bn_mul.c 17.1 KB
Newer Older
1
/* crypto/bn/bn_mul.c */
2
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 * 
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 * 
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from 
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 * 
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * 
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */

#include <stdio.h>
#include "cryptlib.h"
#include "bn_lcl.h"

63 64 65 66 67 68
#ifdef BN_RECURSION
/* r is 2*n2 words in size,
 * a and b are both n2 words in size.
 * n2 must be a power of 2.
 * We multiply and return the result.
 * t must be 2*n2 words in size
U
Ulf Möller 已提交
69
 * We calculate
70 71 72 73
 * a[0]*b[0]
 * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
 * a[1]*b[1]
 */
U
Ulf Möller 已提交
74 75
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
	     BN_ULONG *t)
76
	{
77 78 79
	int n=n2/2,c1,c2;
	unsigned int neg,zero;
	BN_ULONG ln,lo,*p;
80

81 82 83 84 85 86
# ifdef BN_COUNT
	printf(" bn_mul_recursive %d * %d\n",n2,n2);
# endif
# ifdef BN_MUL_COMBA
#  if 0
	if (n2 == 4)
87
		{
88 89 90
		bn_mul_comba4(r,a,b);
		return;
		}
91 92
#  endif
	if (n2 == 8)
93 94 95 96
		{
		bn_mul_comba8(r,a,b);
		return; 
		}
97
# endif /* BN_MUL_COMBA */
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
	if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL)
		{
		/* This should not happen */
		bn_mul_normal(r,a,n2,b,n2);
		return;
		}
	/* r=(a[0]-a[1])*(b[1]-b[0]) */
	c1=bn_cmp_words(a,&(a[n]),n);
	c2=bn_cmp_words(&(b[n]),b,n);
	zero=neg=0;
	switch (c1*3+c2)
		{
	case -4:
		bn_sub_words(t,      &(a[n]),a,      n); /* - */
		bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */
		break;
	case -3:
		zero=1;
		break;
	case -2:
		bn_sub_words(t,      &(a[n]),a,      n); /* - */
		bn_sub_words(&(t[n]),&(b[n]),b,      n); /* + */
		neg=1;
		break;
	case -1:
	case 0:
	case 1:
		zero=1;
		break;
	case 2:
		bn_sub_words(t,      a,      &(a[n]),n); /* + */
		bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */
		neg=1;
		break;
	case 3:
		zero=1;
		break;
	case 4:
		bn_sub_words(t,      a,      &(a[n]),n);
		bn_sub_words(&(t[n]),&(b[n]),b,      n);
		break;
139 140
		}

141
# ifdef BN_MUL_COMBA
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
	if (n == 4)
		{
		if (!zero)
			bn_mul_comba4(&(t[n2]),t,&(t[n]));
		else
			memset(&(t[n2]),0,8*sizeof(BN_ULONG));
		
		bn_mul_comba4(r,a,b);
		bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n]));
		}
	else if (n == 8)
		{
		if (!zero)
			bn_mul_comba8(&(t[n2]),t,&(t[n]));
		else
			memset(&(t[n2]),0,16*sizeof(BN_ULONG));
		
		bn_mul_comba8(r,a,b);
		bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n]));
		}
	else
163
# endif /* BN_MUL_COMBA */
164 165 166 167 168 169 170 171 172
		{
		p= &(t[n2*2]);
		if (!zero)
			bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);
		else
			memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
		bn_mul_recursive(r,a,b,n,p);
		bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p);
		}
173

174 175 176 177 178
	/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 */

179
	c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
180 181

	if (neg) /* if t[32] is negative */
182
		{
183
		c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
184 185 186 187
		}
	else
		{
		/* Might have a carry */
188
		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
189 190
		}

191 192 193 194 195
	/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 * c1 holds the carry bits
	 */
196
	c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
197 198 199 200 201 202
	if (c1)
		{
		p= &(r[n+n2]);
		lo= *p;
		ln=(lo+c1)&BN_MASK2;
		*p=ln;
203

204 205 206 207 208 209 210 211 212 213 214 215 216
		/* The overflow will stop before we over write
		 * words we should not overwrite */
		if (ln < (BN_ULONG)c1)
			{
			do	{
				p++;
				lo= *p;
				ln=(lo+1)&BN_MASK2;
				*p=ln;
				} while (ln == 0);
			}
		}
	}
217

218 219
/* n+tn is the word length
 * t needs to be n*4 is size, as does r */
U
Ulf Möller 已提交
220 221
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn,
	     int n, BN_ULONG *t)
222
	{
223
	int i,j,n2=n*2;
U
Ulf Möller 已提交
224
	unsigned int c1,c2,neg,zero;
225
	BN_ULONG ln,lo,*p;
226

227 228 229
# ifdef BN_COUNT
	printf(" bn_mul_part_recursive %d * %d\n",tn+n,tn+n);
# endif
230 231 232 233 234 235 236 237
	if (n < 8)
		{
		i=tn+n;
		bn_mul_normal(r,a,i,b,i);
		return;
		}

	/* r=(a[0]-a[1])*(b[1]-b[0]) */
U
Ulf Möller 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
	c1=bn_cmp_words(a,&(a[n]),n);
	c2=bn_cmp_words(&(b[n]),b,n);
	zero=neg=0;
	switch (c1*3+c2)
		{
	case -4:
		bn_sub_words(t,      &(a[n]),a,      n); /* - */
		bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */
		break;
	case -3:
		zero=1;
		/* break; */
	case -2:
		bn_sub_words(t,      &(a[n]),a,      n); /* - */
		bn_sub_words(&(t[n]),&(b[n]),b,      n); /* + */
		neg=1;
		break;
	case -1:
	case 0:
	case 1:
		zero=1;
		/* break; */
	case 2:
		bn_sub_words(t,      a,      &(a[n]),n); /* + */
		bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */
		neg=1;
		break;
	case 3:
		zero=1;
		/* break; */
	case 4:
		bn_sub_words(t,      a,      &(a[n]),n);
		bn_sub_words(&(t[n]),&(b[n]),b,      n);
		break;
		}
		/* The zero case isn't yet implemented here. The speedup
		   would probably be negligible. */
275 276
# if 0
	if (n == 4)
277 278 279 280 281 282
		{
		bn_mul_comba4(&(t[n2]),t,&(t[n]));
		bn_mul_comba4(r,a,b);
		bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
		memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
		}
283 284 285
	else
# endif
	if (n == 8)
286
		{
287 288 289 290
		bn_mul_comba8(&(t[n2]),t,&(t[n]));
		bn_mul_comba8(r,a,b);
		bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
		memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
291 292 293
		}
	else
		{
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
		p= &(t[n2*2]);
		bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);
		bn_mul_recursive(r,a,b,n,p);
		i=n/2;
		/* If there is only a bottom half to the number,
		 * just do it */
		j=tn-i;
		if (j == 0)
			{
			bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p);
			memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));
			}
		else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
				{
				bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),
					j,i,p);
				memset(&(r[n2+tn*2]),0,
					sizeof(BN_ULONG)*(n2-tn*2));
				}
		else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
			{
			memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);
			if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL)
				{
				bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
				}
			else
				{
				for (;;)
					{
					i/=2;
					if (i < tn)
						{
						bn_mul_part_recursive(&(r[n2]),
							&(a[n]),&(b[n]),
							tn-i,i,p);
						break;
						}
					else if (i == tn)
						{
						bn_mul_recursive(&(r[n2]),
							&(a[n]),&(b[n]),
							i,p);
						break;
						}
					}
				}
			}
		}

	/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 */

349
	c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
U
Ulf Möller 已提交
350 351 352 353 354 355 356 357 358 359

	if (neg) /* if t[32] is negative */
		{
		c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
		}
	else
		{
		/* Might have a carry */
		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
		}
360 361 362 363 364 365

	/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 * c1 holds the carry bits
	 */
366
	c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
	if (c1)
		{
		p= &(r[n+n2]);
		lo= *p;
		ln=(lo+c1)&BN_MASK2;
		*p=ln;

		/* The overflow will stop before we over write
		 * words we should not overwrite */
		if (ln < c1)
			{
			do	{
				p++;
				lo= *p;
				ln=(lo+1)&BN_MASK2;
				*p=ln;
				} while (ln == 0);
			}
385 386 387
		}
	}

388 389 390
/* a and b must be the same size, which is n2.
 * r needs to be n2 words and t needs to be n2*2
 */
U
Ulf Möller 已提交
391 392
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
	     BN_ULONG *t)
393
	{
394 395
	int n=n2/2;

396 397 398
# ifdef BN_COUNT
	printf(" bn_mul_low_recursive %d * %d\n",n2,n2);
# endif
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414

	bn_mul_recursive(r,a,b,n,&(t[0]));
	if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL)
		{
		bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2]));
		bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
		bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2]));
		bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
		}
	else
		{
		bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n);
		bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n);
		bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
		bn_add_words(&(r[n]),&(r[n]),&(t[n]),n);
		}
415 416
	}

417 418 419 420 421
/* a and b must be the same size, which is n2.
 * r needs to be n2 words and t needs to be n2*2
 * l is the low words of the output.
 * t needs to be n2*3
 */
U
Ulf Möller 已提交
422 423
void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
	     BN_ULONG *t)
424
	{
425 426 427 428 429
	int i,n;
	int c1,c2;
	int neg,oneg,zero;
	BN_ULONG ll,lc,*lp,*mp;

430 431 432
# ifdef BN_COUNT
	printf(" bn_mul_high %d * %d\n",n2,n2);
# endif
433
	n=n2/2;
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474

	/* Calculate (al-ah)*(bh-bl) */
	neg=zero=0;
	c1=bn_cmp_words(&(a[0]),&(a[n]),n);
	c2=bn_cmp_words(&(b[n]),&(b[0]),n);
	switch (c1*3+c2)
		{
	case -4:
		bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
		bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
		break;
	case -3:
		zero=1;
		break;
	case -2:
		bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
		bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
		neg=1;
		break;
	case -1:
	case 0:
	case 1:
		zero=1;
		break;
	case 2:
		bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
		bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
		neg=1;
		break;
	case 3:
		zero=1;
		break;
	case 4:
		bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
		bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
		break;
		}
		
	oneg=neg;
	/* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
	/* r[10] = (a[1]*b[1]) */
475
# ifdef BN_MUL_COMBA
476 477 478 479 480 481
	if (n == 8)
		{
		bn_mul_comba8(&(t[0]),&(r[0]),&(r[n]));
		bn_mul_comba8(r,&(a[n]),&(b[n]));
		}
	else
482
# endif
483 484 485 486
		{
		bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,&(t[n2]));
		bn_mul_recursive(r,&(a[n]),&(b[n]),n,&(t[n2]));
		}
487

488 489 490 491 492 493 494
	/* s0 == low(al*bl)
	 * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
	 * We know s0 and s1 so the only unknown is high(al*bl)
	 * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
	 * high(al*bl) == s1 - (r[0]+l[0]+t[0])
	 */
	if (l != NULL)
495
		{
496
		lp= &(t[n2+n]);
497
		c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n));
498 499 500 501 502 503 504 505
		}
	else
		{
		c1=0;
		lp= &(r[0]);
		}

	if (neg)
506
		neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n));
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
	else
		{
		bn_add_words(&(t[n2]),lp,&(t[0]),n);
		neg=0;
		}

	if (l != NULL)
		{
		bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n);
		}
	else
		{
		lp= &(t[n2+n]);
		mp= &(t[n2]);
		for (i=0; i<n; i++)
			lp[i]=((~mp[i])+1)&BN_MASK2;
		}

	/* s[0] = low(al*bl)
	 * t[3] = high(al*bl)
	 * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
	 * r[10] = (a[1]*b[1])
	 */
	/* R[10] = al*bl
	 * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
	 * R[32] = ah*bh
	 */
	/* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
	 * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
	 * R[3]=r[1]+(carry/borrow)
	 */
	if (l != NULL)
		{
		lp= &(t[n2]);
541
		c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n));
542 543 544 545 546 547
		}
	else
		{
		lp= &(t[n2+n]);
		c1=0;
		}
548
	c1+=(int)(bn_add_words(&(t[n2]),lp,  &(r[0]),n));
549
	if (oneg)
550
		c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n));
551
	else
552
		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n));
553

554 555
	c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n));
	c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n));
556
	if (oneg)
557
		c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n));
558
	else
559
		c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n));
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
	
	if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */
		{
		i=0;
		if (c1 > 0)
			{
			lc=c1;
			do	{
				ll=(r[i]+lc)&BN_MASK2;
				r[i++]=ll;
				lc=(lc > ll);
				} while (lc);
			}
		else
			{
			lc= -c1;
			do	{
				ll=r[i];
				r[i++]=(ll-lc)&BN_MASK2;
				lc=(lc > ll);
				} while (lc);
			}
		}
	if (c2 != 0) /* Add starting at r[1] */
		{
		i=n;
		if (c2 > 0)
			{
			lc=c2;
			do	{
				ll=(r[i]+lc)&BN_MASK2;
				r[i++]=ll;
				lc=(lc > ll);
				} while (lc);
			}
		else
			{
			lc= -c2;
			do	{
				ll=r[i];
				r[i++]=(ll-lc)&BN_MASK2;
				lc=(lc > ll);
				} while (lc);
			}
604 605
		}
	}
606
#endif /* BN_RECURSION */
607

U
Ulf Möller 已提交
608
int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx)
609
	{
610 611
	int top,al,bl;
	BIGNUM *rr;
612 613 614 615
	int ret = 0;
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
	int i;
#endif
616
#ifdef BN_RECURSION
617
	BIGNUM *t;
618
	int j,k;
619
#endif
620 621

#ifdef BN_COUNT
622
	printf("BN_mul %d * %d\n",a->top,b->top);
623 624 625 626 627
#endif

	bn_check_top(a);
	bn_check_top(b);
	bn_check_top(r);
628

629 630 631 632 633
	al=a->top;
	bl=b->top;
	r->neg=a->neg^b->neg;

	if ((al == 0) || (bl == 0))
634
		{
635 636
		BN_zero(r);
		return(1);
637
		}
638
	top=al+bl;
639

640
	BN_CTX_start(ctx);
641
	if ((r == a) || (r == b))
642 643 644
		{
		if ((rr = BN_CTX_get(ctx)) == NULL) goto err;
		}
645
	else
646
		rr = r;
647

648
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
649 650 651 652
	i = al-bl;
#endif
#ifdef BN_MUL_COMBA
	if (i == 0)
653
		{
654 655
# if 0
		if (al == 4)
656
			{
657
			if (bn_wexpand(rr,8) == NULL) goto err;
658
			rr->top=8;
659
			bn_mul_comba4(rr->d,a->d,b->d);
660 661
			goto end;
			}
662 663
# endif
		if (al == 8)
664
			{
665
			if (bn_wexpand(rr,16) == NULL) goto err;
666
			rr->top=16;
667
			bn_mul_comba8(rr->d,a->d,b->d);
668 669 670
			goto end;
			}
		}
671
#endif /* BN_MUL_COMBA */
672
#ifdef BN_RECURSION
673
	if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL))
674
		{
675
		if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA))
676 677 678 679
			{
			bn_wexpand(b,al);
			b->d[bl]=0;
			bl++;
680
			i--;
681
			}
682
		else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA))
683 684 685 686
			{
			bn_wexpand(a,bl);
			a->d[al]=0;
			al++;
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
			i++;
			}
		if (i == 0)
			{
			/* symmetric and > 4 */
			/* 16 or larger */
			j=BN_num_bits_word((BN_ULONG)al);
			j=1<<(j-1);
			k=j+j;
			t = BN_CTX_get(ctx);
			if (al == j) /* exact multiple */
				{
				bn_wexpand(t,k*2);
				bn_wexpand(rr,k*2);
				bn_mul_recursive(rr->d,a->d,b->d,al,t->d);
				}
			else
				{
				bn_wexpand(a,k);
				bn_wexpand(b,k);
				bn_wexpand(t,k*4);
				bn_wexpand(rr,k*4);
				for (i=a->top; i<k; i++)
					a->d[i]=0;
				for (i=b->top; i<k; i++)
					b->d[i]=0;
				bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d);
				}
			rr->top=top;
			goto end;
717 718
			}
		}
719
#endif /* BN_RECURSION */
720
	if (bn_wexpand(rr,top) == NULL) goto err;
721 722
	rr->top=top;
	bn_mul_normal(rr->d,a->d,al,b->d,bl);
723

724
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
725
end:
726 727 728
#endif
	bn_fix_top(rr);
	if (r != rr) BN_copy(r,rr);
729
	ret=1;
730 731
err:
	BN_CTX_end(ctx);
732
	return(ret);
733
	}
734

U
Ulf Möller 已提交
735
void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
736 737
	{
	BN_ULONG *rr;
738

739
#ifdef BN_COUNT
740
	printf(" bn_mul_normal %d * %d\n",na,nb);
741
#endif
742

743 744 745 746
	if (na < nb)
		{
		int itmp;
		BN_ULONG *ltmp;
747

748 749
		itmp=na; na=nb; nb=itmp;
		ltmp=a;   a=b;   b=ltmp;
750

751 752 753
		}
	rr= &(r[na]);
	rr[0]=bn_mul_words(r,a,na,b[0]);
754

755 756 757 758 759 760 761 762 763 764 765 766 767 768
	for (;;)
		{
		if (--nb <= 0) return;
		rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]);
		if (--nb <= 0) return;
		rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]);
		if (--nb <= 0) return;
		rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]);
		if (--nb <= 0) return;
		rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]);
		rr+=4;
		r+=4;
		b+=4;
		}
769
	}
770

U
Ulf Möller 已提交
771
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
772 773
	{
#ifdef BN_COUNT
774
	printf(" bn_mul_low_normal %d * %d\n",n,n);
775
#endif
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
	bn_mul_words(r,a,n,b[0]);

	for (;;)
		{
		if (--n <= 0) return;
		bn_mul_add_words(&(r[1]),a,n,b[1]);
		if (--n <= 0) return;
		bn_mul_add_words(&(r[2]),a,n,b[2]);
		if (--n <= 0) return;
		bn_mul_add_words(&(r[3]),a,n,b[3]);
		if (--n <= 0) return;
		bn_mul_add_words(&(r[4]),a,n,b[4]);
		r+=4;
		b+=4;
		}
	}