bn_mul.c 17.6 KB
Newer Older
1
/* crypto/bn/bn_mul.c */
2
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 * 
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 * 
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from 
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 * 
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * 
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */

#include <stdio.h>
#include "cryptlib.h"
#include "bn_lcl.h"

63
#ifdef BN_RECURSION
B
Bodo Möller 已提交
64 65
/* Karatsuba recursive multiplication algorithm
 * (cf. Knuth, The Art of Computer Programming, Vol. 2) */
U
Ulf Möller 已提交
66

67 68 69 70 71
/* r is 2*n2 words in size,
 * a and b are both n2 words in size.
 * n2 must be a power of 2.
 * We multiply and return the result.
 * t must be 2*n2 words in size
U
Ulf Möller 已提交
72
 * We calculate
73 74 75 76
 * a[0]*b[0]
 * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
 * a[1]*b[1]
 */
U
Ulf Möller 已提交
77 78
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
	     BN_ULONG *t)
79
	{
80 81 82
	int n=n2/2,c1,c2;
	unsigned int neg,zero;
	BN_ULONG ln,lo,*p;
83

84 85 86 87 88 89
# ifdef BN_COUNT
	printf(" bn_mul_recursive %d * %d\n",n2,n2);
# endif
# ifdef BN_MUL_COMBA
#  if 0
	if (n2 == 4)
90
		{
91 92 93
		bn_mul_comba4(r,a,b);
		return;
		}
94 95
#  endif
	if (n2 == 8)
96 97 98 99
		{
		bn_mul_comba8(r,a,b);
		return; 
		}
100
# endif /* BN_MUL_COMBA */
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
	if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL)
		{
		/* This should not happen */
		bn_mul_normal(r,a,n2,b,n2);
		return;
		}
	/* r=(a[0]-a[1])*(b[1]-b[0]) */
	c1=bn_cmp_words(a,&(a[n]),n);
	c2=bn_cmp_words(&(b[n]),b,n);
	zero=neg=0;
	switch (c1*3+c2)
		{
	case -4:
		bn_sub_words(t,      &(a[n]),a,      n); /* - */
		bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */
		break;
	case -3:
		zero=1;
		break;
	case -2:
		bn_sub_words(t,      &(a[n]),a,      n); /* - */
		bn_sub_words(&(t[n]),&(b[n]),b,      n); /* + */
		neg=1;
		break;
	case -1:
	case 0:
	case 1:
		zero=1;
		break;
	case 2:
		bn_sub_words(t,      a,      &(a[n]),n); /* + */
		bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */
		neg=1;
		break;
	case 3:
		zero=1;
		break;
	case 4:
		bn_sub_words(t,      a,      &(a[n]),n);
		bn_sub_words(&(t[n]),&(b[n]),b,      n);
		break;
142 143
		}

144
# ifdef BN_MUL_COMBA
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
	if (n == 4)
		{
		if (!zero)
			bn_mul_comba4(&(t[n2]),t,&(t[n]));
		else
			memset(&(t[n2]),0,8*sizeof(BN_ULONG));
		
		bn_mul_comba4(r,a,b);
		bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n]));
		}
	else if (n == 8)
		{
		if (!zero)
			bn_mul_comba8(&(t[n2]),t,&(t[n]));
		else
			memset(&(t[n2]),0,16*sizeof(BN_ULONG));
		
		bn_mul_comba8(r,a,b);
		bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n]));
		}
	else
166
# endif /* BN_MUL_COMBA */
167 168 169 170 171 172 173 174 175
		{
		p= &(t[n2*2]);
		if (!zero)
			bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);
		else
			memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
		bn_mul_recursive(r,a,b,n,p);
		bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p);
		}
176

177 178 179 180 181
	/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 */

182
	c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
183 184

	if (neg) /* if t[32] is negative */
185
		{
186
		c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
187 188 189 190
		}
	else
		{
		/* Might have a carry */
191
		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
192 193
		}

194 195 196 197 198
	/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 * c1 holds the carry bits
	 */
199
	c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
200 201 202 203 204 205
	if (c1)
		{
		p= &(r[n+n2]);
		lo= *p;
		ln=(lo+c1)&BN_MASK2;
		*p=ln;
206

207 208 209 210 211 212 213 214 215 216 217 218 219
		/* The overflow will stop before we over write
		 * words we should not overwrite */
		if (ln < (BN_ULONG)c1)
			{
			do	{
				p++;
				lo= *p;
				ln=(lo+1)&BN_MASK2;
				*p=ln;
				} while (ln == 0);
			}
		}
	}
220

221 222
/* n+tn is the word length
 * t needs to be n*4 is size, as does r */
U
Ulf Möller 已提交
223 224
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn,
	     int n, BN_ULONG *t)
225
	{
226
	int i,j,n2=n*2;
U
Ulf Möller 已提交
227
	unsigned int c1,c2,neg,zero;
228
	BN_ULONG ln,lo,*p;
229

230 231 232
# ifdef BN_COUNT
	printf(" bn_mul_part_recursive %d * %d\n",tn+n,tn+n);
# endif
233 234 235 236 237 238 239 240
	if (n < 8)
		{
		i=tn+n;
		bn_mul_normal(r,a,i,b,i);
		return;
		}

	/* r=(a[0]-a[1])*(b[1]-b[0]) */
U
Ulf Möller 已提交
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
	c1=bn_cmp_words(a,&(a[n]),n);
	c2=bn_cmp_words(&(b[n]),b,n);
	zero=neg=0;
	switch (c1*3+c2)
		{
	case -4:
		bn_sub_words(t,      &(a[n]),a,      n); /* - */
		bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */
		break;
	case -3:
		zero=1;
		/* break; */
	case -2:
		bn_sub_words(t,      &(a[n]),a,      n); /* - */
		bn_sub_words(&(t[n]),&(b[n]),b,      n); /* + */
		neg=1;
		break;
	case -1:
	case 0:
	case 1:
		zero=1;
		/* break; */
	case 2:
		bn_sub_words(t,      a,      &(a[n]),n); /* + */
		bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */
		neg=1;
		break;
	case 3:
		zero=1;
		/* break; */
	case 4:
		bn_sub_words(t,      a,      &(a[n]),n);
		bn_sub_words(&(t[n]),&(b[n]),b,      n);
		break;
		}
		/* The zero case isn't yet implemented here. The speedup
		   would probably be negligible. */
278 279
# if 0
	if (n == 4)
280 281 282 283 284 285
		{
		bn_mul_comba4(&(t[n2]),t,&(t[n]));
		bn_mul_comba4(r,a,b);
		bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
		memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
		}
286 287 288
	else
# endif
	if (n == 8)
289
		{
290 291 292 293
		bn_mul_comba8(&(t[n2]),t,&(t[n]));
		bn_mul_comba8(r,a,b);
		bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
		memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
294 295 296
		}
	else
		{
297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
		p= &(t[n2*2]);
		bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);
		bn_mul_recursive(r,a,b,n,p);
		i=n/2;
		/* If there is only a bottom half to the number,
		 * just do it */
		j=tn-i;
		if (j == 0)
			{
			bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p);
			memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));
			}
		else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
				{
				bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),
					j,i,p);
				memset(&(r[n2+tn*2]),0,
					sizeof(BN_ULONG)*(n2-tn*2));
				}
		else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
			{
			memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);
			if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL)
				{
				bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
				}
			else
				{
				for (;;)
					{
					i/=2;
					if (i < tn)
						{
						bn_mul_part_recursive(&(r[n2]),
							&(a[n]),&(b[n]),
							tn-i,i,p);
						break;
						}
					else if (i == tn)
						{
						bn_mul_recursive(&(r[n2]),
							&(a[n]),&(b[n]),
							i,p);
						break;
						}
					}
				}
			}
		}

	/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 */

352
	c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
U
Ulf Möller 已提交
353 354 355 356 357 358 359 360 361 362

	if (neg) /* if t[32] is negative */
		{
		c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
		}
	else
		{
		/* Might have a carry */
		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
		}
363 364 365 366 367 368

	/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 * c1 holds the carry bits
	 */
369
	c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	if (c1)
		{
		p= &(r[n+n2]);
		lo= *p;
		ln=(lo+c1)&BN_MASK2;
		*p=ln;

		/* The overflow will stop before we over write
		 * words we should not overwrite */
		if (ln < c1)
			{
			do	{
				p++;
				lo= *p;
				ln=(lo+1)&BN_MASK2;
				*p=ln;
				} while (ln == 0);
			}
388 389 390
		}
	}

391 392 393
/* a and b must be the same size, which is n2.
 * r needs to be n2 words and t needs to be n2*2
 */
U
Ulf Möller 已提交
394 395
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
	     BN_ULONG *t)
396
	{
397 398
	int n=n2/2;

399 400 401
# ifdef BN_COUNT
	printf(" bn_mul_low_recursive %d * %d\n",n2,n2);
# endif
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417

	bn_mul_recursive(r,a,b,n,&(t[0]));
	if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL)
		{
		bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2]));
		bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
		bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2]));
		bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
		}
	else
		{
		bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n);
		bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n);
		bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
		bn_add_words(&(r[n]),&(r[n]),&(t[n]),n);
		}
418 419
	}

420 421 422 423 424
/* a and b must be the same size, which is n2.
 * r needs to be n2 words and t needs to be n2*2
 * l is the low words of the output.
 * t needs to be n2*3
 */
U
Ulf Möller 已提交
425 426
void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
	     BN_ULONG *t)
427
	{
428 429 430 431 432
	int i,n;
	int c1,c2;
	int neg,oneg,zero;
	BN_ULONG ll,lc,*lp,*mp;

433 434 435
# ifdef BN_COUNT
	printf(" bn_mul_high %d * %d\n",n2,n2);
# endif
436
	n=n2/2;
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477

	/* Calculate (al-ah)*(bh-bl) */
	neg=zero=0;
	c1=bn_cmp_words(&(a[0]),&(a[n]),n);
	c2=bn_cmp_words(&(b[n]),&(b[0]),n);
	switch (c1*3+c2)
		{
	case -4:
		bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
		bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
		break;
	case -3:
		zero=1;
		break;
	case -2:
		bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
		bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
		neg=1;
		break;
	case -1:
	case 0:
	case 1:
		zero=1;
		break;
	case 2:
		bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
		bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
		neg=1;
		break;
	case 3:
		zero=1;
		break;
	case 4:
		bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
		bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
		break;
		}
		
	oneg=neg;
	/* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
	/* r[10] = (a[1]*b[1]) */
478
# ifdef BN_MUL_COMBA
479 480 481 482 483 484
	if (n == 8)
		{
		bn_mul_comba8(&(t[0]),&(r[0]),&(r[n]));
		bn_mul_comba8(r,&(a[n]),&(b[n]));
		}
	else
485
# endif
486 487 488 489
		{
		bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,&(t[n2]));
		bn_mul_recursive(r,&(a[n]),&(b[n]),n,&(t[n2]));
		}
490

491 492 493 494 495 496 497
	/* s0 == low(al*bl)
	 * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
	 * We know s0 and s1 so the only unknown is high(al*bl)
	 * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
	 * high(al*bl) == s1 - (r[0]+l[0]+t[0])
	 */
	if (l != NULL)
498
		{
499
		lp= &(t[n2+n]);
500
		c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n));
501 502 503 504 505 506 507 508
		}
	else
		{
		c1=0;
		lp= &(r[0]);
		}

	if (neg)
509
		neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n));
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
	else
		{
		bn_add_words(&(t[n2]),lp,&(t[0]),n);
		neg=0;
		}

	if (l != NULL)
		{
		bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n);
		}
	else
		{
		lp= &(t[n2+n]);
		mp= &(t[n2]);
		for (i=0; i<n; i++)
			lp[i]=((~mp[i])+1)&BN_MASK2;
		}

	/* s[0] = low(al*bl)
	 * t[3] = high(al*bl)
	 * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
	 * r[10] = (a[1]*b[1])
	 */
	/* R[10] = al*bl
	 * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
	 * R[32] = ah*bh
	 */
	/* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
	 * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
	 * R[3]=r[1]+(carry/borrow)
	 */
	if (l != NULL)
		{
		lp= &(t[n2]);
544
		c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n));
545 546 547 548 549 550
		}
	else
		{
		lp= &(t[n2+n]);
		c1=0;
		}
551
	c1+=(int)(bn_add_words(&(t[n2]),lp,  &(r[0]),n));
552
	if (oneg)
553
		c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n));
554
	else
555
		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n));
556

557 558
	c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n));
	c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n));
559
	if (oneg)
560
		c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n));
561
	else
562
		c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n));
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
	
	if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */
		{
		i=0;
		if (c1 > 0)
			{
			lc=c1;
			do	{
				ll=(r[i]+lc)&BN_MASK2;
				r[i++]=ll;
				lc=(lc > ll);
				} while (lc);
			}
		else
			{
			lc= -c1;
			do	{
				ll=r[i];
				r[i++]=(ll-lc)&BN_MASK2;
				lc=(lc > ll);
				} while (lc);
			}
		}
	if (c2 != 0) /* Add starting at r[1] */
		{
		i=n;
		if (c2 > 0)
			{
			lc=c2;
			do	{
				ll=(r[i]+lc)&BN_MASK2;
				r[i++]=ll;
				lc=(lc > ll);
				} while (lc);
			}
		else
			{
			lc= -c2;
			do	{
				ll=r[i];
				r[i++]=(ll-lc)&BN_MASK2;
				lc=(lc > ll);
				} while (lc);
			}
607 608
		}
	}
609
#endif /* BN_RECURSION */
610

611
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
612
	{
613 614
	int top,al,bl;
	BIGNUM *rr;
615 616 617 618
	int ret = 0;
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
	int i;
#endif
619
#ifdef BN_RECURSION
620
	BIGNUM *t;
621
	int j,k;
622
#endif
623
	BIGNUM *free_a = NULL, *free_b = NULL;
624 625

#ifdef BN_COUNT
626
	printf("BN_mul %d * %d\n",a->top,b->top);
627 628 629 630 631
#endif

	bn_check_top(a);
	bn_check_top(b);
	bn_check_top(r);
632

633 634 635 636
	al=a->top;
	bl=b->top;

	if ((al == 0) || (bl == 0))
637
		{
638 639
		BN_zero(r);
		return(1);
640
		}
641
	top=al+bl;
642

643
	BN_CTX_start(ctx);
644
	if ((r == a) || (r == b))
645 646 647
		{
		if ((rr = BN_CTX_get(ctx)) == NULL) goto err;
		}
648
	else
649
		rr = r;
650
	rr->neg=a->neg^b->neg;
651

652
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
653 654 655 656
	i = al-bl;
#endif
#ifdef BN_MUL_COMBA
	if (i == 0)
657
		{
658 659
# if 0
		if (al == 4)
660
			{
661
			if (bn_wexpand(rr,8) == NULL) goto err;
662
			rr->top=8;
663
			bn_mul_comba4(rr->d,a->d,b->d);
664 665
			goto end;
			}
666 667
# endif
		if (al == 8)
668
			{
669
			if (bn_wexpand(rr,16) == NULL) goto err;
670
			rr->top=16;
671
			bn_mul_comba8(rr->d,a->d,b->d);
672 673 674
			goto end;
			}
		}
675
#endif /* BN_MUL_COMBA */
676
#ifdef BN_RECURSION
677
	if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL))
678
		{
679
		if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA))
680
			{
681 682 683
			BIGNUM *tmp_bn = free_b;
			b = free_b = bn_dup_expand(b,al);
			free_b->d[bl]=0;
684
			bl++;
685
			i--;
686
			if (tmp_bn) BN_free(tmp_bn);
687
			}
688
		else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA))
689
			{
690 691 692
			BIGNUM *tmp_bn = free_a;
			a = free_a = bn_dup_expand(a,bl);
			free_a->d[al]=0;
693
			al++;
694
			i++;
695
			if (tmp_bn) BN_free(tmp_bn);
696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712
			}
		if (i == 0)
			{
			/* symmetric and > 4 */
			/* 16 or larger */
			j=BN_num_bits_word((BN_ULONG)al);
			j=1<<(j-1);
			k=j+j;
			t = BN_CTX_get(ctx);
			if (al == j) /* exact multiple */
				{
				bn_wexpand(t,k*2);
				bn_wexpand(rr,k*2);
				bn_mul_recursive(rr->d,a->d,b->d,al,t->d);
				}
			else
				{
713 714 715 716 717
				BIGNUM *tmp_a = free_a,*tmp_b = free_b;
				a = free_a = bn_dup_expand(a,k);
				b = free_b = bn_dup_expand(b,k);
				if (tmp_a) BN_free(tmp_a);
				if (tmp_b) BN_free(tmp_b);
718 719
				bn_wexpand(t,k*4);
				bn_wexpand(rr,k*4);
720 721 722 723
				for (i=free_a->top; i<k; i++)
					free_a->d[i]=0;
				for (i=free_b->top; i<k; i++)
					free_b->d[i]=0;
724 725 726 727
				bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d);
				}
			rr->top=top;
			goto end;
728 729
			}
		}
730
#endif /* BN_RECURSION */
731
	if (bn_wexpand(rr,top) == NULL) goto err;
732 733
	rr->top=top;
	bn_mul_normal(rr->d,a->d,al,b->d,bl);
734

735
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
736
end:
737 738 739
#endif
	bn_fix_top(rr);
	if (r != rr) BN_copy(r,rr);
740
	ret=1;
741
err:
742 743
	if (free_a) BN_free(free_a);
	if (free_b) BN_free(free_b);
744
	BN_CTX_end(ctx);
745
	return(ret);
746
	}
747

U
Ulf Möller 已提交
748
void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
749 750
	{
	BN_ULONG *rr;
751

752
#ifdef BN_COUNT
753
	printf(" bn_mul_normal %d * %d\n",na,nb);
754
#endif
755

756 757 758 759
	if (na < nb)
		{
		int itmp;
		BN_ULONG *ltmp;
760

761 762
		itmp=na; na=nb; nb=itmp;
		ltmp=a;   a=b;   b=ltmp;
763

764 765 766
		}
	rr= &(r[na]);
	rr[0]=bn_mul_words(r,a,na,b[0]);
767

768 769 770 771 772 773 774 775 776 777 778 779 780 781
	for (;;)
		{
		if (--nb <= 0) return;
		rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]);
		if (--nb <= 0) return;
		rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]);
		if (--nb <= 0) return;
		rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]);
		if (--nb <= 0) return;
		rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]);
		rr+=4;
		r+=4;
		b+=4;
		}
782
	}
783

U
Ulf Möller 已提交
784
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
785 786
	{
#ifdef BN_COUNT
787
	printf(" bn_mul_low_normal %d * %d\n",n,n);
788
#endif
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
	bn_mul_words(r,a,n,b[0]);

	for (;;)
		{
		if (--n <= 0) return;
		bn_mul_add_words(&(r[1]),a,n,b[1]);
		if (--n <= 0) return;
		bn_mul_add_words(&(r[2]),a,n,b[2]);
		if (--n <= 0) return;
		bn_mul_add_words(&(r[3]),a,n,b[3]);
		if (--n <= 0) return;
		bn_mul_add_words(&(r[4]),a,n,b[4]);
		r+=4;
		b+=4;
		}
	}