits_word((BN_ULONG)al);
			j=1<<(j-1);
			k=j+j;
			t = BN_CTX_get(ctx);
			if (al == j) /* exact multiple */
				{
				bn_wexpand(t,k*2);
				bn_wexpand(rr,k*2);
				bn_mul_recursive(rr->d,a->d,b->d,al,t->d);
				}
			else
				{
				bn_wexpand(t,k*4);
				bn_wexpand(rr,k*4);
				bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d);
				}
			rr->top=top;
			goto end;
1037 1038
			}
		}
1039
#endif /* BN_RECURSION */
1040
	if (bn_wexpand(rr,top) == NULL) goto err;
1041 1042
	rr->top=top;
	bn_mul_normal(rr->d,a->d,al,b->d,bl);
1043

1044
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
1045
end:
1046 1047 1048
#endif
	bn_fix_top(rr);
	if (r != rr) BN_copy(r,rr);
1049
	ret=1;
1050
err:
1051 1052
	if (free_a) BN_free(free_a);
	if (free_b) BN_free(free_b);
1053
	BN_CTX_end(ctx);
1054
	return(ret);
1055
	}
1056

U
Ulf Möller 已提交
1057
void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
1058 1059
	{
	BN_ULONG *rr;
1060

1061
#ifdef BN_COUNT
1062
	fprintf(stderr," bn_mul_normal %d * %d\n",na,nb);
1063
#endif
1064

1065 1066 1067 1068
	if (na < nb)
		{
		int itmp;
		BN_ULONG *ltmp;
1069

1070 1071
		itmp=na; na=nb; nb=itmp;
		ltmp=a;   a=b;   b=ltmp;
1072

1073 1074 1075
		}
	rr= &(r[na]);
	rr[0]=bn_mul_words(r,a,na,b[0]);
1076

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	for (;;)
		{
		if (--nb <= 0) return;
		rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]);
		if (--nb <= 0) return;
		rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]);
		if (--nb <= 0) return;
		rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]);
		if (--nb <= 0) return;
		rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]);
		rr+=4;
		r+=4;
		b+=4;
		}
1091
	}
1092

U
Ulf Möller 已提交
1093
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
1094 1095
	{
#ifdef BN_COUNT
1096
	fprintf(stderr," bn_mul_low_normal %d * %d\n",n,n);
1097
#endif
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
	bn_mul_words(r,a,n,b[0]);

	for (;;)
		{
		if (--n <= 0) return;
		bn_mul_add_words(&(r[1]),a,n,b[1]);
		if (--n <= 0) return;
		bn_mul_add_words(&(r[2]),a,n,b[2]);
		if (--n <= 0) return;
		bn_mul_add_words(&(r[3]),a,n,b[3]);
		if (--n <= 0) return;
		bn_mul_add_words(&(r[4]),a,n,b[4]);
		r+=4;
		b+=4;
		}
	}