bn_mul.c 16.3 KB
Newer Older
1
/* crypto/bn/bn_mul.c */
2
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 * 
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 * 
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from 
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 * 
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * 
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */

#include <stdio.h>
#include "cryptlib.h"
#include "bn_lcl.h"

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
#ifdef BN_RECURSION
/* r is 2*n2 words in size,
 * a and b are both n2 words in size.
 * n2 must be a power of 2.
 * We multiply and return the result.
 * t must be 2*n2 words in size
 * We calulate
 * a[0]*b[0]
 * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
 * a[1]*b[1]
 */
void bn_mul_recursive(r,a,b,n2,t)
BN_ULONG *r,*a,*b;
int n2;
BN_ULONG *t;
78
	{
79 80 81
	int n=n2/2,c1,c2;
	unsigned int neg,zero;
	BN_ULONG ln,lo,*p;
82

83 84 85 86 87
#ifdef BN_COUNT
printf(" bn_mul_recursive %d * %d\n",n2,n2);
#endif
#ifdef BN_MUL_COMBA
/*	if (n2 == 4)
88
		{
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
		bn_mul_comba4(r,a,b);
		return;
		}
	else */ if (n2 == 8)
		{
		bn_mul_comba8(r,a,b);
		return; 
		}
#endif
	if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL)
		{
		/* This should not happen */
		bn_mul_normal(r,a,n2,b,n2);
		return;
		}
	/* r=(a[0]-a[1])*(b[1]-b[0]) */
	c1=bn_cmp_words(a,&(a[n]),n);
	c2=bn_cmp_words(&(b[n]),b,n);
	zero=neg=0;
	switch (c1*3+c2)
		{
	case -4:
		bn_sub_words(t,      &(a[n]),a,      n); /* - */
		bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */
		break;
	case -3:
		zero=1;
		break;
	case -2:
		bn_sub_words(t,      &(a[n]),a,      n); /* - */
		bn_sub_words(&(t[n]),&(b[n]),b,      n); /* + */
		neg=1;
		break;
	case -1:
	case 0:
	case 1:
		zero=1;
		break;
	case 2:
		bn_sub_words(t,      a,      &(a[n]),n); /* + */
		bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */
		neg=1;
		break;
	case 3:
		zero=1;
		break;
	case 4:
		bn_sub_words(t,      a,      &(a[n]),n);
		bn_sub_words(&(t[n]),&(b[n]),b,      n);
		break;
139 140
		}

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
#ifdef BN_MUL_COMBA
	if (n == 4)
		{
		if (!zero)
			bn_mul_comba4(&(t[n2]),t,&(t[n]));
		else
			memset(&(t[n2]),0,8*sizeof(BN_ULONG));
		
		bn_mul_comba4(r,a,b);
		bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n]));
		}
	else if (n == 8)
		{
		if (!zero)
			bn_mul_comba8(&(t[n2]),t,&(t[n]));
		else
			memset(&(t[n2]),0,16*sizeof(BN_ULONG));
		
		bn_mul_comba8(r,a,b);
		bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n]));
		}
	else
#endif
		{
		p= &(t[n2*2]);
		if (!zero)
			bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);
		else
			memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
		bn_mul_recursive(r,a,b,n,p);
		bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p);
		}
173

174 175 176 177 178
	/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 */

179
	c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
180 181

	if (neg) /* if t[32] is negative */
182
		{
183
		c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
184 185 186 187
		}
	else
		{
		/* Might have a carry */
188
		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
189 190
		}

191 192 193 194 195
	/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 * c1 holds the carry bits
	 */
196
	c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
197 198 199 200 201 202
	if (c1)
		{
		p= &(r[n+n2]);
		lo= *p;
		ln=(lo+c1)&BN_MASK2;
		*p=ln;
203

204 205 206 207 208 209 210 211 212 213 214 215 216
		/* The overflow will stop before we over write
		 * words we should not overwrite */
		if (ln < (BN_ULONG)c1)
			{
			do	{
				p++;
				lo= *p;
				ln=(lo+1)&BN_MASK2;
				*p=ln;
				} while (ln == 0);
			}
		}
	}
217

218 219 220 221 222 223
/* n+tn is the word length
 * t needs to be n*4 is size, as does r */
void bn_mul_part_recursive(r,a,b,tn,n,t)
BN_ULONG *r,*a,*b;
int tn,n;
BN_ULONG *t;
224
	{
225 226 227
	int i,j,n2=n*2;
	unsigned int c1;
	BN_ULONG ln,lo,*p;
228

229 230 231 232 233 234 235 236 237 238 239 240 241
#ifdef BN_COUNT
printf(" bn_mul_part_recursive %d * %d\n",tn+n,tn+n);
#endif
	if (n < 8)
		{
		i=tn+n;
		bn_mul_normal(r,a,i,b,i);
		return;
		}

	/* r=(a[0]-a[1])*(b[1]-b[0]) */
	bn_sub_words(t,      a,      &(a[n]),n); /* + */
	bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */
242

243 244 245 246 247 248 249 250
/*	if (n == 4)
		{
		bn_mul_comba4(&(t[n2]),t,&(t[n]));
		bn_mul_comba4(r,a,b);
		bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
		memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
		}
	else */ if (n == 8)
251
		{
252 253 254 255
		bn_mul_comba8(&(t[n2]),t,&(t[n]));
		bn_mul_comba8(r,a,b);
		bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
		memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
256 257 258
		}
	else
		{
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
		p= &(t[n2*2]);
		bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);
		bn_mul_recursive(r,a,b,n,p);
		i=n/2;
		/* If there is only a bottom half to the number,
		 * just do it */
		j=tn-i;
		if (j == 0)
			{
			bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p);
			memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));
			}
		else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
				{
				bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),
					j,i,p);
				memset(&(r[n2+tn*2]),0,
					sizeof(BN_ULONG)*(n2-tn*2));
				}
		else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
			{
			memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);
			if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL)
				{
				bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
				}
			else
				{
				for (;;)
					{
					i/=2;
					if (i < tn)
						{
						bn_mul_part_recursive(&(r[n2]),
							&(a[n]),&(b[n]),
							tn-i,i,p);
						break;
						}
					else if (i == tn)
						{
						bn_mul_recursive(&(r[n2]),
							&(a[n]),&(b[n]),
							i,p);
						break;
						}
					}
				}
			}
		}

	/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 */

314 315
	c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
	c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
316 317 318 319 320 321

	/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 * c1 holds the carry bits
	 */
322
	c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
	if (c1)
		{
		p= &(r[n+n2]);
		lo= *p;
		ln=(lo+c1)&BN_MASK2;
		*p=ln;

		/* The overflow will stop before we over write
		 * words we should not overwrite */
		if (ln < c1)
			{
			do	{
				p++;
				lo= *p;
				ln=(lo+1)&BN_MASK2;
				*p=ln;
				} while (ln == 0);
			}
341 342 343
		}
	}

344 345 346 347 348 349 350
/* a and b must be the same size, which is n2.
 * r needs to be n2 words and t needs to be n2*2
 */
void bn_mul_low_recursive(r,a,b,n2,t)
BN_ULONG *r,*a,*b;
int n2;
BN_ULONG *t;
351
	{
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
	int n=n2/2;

#ifdef BN_COUNT
printf(" bn_mul_low_recursive %d * %d\n",n2,n2);
#endif

	bn_mul_recursive(r,a,b,n,&(t[0]));
	if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL)
		{
		bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2]));
		bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
		bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2]));
		bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
		}
	else
		{
		bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n);
		bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n);
		bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
		bn_add_words(&(r[n]),&(r[n]),&(t[n]),n);
		}
373 374
	}

375 376 377 378 379 380 381 382 383
/* a and b must be the same size, which is n2.
 * r needs to be n2 words and t needs to be n2*2
 * l is the low words of the output.
 * t needs to be n2*3
 */
void bn_mul_high(r,a,b,l,n2,t)
BN_ULONG *r,*a,*b,*l;
int n2;
BN_ULONG *t;
384
	{
385 386 387 388 389 390 391 392
	int i,n;
	int c1,c2;
	int neg,oneg,zero;
	BN_ULONG ll,lc,*lp,*mp;

#ifdef BN_COUNT
printf(" bn_mul_high %d * %d\n",n2,n2);
#endif
393
	n=n2/2;
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446

	/* Calculate (al-ah)*(bh-bl) */
	neg=zero=0;
	c1=bn_cmp_words(&(a[0]),&(a[n]),n);
	c2=bn_cmp_words(&(b[n]),&(b[0]),n);
	switch (c1*3+c2)
		{
	case -4:
		bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
		bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
		break;
	case -3:
		zero=1;
		break;
	case -2:
		bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
		bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
		neg=1;
		break;
	case -1:
	case 0:
	case 1:
		zero=1;
		break;
	case 2:
		bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
		bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
		neg=1;
		break;
	case 3:
		zero=1;
		break;
	case 4:
		bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
		bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
		break;
		}
		
	oneg=neg;
	/* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
	/* r[10] = (a[1]*b[1]) */
#ifdef BN_MUL_COMBA
	if (n == 8)
		{
		bn_mul_comba8(&(t[0]),&(r[0]),&(r[n]));
		bn_mul_comba8(r,&(a[n]),&(b[n]));
		}
	else
#endif
		{
		bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,&(t[n2]));
		bn_mul_recursive(r,&(a[n]),&(b[n]),n,&(t[n2]));
		}
447

448 449 450 451 452 453 454
	/* s0 == low(al*bl)
	 * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
	 * We know s0 and s1 so the only unknown is high(al*bl)
	 * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
	 * high(al*bl) == s1 - (r[0]+l[0]+t[0])
	 */
	if (l != NULL)
455
		{
456
		lp= &(t[n2+n]);
457
		c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n));
458 459 460 461 462 463 464 465
		}
	else
		{
		c1=0;
		lp= &(r[0]);
		}

	if (neg)
466
		neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n));
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
	else
		{
		bn_add_words(&(t[n2]),lp,&(t[0]),n);
		neg=0;
		}

	if (l != NULL)
		{
		bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n);
		}
	else
		{
		lp= &(t[n2+n]);
		mp= &(t[n2]);
		for (i=0; i<n; i++)
			lp[i]=((~mp[i])+1)&BN_MASK2;
		}

	/* s[0] = low(al*bl)
	 * t[3] = high(al*bl)
	 * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
	 * r[10] = (a[1]*b[1])
	 */
	/* R[10] = al*bl
	 * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
	 * R[32] = ah*bh
	 */
	/* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
	 * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
	 * R[3]=r[1]+(carry/borrow)
	 */
	if (l != NULL)
		{
		lp= &(t[n2]);
501
		c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n));
502 503 504 505 506 507
		}
	else
		{
		lp= &(t[n2+n]);
		c1=0;
		}
508
	c1+=(int)(bn_add_words(&(t[n2]),lp,  &(r[0]),n));
509
	if (oneg)
510
		c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n));
511
	else
512
		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n));
513

514 515
	c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n));
	c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n));
516
	if (oneg)
517
		c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n));
518
	else
519
		c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n));
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
	
	if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */
		{
		i=0;
		if (c1 > 0)
			{
			lc=c1;
			do	{
				ll=(r[i]+lc)&BN_MASK2;
				r[i++]=ll;
				lc=(lc > ll);
				} while (lc);
			}
		else
			{
			lc= -c1;
			do	{
				ll=r[i];
				r[i++]=(ll-lc)&BN_MASK2;
				lc=(lc > ll);
				} while (lc);
			}
		}
	if (c2 != 0) /* Add starting at r[1] */
		{
		i=n;
		if (c2 > 0)
			{
			lc=c2;
			do	{
				ll=(r[i]+lc)&BN_MASK2;
				r[i++]=ll;
				lc=(lc > ll);
				} while (lc);
			}
		else
			{
			lc= -c2;
			do	{
				ll=r[i];
				r[i++]=(ll-lc)&BN_MASK2;
				lc=(lc > ll);
				} while (lc);
			}
564 565
		}
	}
566
#endif
567

568 569 570
int BN_mul(r,a,b,ctx)
BIGNUM *r,*a,*b;
BN_CTX *ctx;
571
	{
572 573 574
	int top,al,bl;
	BIGNUM *rr;
#ifdef BN_RECURSION
575
	BIGNUM *t;
576 577
	int i,j,k;
#endif
578 579 580 581 582 583 584 585

#ifdef BN_COUNT
printf("BN_mul %d * %d\n",a->top,b->top);
#endif

	bn_check_top(a);
	bn_check_top(b);
	bn_check_top(r);
586

587 588 589 590 591
	al=a->top;
	bl=b->top;
	r->neg=a->neg^b->neg;

	if ((al == 0) || (bl == 0))
592
		{
593 594
		BN_zero(r);
		return(1);
595
		}
596
	top=al+bl;
597 598 599 600 601 602

	if ((r == a) || (r == b))
		rr= &(ctx->bn[ctx->tos+1]);
	else
		rr=r;

603 604 605 606 607 608
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
	if (al == bl)
		{
#  ifdef BN_MUL_COMBA
/*		if (al == 4)
			{
609
			if (bn_wexpand(rr,8) == NULL) return(0);
610
			r->top=8;
611
			bn_mul_comba4(rr->d,a->d,b->d);
612 613 614 615
			goto end;
			}
		else */ if (al == 8)
			{
616
			if (bn_wexpand(rr,16) == NULL) return(0);
617
			r->top=16;
618
			bn_mul_comba8(rr->d,a->d,b->d);
619 620 621 622 623 624 625 626
			goto end;
			}
		else
#  endif
#ifdef BN_RECURSION
		if (al < BN_MULL_SIZE_NORMAL)
#endif
			{
627 628 629
			if (bn_wexpand(rr,top) == NULL) return(0);
			rr->top=top;
			bn_mul_normal(rr->d,a->d,al,b->d,bl);
630 631 632 633 634 635 636 637 638 639
			goto end;
			}
#  ifdef BN_RECURSION
		goto symetric;
#  endif
		}
#endif
#ifdef BN_RECURSION
	else if ((al < BN_MULL_SIZE_NORMAL) || (bl < BN_MULL_SIZE_NORMAL))
		{
640 641 642
		if (bn_wexpand(rr,top) == NULL) return(0);
		rr->top=top;
		bn_mul_normal(rr->d,a->d,al,b->d,bl);
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
		goto end;
		}
	else
		{
		i=(al-bl);
		if ((i ==  1) && !BN_get_flags(b,BN_FLG_STATIC_DATA))
			{
			bn_wexpand(b,al);
			b->d[bl]=0;
			bl++;
			goto symetric;
			}
		else if ((i ==  -1) && !BN_get_flags(a,BN_FLG_STATIC_DATA))
			{
			bn_wexpand(a,bl);
			a->d[al]=0;
			al++;
			goto symetric;
			}
		}
#endif
664

665
	/* asymetric and >= 4 */ 
666 667 668
	if (bn_wexpand(rr,top) == NULL) return(0);
	rr->top=top;
	bn_mul_normal(rr->d,a->d,al,b->d,bl);
669

670 671 672 673 674 675 676 677 678 679 680 681 682
#ifdef BN_RECURSION
	if (0)
		{
symetric:
		/* symetric and > 4 */
		/* 16 or larger */
		j=BN_num_bits_word((BN_ULONG)al);
		j=1<<(j-1);
		k=j+j;
		t= &(ctx->bn[ctx->tos]);
		if (al == j) /* exact multiple */
			{
			bn_wexpand(t,k*2);
683 684
			bn_wexpand(rr,k*2);
			bn_mul_recursive(rr->d,a->d,b->d,al,t->d);
685 686 687 688 689 690
			}
		else
			{
			bn_wexpand(a,k);
			bn_wexpand(b,k);
			bn_wexpand(t,k*4);
691
			bn_wexpand(rr,k*4);
692 693 694 695
			for (i=a->top; i<k; i++)
				a->d[i]=0;
			for (i=b->top; i<k; i++)
				b->d[i]=0;
696
			bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d);
697
			}
698
		rr->top=top;
699 700
		}
#endif
701
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
702
end:
703 704 705
#endif
	bn_fix_top(rr);
	if (r != rr) BN_copy(r,rr);
706 707
	return(1);
	}
708

709 710 711 712 713 714 715
void bn_mul_normal(r,a,na,b,nb)
BN_ULONG *r,*a;
int na;
BN_ULONG *b;
int nb;
	{
	BN_ULONG *rr;
716

717 718 719
#ifdef BN_COUNT
printf(" bn_mul_normal %d * %d\n",na,nb);
#endif
720

721 722 723 724
	if (na < nb)
		{
		int itmp;
		BN_ULONG *ltmp;
725

726 727
		itmp=na; na=nb; nb=itmp;
		ltmp=a;   a=b;   b=ltmp;
728

729 730 731
		}
	rr= &(r[na]);
	rr[0]=bn_mul_words(r,a,na,b[0]);
732

733 734 735 736 737 738 739 740 741 742 743 744 745 746
	for (;;)
		{
		if (--nb <= 0) return;
		rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]);
		if (--nb <= 0) return;
		rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]);
		if (--nb <= 0) return;
		rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]);
		if (--nb <= 0) return;
		rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]);
		rr+=4;
		r+=4;
		b+=4;
		}
747
	}
748 749 750 751 752 753 754

void bn_mul_low_normal(r,a,b,n)
BN_ULONG *r,*a,*b;
int n;
	{
#ifdef BN_COUNT
printf(" bn_mul_low_normal %d * %d\n",n,n);
755
#endif
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
	bn_mul_words(r,a,n,b[0]);

	for (;;)
		{
		if (--n <= 0) return;
		bn_mul_add_words(&(r[1]),a,n,b[1]);
		if (--n <= 0) return;
		bn_mul_add_words(&(r[2]),a,n,b[2]);
		if (--n <= 0) return;
		bn_mul_add_words(&(r[3]),a,n,b[3]);
		if (--n <= 0) return;
		bn_mul_add_words(&(r[4]),a,n,b[4]);
		r+=4;
		b+=4;
		}
	}