bn_mul.c 16.4 KB
Newer Older
1
/* crypto/bn/bn_mul.c */
2
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 * 
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 * 
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from 
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 * 
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * 
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */

#include <stdio.h>
#include "cryptlib.h"
#include "bn_lcl.h"

63 64 65 66 67 68
#ifdef BN_RECURSION
/* r is 2*n2 words in size,
 * a and b are both n2 words in size.
 * n2 must be a power of 2.
 * We multiply and return the result.
 * t must be 2*n2 words in size
U
Ulf Möller 已提交
69
 * We calculate
70 71 72 73
 * a[0]*b[0]
 * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
 * a[1]*b[1]
 */
U
Ulf Möller 已提交
74 75
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
	     BN_ULONG *t)
76
	{
77 78 79
	int n=n2/2,c1,c2;
	unsigned int neg,zero;
	BN_ULONG ln,lo,*p;
80

81 82 83 84 85
#ifdef BN_COUNT
printf(" bn_mul_recursive %d * %d\n",n2,n2);
#endif
#ifdef BN_MUL_COMBA
/*	if (n2 == 4)
86
		{
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
		bn_mul_comba4(r,a,b);
		return;
		}
	else */ if (n2 == 8)
		{
		bn_mul_comba8(r,a,b);
		return; 
		}
#endif
	if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL)
		{
		/* This should not happen */
		bn_mul_normal(r,a,n2,b,n2);
		return;
		}
	/* r=(a[0]-a[1])*(b[1]-b[0]) */
	c1=bn_cmp_words(a,&(a[n]),n);
	c2=bn_cmp_words(&(b[n]),b,n);
	zero=neg=0;
	switch (c1*3+c2)
		{
	case -4:
		bn_sub_words(t,      &(a[n]),a,      n); /* - */
		bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */
		break;
	case -3:
		zero=1;
		break;
	case -2:
		bn_sub_words(t,      &(a[n]),a,      n); /* - */
		bn_sub_words(&(t[n]),&(b[n]),b,      n); /* + */
		neg=1;
		break;
	case -1:
	case 0:
	case 1:
		zero=1;
		break;
	case 2:
		bn_sub_words(t,      a,      &(a[n]),n); /* + */
		bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */
		neg=1;
		break;
	case 3:
		zero=1;
		break;
	case 4:
		bn_sub_words(t,      a,      &(a[n]),n);
		bn_sub_words(&(t[n]),&(b[n]),b,      n);
		break;
137 138
		}

139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
#ifdef BN_MUL_COMBA
	if (n == 4)
		{
		if (!zero)
			bn_mul_comba4(&(t[n2]),t,&(t[n]));
		else
			memset(&(t[n2]),0,8*sizeof(BN_ULONG));
		
		bn_mul_comba4(r,a,b);
		bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n]));
		}
	else if (n == 8)
		{
		if (!zero)
			bn_mul_comba8(&(t[n2]),t,&(t[n]));
		else
			memset(&(t[n2]),0,16*sizeof(BN_ULONG));
		
		bn_mul_comba8(r,a,b);
		bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n]));
		}
	else
#endif
		{
		p= &(t[n2*2]);
		if (!zero)
			bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);
		else
			memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
		bn_mul_recursive(r,a,b,n,p);
		bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p);
		}
171

172 173 174 175 176
	/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 */

177
	c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
178 179

	if (neg) /* if t[32] is negative */
180
		{
181
		c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
182 183 184 185
		}
	else
		{
		/* Might have a carry */
186
		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
187 188
		}

189 190 191 192 193
	/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 * c1 holds the carry bits
	 */
194
	c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
195 196 197 198 199 200
	if (c1)
		{
		p= &(r[n+n2]);
		lo= *p;
		ln=(lo+c1)&BN_MASK2;
		*p=ln;
201

202 203 204 205 206 207 208 209 210 211 212 213 214
		/* The overflow will stop before we over write
		 * words we should not overwrite */
		if (ln < (BN_ULONG)c1)
			{
			do	{
				p++;
				lo= *p;
				ln=(lo+1)&BN_MASK2;
				*p=ln;
				} while (ln == 0);
			}
		}
	}
215

216 217
/* n+tn is the word length
 * t needs to be n*4 is size, as does r */
U
Ulf Möller 已提交
218 219
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn,
	     int n, BN_ULONG *t)
220
	{
221 222 223
	int i,j,n2=n*2;
	unsigned int c1;
	BN_ULONG ln,lo,*p;
224

225 226 227 228 229 230 231 232 233 234 235 236 237
#ifdef BN_COUNT
printf(" bn_mul_part_recursive %d * %d\n",tn+n,tn+n);
#endif
	if (n < 8)
		{
		i=tn+n;
		bn_mul_normal(r,a,i,b,i);
		return;
		}

	/* r=(a[0]-a[1])*(b[1]-b[0]) */
	bn_sub_words(t,      a,      &(a[n]),n); /* + */
	bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */
238

239 240 241 242 243 244 245 246
/*	if (n == 4)
		{
		bn_mul_comba4(&(t[n2]),t,&(t[n]));
		bn_mul_comba4(r,a,b);
		bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
		memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
		}
	else */ if (n == 8)
247
		{
248 249 250 251
		bn_mul_comba8(&(t[n2]),t,&(t[n]));
		bn_mul_comba8(r,a,b);
		bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
		memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
252 253 254
		}
	else
		{
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
		p= &(t[n2*2]);
		bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);
		bn_mul_recursive(r,a,b,n,p);
		i=n/2;
		/* If there is only a bottom half to the number,
		 * just do it */
		j=tn-i;
		if (j == 0)
			{
			bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p);
			memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));
			}
		else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
				{
				bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),
					j,i,p);
				memset(&(r[n2+tn*2]),0,
					sizeof(BN_ULONG)*(n2-tn*2));
				}
		else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
			{
			memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);
			if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL)
				{
				bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
				}
			else
				{
				for (;;)
					{
					i/=2;
					if (i < tn)
						{
						bn_mul_part_recursive(&(r[n2]),
							&(a[n]),&(b[n]),
							tn-i,i,p);
						break;
						}
					else if (i == tn)
						{
						bn_mul_recursive(&(r[n2]),
							&(a[n]),&(b[n]),
							i,p);
						break;
						}
					}
				}
			}
		}

	/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 */

310 311
	c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
	c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
312 313 314 315 316 317

	/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 * c1 holds the carry bits
	 */
318
	c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
	if (c1)
		{
		p= &(r[n+n2]);
		lo= *p;
		ln=(lo+c1)&BN_MASK2;
		*p=ln;

		/* The overflow will stop before we over write
		 * words we should not overwrite */
		if (ln < c1)
			{
			do	{
				p++;
				lo= *p;
				ln=(lo+1)&BN_MASK2;
				*p=ln;
				} while (ln == 0);
			}
337 338 339
		}
	}

340 341 342
/* a and b must be the same size, which is n2.
 * r needs to be n2 words and t needs to be n2*2
 */
U
Ulf Möller 已提交
343 344
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
	     BN_ULONG *t)
345
	{
346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
	int n=n2/2;

#ifdef BN_COUNT
printf(" bn_mul_low_recursive %d * %d\n",n2,n2);
#endif

	bn_mul_recursive(r,a,b,n,&(t[0]));
	if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL)
		{
		bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2]));
		bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
		bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2]));
		bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
		}
	else
		{
		bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n);
		bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n);
		bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
		bn_add_words(&(r[n]),&(r[n]),&(t[n]),n);
		}
367 368
	}

369 370 371 372 373
/* a and b must be the same size, which is n2.
 * r needs to be n2 words and t needs to be n2*2
 * l is the low words of the output.
 * t needs to be n2*3
 */
U
Ulf Möller 已提交
374 375
void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
	     BN_ULONG *t)
376
	{
377 378 379 380 381 382 383 384
	int i,n;
	int c1,c2;
	int neg,oneg,zero;
	BN_ULONG ll,lc,*lp,*mp;

#ifdef BN_COUNT
printf(" bn_mul_high %d * %d\n",n2,n2);
#endif
385
	n=n2/2;
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438

	/* Calculate (al-ah)*(bh-bl) */
	neg=zero=0;
	c1=bn_cmp_words(&(a[0]),&(a[n]),n);
	c2=bn_cmp_words(&(b[n]),&(b[0]),n);
	switch (c1*3+c2)
		{
	case -4:
		bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
		bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
		break;
	case -3:
		zero=1;
		break;
	case -2:
		bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
		bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
		neg=1;
		break;
	case -1:
	case 0:
	case 1:
		zero=1;
		break;
	case 2:
		bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
		bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
		neg=1;
		break;
	case 3:
		zero=1;
		break;
	case 4:
		bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
		bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
		break;
		}
		
	oneg=neg;
	/* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
	/* r[10] = (a[1]*b[1]) */
#ifdef BN_MUL_COMBA
	if (n == 8)
		{
		bn_mul_comba8(&(t[0]),&(r[0]),&(r[n]));
		bn_mul_comba8(r,&(a[n]),&(b[n]));
		}
	else
#endif
		{
		bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,&(t[n2]));
		bn_mul_recursive(r,&(a[n]),&(b[n]),n,&(t[n2]));
		}
439

440 441 442 443 444 445 446
	/* s0 == low(al*bl)
	 * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
	 * We know s0 and s1 so the only unknown is high(al*bl)
	 * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
	 * high(al*bl) == s1 - (r[0]+l[0]+t[0])
	 */
	if (l != NULL)
447
		{
448
		lp= &(t[n2+n]);
449
		c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n));
450 451 452 453 454 455 456 457
		}
	else
		{
		c1=0;
		lp= &(r[0]);
		}

	if (neg)
458
		neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n));
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
	else
		{
		bn_add_words(&(t[n2]),lp,&(t[0]),n);
		neg=0;
		}

	if (l != NULL)
		{
		bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n);
		}
	else
		{
		lp= &(t[n2+n]);
		mp= &(t[n2]);
		for (i=0; i<n; i++)
			lp[i]=((~mp[i])+1)&BN_MASK2;
		}

	/* s[0] = low(al*bl)
	 * t[3] = high(al*bl)
	 * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
	 * r[10] = (a[1]*b[1])
	 */
	/* R[10] = al*bl
	 * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
	 * R[32] = ah*bh
	 */
	/* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
	 * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
	 * R[3]=r[1]+(carry/borrow)
	 */
	if (l != NULL)
		{
		lp= &(t[n2]);
493
		c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n));
494 495 496 497 498 499
		}
	else
		{
		lp= &(t[n2+n]);
		c1=0;
		}
500
	c1+=(int)(bn_add_words(&(t[n2]),lp,  &(r[0]),n));
501
	if (oneg)
502
		c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n));
503
	else
504
		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n));
505

506 507
	c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n));
	c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n));
508
	if (oneg)
509
		c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n));
510
	else
511
		c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n));
512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
	
	if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */
		{
		i=0;
		if (c1 > 0)
			{
			lc=c1;
			do	{
				ll=(r[i]+lc)&BN_MASK2;
				r[i++]=ll;
				lc=(lc > ll);
				} while (lc);
			}
		else
			{
			lc= -c1;
			do	{
				ll=r[i];
				r[i++]=(ll-lc)&BN_MASK2;
				lc=(lc > ll);
				} while (lc);
			}
		}
	if (c2 != 0) /* Add starting at r[1] */
		{
		i=n;
		if (c2 > 0)
			{
			lc=c2;
			do	{
				ll=(r[i]+lc)&BN_MASK2;
				r[i++]=ll;
				lc=(lc > ll);
				} while (lc);
			}
		else
			{
			lc= -c2;
			do	{
				ll=r[i];
				r[i++]=(ll-lc)&BN_MASK2;
				lc=(lc > ll);
				} while (lc);
			}
556 557
		}
	}
558
#endif
559

U
Ulf Möller 已提交
560
int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
561
	{
562 563 564
	int top,al,bl;
	BIGNUM *rr;
#ifdef BN_RECURSION
565
	BIGNUM *t;
566 567
	int i,j,k;
#endif
568 569 570 571 572 573 574 575

#ifdef BN_COUNT
printf("BN_mul %d * %d\n",a->top,b->top);
#endif

	bn_check_top(a);
	bn_check_top(b);
	bn_check_top(r);
576

577 578 579 580 581
	al=a->top;
	bl=b->top;
	r->neg=a->neg^b->neg;

	if ((al == 0) || (bl == 0))
582
		{
583 584
		BN_zero(r);
		return(1);
585
		}
586
	top=al+bl;
587 588 589 590 591 592

	if ((r == a) || (r == b))
		rr= &(ctx->bn[ctx->tos+1]);
	else
		rr=r;

593 594 595 596 597 598
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
	if (al == bl)
		{
#  ifdef BN_MUL_COMBA
/*		if (al == 4)
			{
599
			if (bn_wexpand(rr,8) == NULL) return(0);
600
			rr->top=8;
601
			bn_mul_comba4(rr->d,a->d,b->d);
602 603 604 605
			goto end;
			}
		else */ if (al == 8)
			{
606
			if (bn_wexpand(rr,16) == NULL) return(0);
607
			rr->top=16;
608
			bn_mul_comba8(rr->d,a->d,b->d);
609 610 611 612 613 614 615 616
			goto end;
			}
		else
#  endif
#ifdef BN_RECURSION
		if (al < BN_MULL_SIZE_NORMAL)
#endif
			{
617 618 619
			if (bn_wexpand(rr,top) == NULL) return(0);
			rr->top=top;
			bn_mul_normal(rr->d,a->d,al,b->d,bl);
620 621 622
			goto end;
			}
#  ifdef BN_RECURSION
U
Ulf Möller 已提交
623
		goto symmetric;
624 625 626 627 628 629
#  endif
		}
#endif
#ifdef BN_RECURSION
	else if ((al < BN_MULL_SIZE_NORMAL) || (bl < BN_MULL_SIZE_NORMAL))
		{
630 631 632
		if (bn_wexpand(rr,top) == NULL) return(0);
		rr->top=top;
		bn_mul_normal(rr->d,a->d,al,b->d,bl);
633 634 635 636 637 638 639 640 641 642
		goto end;
		}
	else
		{
		i=(al-bl);
		if ((i ==  1) && !BN_get_flags(b,BN_FLG_STATIC_DATA))
			{
			bn_wexpand(b,al);
			b->d[bl]=0;
			bl++;
U
Ulf Möller 已提交
643
			goto symmetric;
644 645 646 647 648 649
			}
		else if ((i ==  -1) && !BN_get_flags(a,BN_FLG_STATIC_DATA))
			{
			bn_wexpand(a,bl);
			a->d[al]=0;
			al++;
U
Ulf Möller 已提交
650
			goto symmetric;
651 652 653
			}
		}
#endif
654

U
Ulf Möller 已提交
655
	/* asymmetric and >= 4 */ 
656 657 658
	if (bn_wexpand(rr,top) == NULL) return(0);
	rr->top=top;
	bn_mul_normal(rr->d,a->d,al,b->d,bl);
659

660 661 662
#ifdef BN_RECURSION
	if (0)
		{
U
Ulf Möller 已提交
663 664
symmetric:
		/* symmetric and > 4 */
665 666 667 668 669 670 671 672
		/* 16 or larger */
		j=BN_num_bits_word((BN_ULONG)al);
		j=1<<(j-1);
		k=j+j;
		t= &(ctx->bn[ctx->tos]);
		if (al == j) /* exact multiple */
			{
			bn_wexpand(t,k*2);
673 674
			bn_wexpand(rr,k*2);
			bn_mul_recursive(rr->d,a->d,b->d,al,t->d);
675 676 677 678 679 680
			}
		else
			{
			bn_wexpand(a,k);
			bn_wexpand(b,k);
			bn_wexpand(t,k*4);
681
			bn_wexpand(rr,k*4);
682 683 684 685
			for (i=a->top; i<k; i++)
				a->d[i]=0;
			for (i=b->top; i<k; i++)
				b->d[i]=0;
686
			bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d);
687
			}
688
		rr->top=top;
689 690
		}
#endif
691
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
692
end:
693 694 695
#endif
	bn_fix_top(rr);
	if (r != rr) BN_copy(r,rr);
696 697
	return(1);
	}
698

U
Ulf Möller 已提交
699
void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
700 701
	{
	BN_ULONG *rr;
702

703 704 705
#ifdef BN_COUNT
printf(" bn_mul_normal %d * %d\n",na,nb);
#endif
706

707 708 709 710
	if (na < nb)
		{
		int itmp;
		BN_ULONG *ltmp;
711

712 713
		itmp=na; na=nb; nb=itmp;
		ltmp=a;   a=b;   b=ltmp;
714

715 716 717
		}
	rr= &(r[na]);
	rr[0]=bn_mul_words(r,a,na,b[0]);
718

719 720 721 722 723 724 725 726 727 728 729 730 731 732
	for (;;)
		{
		if (--nb <= 0) return;
		rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]);
		if (--nb <= 0) return;
		rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]);
		if (--nb <= 0) return;
		rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]);
		if (--nb <= 0) return;
		rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]);
		rr+=4;
		r+=4;
		b+=4;
		}
733
	}
734

U
Ulf Möller 已提交
735
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
736 737 738
	{
#ifdef BN_COUNT
printf(" bn_mul_low_normal %d * %d\n",n,n);
739
#endif
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
	bn_mul_words(r,a,n,b[0]);

	for (;;)
		{
		if (--n <= 0) return;
		bn_mul_add_words(&(r[1]),a,n,b[1]);
		if (--n <= 0) return;
		bn_mul_add_words(&(r[2]),a,n,b[2]);
		if (--n <= 0) return;
		bn_mul_add_words(&(r[3]),a,n,b[3]);
		if (--n <= 0) return;
		bn_mul_add_words(&(r[4]),a,n,b[4]);
		r+=4;
		b+=4;
		}
	}