bn_mul.c 23.2 KB
Newer Older
1
/* crypto/bn/bn_mul.c */
2
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
 * All rights reserved.
 *
 * This package is an SSL implementation written
 * by Eric Young (eay@cryptsoft.com).
 * The implementation was written so as to conform with Netscapes SSL.
 * 
 * This library is free for commercial and non-commercial use as long as
 * the following conditions are aheared to.  The following conditions
 * apply to all code found in this distribution, be it the RC4, RSA,
 * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
 * included with this distribution is covered by the same copyright terms
 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
 * 
 * Copyright remains Eric Young's, and as such any Copyright notices in
 * the code are not to be removed.
 * If this package is used in a product, Eric Young should be given attribution
 * as the author of the parts of the library used.
 * This can be in the form of a textual message at program startup or
 * in documentation (online or textual) provided with the package.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *    "This product includes cryptographic software written by
 *     Eric Young (eay@cryptsoft.com)"
 *    The word 'cryptographic' can be left out if the rouines from the library
 *    being used are not cryptographic related :-).
 * 4. If you include any Windows specific code (or a derivative thereof) from 
 *    the apps directory (application code) you must include an acknowledgement:
 *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
 * 
 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * 
 * The licence and distribution terms for any publically available version or
 * derivative of this code cannot be changed.  i.e. this code cannot simply be
 * copied and put under another distribution licence
 * [including the GNU Public Licence.]
 */

59 60 61 62 63
#ifndef BN_DEBUG
# undef NDEBUG /* avoid conflicting definitions */
# define NDEBUG
#endif

64
#include <assert.h>
65 66 67
#include "cryptlib.h"
#include "bn_lcl.h"

68
#if defined(OPENSSL_NO_ASM) || !defined(OPENSSL_BN_ASM_PART_WORDS)
69 70
/* Here follows specialised variants of bn_add_words() and
   bn_sub_words().  They have the property performing operations on
71 72 73 74 75 76 77 78 79
   arrays of different sizes.  The sizes of those arrays is expressed through
   cl, which is the common length ( basicall, min(len(a),len(b)) ), and dl,
   which is the delta between the two lengths, calculated as len(a)-len(b).
   All lengths are the number of BN_ULONGs...  For the operations that require
   a result array as parameter, it must have the length cl+abs(dl).
   These functions should probably end up in bn_asm.c as soon as there are
   assembler counterparts for the systems that use assembler files.  */

BN_ULONG bn_sub_part_words(BN_ULONG *r,
80 81
	const BN_ULONG *a, const BN_ULONG *b,
	int cl, int dl)
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
	{
	BN_ULONG c, t;

	assert(cl >= 0);
	c = bn_sub_words(r, a, b, cl);

	if (dl == 0)
		return c;

	r += cl;
	a += cl;
	b += cl;

	if (dl < 0)
		{
		for (;;)
			{
			t = b[0];
100
			r[0] = (0-t-c)&BN_MASK2;
101 102 103 104
			if (t != 0) c=1;
			if (++dl >= 0) break;

			t = b[1];
105
			r[1] = (0-t-c)&BN_MASK2;
106 107 108 109
			if (t != 0) c=1;
			if (++dl >= 0) break;

			t = b[2];
110
			r[2] = (0-t-c)&BN_MASK2;
111 112 113 114
			if (t != 0) c=1;
			if (++dl >= 0) break;

			t = b[3];
115
			r[3] = (0-t-c)&BN_MASK2;
116 117 118 119 120 121 122 123 124
			if (t != 0) c=1;
			if (++dl >= 0) break;

			b += 4;
			r += 4;
			}
		}
	else
		{
125
		int save_dl = dl;
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
		while(c)
			{
			t = a[0];
			r[0] = (t-c)&BN_MASK2;
			if (t != 0) c=0;
			if (--dl <= 0) break;

			t = a[1];
			r[1] = (t-c)&BN_MASK2;
			if (t != 0) c=0;
			if (--dl <= 0) break;

			t = a[2];
			r[2] = (t-c)&BN_MASK2;
			if (t != 0) c=0;
			if (--dl <= 0) break;

			t = a[3];
			r[3] = (t-c)&BN_MASK2;
			if (t != 0) c=0;
			if (--dl <= 0) break;

			save_dl = dl;
			a += 4;
			r += 4;
			}
		if (dl > 0)
			{
			if (save_dl > dl)
				{
				switch (save_dl - dl)
					{
				case 1:
					r[1] = a[1];
					if (--dl <= 0) break;
				case 2:
					r[2] = a[2];
					if (--dl <= 0) break;
				case 3:
					r[3] = a[3];
					if (--dl <= 0) break;
					}
				a += 4;
				r += 4;
				}
			}
		if (dl > 0)
			{
			for(;;)
				{
				r[0] = a[0];
				if (--dl <= 0) break;
				r[1] = a[1];
				if (--dl <= 0) break;
				r[2] = a[2];
				if (--dl <= 0) break;
				r[3] = a[3];
				if (--dl <= 0) break;

				a += 4;
				r += 4;
				}
			}
		}
	return c;
	}
192
#endif
193 194

BN_ULONG bn_add_part_words(BN_ULONG *r,
195 196
	const BN_ULONG *a, const BN_ULONG *b,
	int cl, int dl)
197 198 199 200
	{
	BN_ULONG c, l, t;

	assert(cl >= 0);
201
	c = bn_add_words(r, a, b, cl);
202 203 204 205 206 207 208 209 210 211

	if (dl == 0)
		return c;

	r += cl;
	a += cl;
	b += cl;

	if (dl < 0)
		{
212
		int save_dl = dl;
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
		while (c)
			{
			l=(c+b[0])&BN_MASK2;
			c=(l < c);
			r[0]=l;
			if (++dl >= 0) break;

			l=(c+b[1])&BN_MASK2;
			c=(l < c);
			r[1]=l;
			if (++dl >= 0) break;

			l=(c+b[2])&BN_MASK2;
			c=(l < c);
			r[2]=l;
			if (++dl >= 0) break;

			l=(c+b[3])&BN_MASK2;
			c=(l < c);
			r[3]=l;
			if (++dl >= 0) break;

			save_dl = dl;
			b+=4;
			r+=4;
			}
		if (dl < 0)
			{
			if (save_dl < dl)
				{
				switch (dl - save_dl)
					{
				case 1:
					r[1] = b[1];
					if (++dl >= 0) break;
				case 2:
					r[2] = b[2];
					if (++dl >= 0) break;
				case 3:
					r[3] = b[3];
					if (++dl >= 0) break;
					}
				b += 4;
				r += 4;
				}
			}
		if (dl < 0)
			{
			for(;;)
				{
				r[0] = b[0];
				if (++dl >= 0) break;
				r[1] = b[1];
				if (++dl >= 0) break;
				r[2] = b[2];
				if (++dl >= 0) break;
				r[3] = b[3];
				if (++dl >= 0) break;

				b += 4;
				r += 4;
				}
			}
		}
	else
		{
		int save_dl = dl;
		while (c)
			{
			t=(a[0]+c)&BN_MASK2;
			c=(t < c);
			r[0]=t;
			if (--dl <= 0) break;

			t=(a[1]+c)&BN_MASK2;
			c=(t < c);
			r[1]=t;
			if (--dl <= 0) break;

			t=(a[2]+c)&BN_MASK2;
			c=(t < c);
			r[2]=t;
			if (--dl <= 0) break;

			t=(a[3]+c)&BN_MASK2;
			c=(t < c);
			r[3]=t;
			if (--dl <= 0) break;

			save_dl = dl;
			a+=4;
			r+=4;
			}
		if (dl > 0)
			{
			if (save_dl > dl)
				{
				switch (save_dl - dl)
					{
				case 1:
					r[1] = a[1];
					if (--dl <= 0) break;
				case 2:
					r[2] = a[2];
					if (--dl <= 0) break;
				case 3:
					r[3] = a[3];
					if (--dl <= 0) break;
					}
				a += 4;
				r += 4;
				}
			}
		if (dl > 0)
			{
			for(;;)
				{
				r[0] = a[0];
				if (--dl <= 0) break;
				r[1] = a[1];
				if (--dl <= 0) break;
				r[2] = a[2];
				if (--dl <= 0) break;
				r[3] = a[3];
				if (--dl <= 0) break;

				a += 4;
				r += 4;
				}
			}
		}
	return c;
	}

347
#ifdef BN_RECURSION
B
Bodo Möller 已提交
348 349
/* Karatsuba recursive multiplication algorithm
 * (cf. Knuth, The Art of Computer Programming, Vol. 2) */
U
Ulf Möller 已提交
350

351 352 353 354 355
/* r is 2*n2 words in size,
 * a and b are both n2 words in size.
 * n2 must be a power of 2.
 * We multiply and return the result.
 * t must be 2*n2 words in size
U
Ulf Möller 已提交
356
 * We calculate
357 358 359 360
 * a[0]*b[0]
 * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
 * a[1]*b[1]
 */
361
/* dnX may not be positive, but n2/2+dnX has to be */
362 363
void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
	int dna, int dnb, BN_ULONG *t)
364
	{
365
	int n=n2/2,c1,c2;
366
	int tna=n+dna, tnb=n+dnb;
367 368
	unsigned int neg,zero;
	BN_ULONG ln,lo,*p;
369

370 371 372
# ifdef BN_MUL_COMBA
#  if 0
	if (n2 == 4)
373
		{
374 375 376
		bn_mul_comba4(r,a,b);
		return;
		}
377
#  endif
D
 
Dr. Stephen Henson 已提交
378 379 380 381
	/* Only call bn_mul_comba 8 if n2 == 8 and the
	 * two arrays are complete [steve]
	 */
	if (n2 == 8 && dna == 0 && dnb == 0)
382 383 384 385
		{
		bn_mul_comba8(r,a,b);
		return; 
		}
386
# endif /* BN_MUL_COMBA */
D
 
Dr. Stephen Henson 已提交
387
	/* Else do normal multiply */
388 389
	if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL)
		{
D
 
Dr. Stephen Henson 已提交
390 391 392 393
		bn_mul_normal(r,a,n2+dna,b,n2+dnb);
		if ((dna + dnb) < 0)
			memset(&r[2*n2 + dna + dnb], 0,
				sizeof(BN_ULONG) * -(dna + dnb));
394 395 396
		return;
		}
	/* r=(a[0]-a[1])*(b[1]-b[0]) */
397 398
	c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
	c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
399 400 401 402
	zero=neg=0;
	switch (c1*3+c2)
		{
	case -4:
403 404
		bn_sub_part_words(t,      &(a[n]),a,      tna,tna-n); /* - */
		bn_sub_part_words(&(t[n]),b,      &(b[n]),tnb,n-tnb); /* - */
405 406 407 408 409
		break;
	case -3:
		zero=1;
		break;
	case -2:
410 411
		bn_sub_part_words(t,      &(a[n]),a,      tna,tna-n); /* - */
		bn_sub_part_words(&(t[n]),&(b[n]),b,      tnb,tnb-n); /* + */
412 413 414 415 416 417 418 419
		neg=1;
		break;
	case -1:
	case 0:
	case 1:
		zero=1;
		break;
	case 2:
420 421
		bn_sub_part_words(t,      a,      &(a[n]),tna,n-tna); /* + */
		bn_sub_part_words(&(t[n]),b,      &(b[n]),tnb,n-tnb); /* - */
422 423 424 425 426 427
		neg=1;
		break;
	case 3:
		zero=1;
		break;
	case 4:
428 429
		bn_sub_part_words(t,      a,      &(a[n]),tna,n-tna);
		bn_sub_part_words(&(t[n]),&(b[n]),b,      tnb,tnb-n);
430
		break;
431 432
		}

433
# ifdef BN_MUL_COMBA
434 435
	if (n == 4 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba4 could take
					       extra args to do this well */
436 437 438 439 440 441 442 443 444
		{
		if (!zero)
			bn_mul_comba4(&(t[n2]),t,&(t[n]));
		else
			memset(&(t[n2]),0,8*sizeof(BN_ULONG));
		
		bn_mul_comba4(r,a,b);
		bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n]));
		}
445 446 447
	else if (n == 8 && dna == 0 && dnb == 0) /* XXX: bn_mul_comba8 could
						    take extra args to do this
						    well */
448 449 450 451 452 453 454 455 456 457
		{
		if (!zero)
			bn_mul_comba8(&(t[n2]),t,&(t[n]));
		else
			memset(&(t[n2]),0,16*sizeof(BN_ULONG));
		
		bn_mul_comba8(r,a,b);
		bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n]));
		}
	else
458
# endif /* BN_MUL_COMBA */
459 460 461
		{
		p= &(t[n2*2]);
		if (!zero)
462
			bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
463 464
		else
			memset(&(t[n2]),0,n2*sizeof(BN_ULONG));
465 466
		bn_mul_recursive(r,a,b,n,0,0,p);
		bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,dna,dnb,p);
467
		}
468

469 470 471 472 473
	/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 */

474
	c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
475 476

	if (neg) /* if t[32] is negative */
477
		{
478
		c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
479 480 481 482
		}
	else
		{
		/* Might have a carry */
483
		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
484 485
		}

486 487 488 489 490
	/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 * c1 holds the carry bits
	 */
491
	c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
492 493 494 495 496 497
	if (c1)
		{
		p= &(r[n+n2]);
		lo= *p;
		ln=(lo+c1)&BN_MASK2;
		*p=ln;
498

499 500 501 502 503 504 505 506 507 508 509 510 511
		/* The overflow will stop before we over write
		 * words we should not overwrite */
		if (ln < (BN_ULONG)c1)
			{
			do	{
				p++;
				lo= *p;
				ln=(lo+1)&BN_MASK2;
				*p=ln;
				} while (ln == 0);
			}
		}
	}
512

513 514
/* n+tn is the word length
 * t needs to be n*4 is size, as does r */
515
/* tnX may not be negative but less than n */
516 517
void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n,
	     int tna, int tnb, BN_ULONG *t)
518
	{
519
	int i,j,n2=n*2;
B
Ben Laurie 已提交
520
	int c1,c2,neg;
521
	BN_ULONG ln,lo,*p;
522

523 524
	if (n < 8)
		{
525
		bn_mul_normal(r,a,n+tna,b,n+tnb);
526 527 528 529
		return;
		}

	/* r=(a[0]-a[1])*(b[1]-b[0]) */
530 531
	c1=bn_cmp_part_words(a,&(a[n]),tna,n-tna);
	c2=bn_cmp_part_words(&(b[n]),b,tnb,tnb-n);
B
Ben Laurie 已提交
532
	neg=0;
U
Ulf Möller 已提交
533 534 535
	switch (c1*3+c2)
		{
	case -4:
536 537
		bn_sub_part_words(t,      &(a[n]),a,      tna,tna-n); /* - */
		bn_sub_part_words(&(t[n]),b,      &(b[n]),tnb,n-tnb); /* - */
U
Ulf Möller 已提交
538 539 540 541
		break;
	case -3:
		/* break; */
	case -2:
542 543
		bn_sub_part_words(t,      &(a[n]),a,      tna,tna-n); /* - */
		bn_sub_part_words(&(t[n]),&(b[n]),b,      tnb,tnb-n); /* + */
U
Ulf Möller 已提交
544 545 546 547 548 549 550
		neg=1;
		break;
	case -1:
	case 0:
	case 1:
		/* break; */
	case 2:
551 552
		bn_sub_part_words(t,      a,      &(a[n]),tna,n-tna); /* + */
		bn_sub_part_words(&(t[n]),b,      &(b[n]),tnb,n-tnb); /* - */
U
Ulf Möller 已提交
553 554 555 556 557
		neg=1;
		break;
	case 3:
		/* break; */
	case 4:
558 559
		bn_sub_part_words(t,      a,      &(a[n]),tna,n-tna);
		bn_sub_part_words(&(t[n]),&(b[n]),b,      tnb,tnb-n);
U
Ulf Möller 已提交
560 561 562 563
		break;
		}
		/* The zero case isn't yet implemented here. The speedup
		   would probably be negligible. */
564 565
# if 0
	if (n == 4)
566 567 568 569 570 571
		{
		bn_mul_comba4(&(t[n2]),t,&(t[n]));
		bn_mul_comba4(r,a,b);
		bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);
		memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));
		}
572 573 574
	else
# endif
	if (n == 8)
575
		{
576 577
		bn_mul_comba8(&(t[n2]),t,&(t[n]));
		bn_mul_comba8(r,a,b);
578 579
		bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
		memset(&(r[n2+tna+tnb]),0,sizeof(BN_ULONG)*(n2-tna-tnb));
580 581 582
		}
	else
		{
583
		p= &(t[n2*2]);
584 585
		bn_mul_recursive(&(t[n2]),t,&(t[n]),n,0,0,p);
		bn_mul_recursive(r,a,b,n,0,0,p);
586 587 588
		i=n/2;
		/* If there is only a bottom half to the number,
		 * just do it */
589 590 591 592
		if (tna > tnb)
			j = tna - i;
		else
			j = tnb - i;
593 594
		if (j == 0)
			{
595 596
			bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),
				i,tna-i,tnb-i,p);
597 598 599 600 601
			memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));
			}
		else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */
				{
				bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),
602 603 604
					i,tna-i,tnb-i,p);
				memset(&(r[n2+tna+tnb]),0,
					sizeof(BN_ULONG)*(n2-tna-tnb));
605 606 607 608
				}
		else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
			{
			memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);
609 610
			if (tna < BN_MUL_RECURSIVE_SIZE_NORMAL
				&& tnb < BN_MUL_RECURSIVE_SIZE_NORMAL)
611
				{
612
				bn_mul_normal(&(r[n2]),&(a[n]),tna,&(b[n]),tnb);
613 614 615 616 617 618
				}
			else
				{
				for (;;)
					{
					i/=2;
619 620 621 622
					/* these simplified conditions work
					 * exclusively because difference
					 * between tna and tnb is 1 or 0 */
					if (i < tna || i < tnb)
623
						{
624
						bn_mul_part_recursive(&(r[n2]),
625
							&(a[n]),&(b[n]),
626
							i,tna-i,tnb-i,p);
627 628
						break;
						}
629
					else if (i == tna || i == tnb)
630
						{
631
						bn_mul_recursive(&(r[n2]),
632
							&(a[n]),&(b[n]),
633
							i,tna-i,tnb-i,p);
634 635 636 637 638 639 640 641 642 643 644 645
						break;
						}
					}
				}
			}
		}

	/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 */

646
	c1=(int)(bn_add_words(t,r,&(r[n2]),n2));
U
Ulf Möller 已提交
647 648 649 650 651 652 653 654 655 656

	if (neg) /* if t[32] is negative */
		{
		c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));
		}
	else
		{
		/* Might have a carry */
		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));
		}
657 658 659 660 661 662

	/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
	 * r[10] holds (a[0]*b[0])
	 * r[32] holds (b[1]*b[1])
	 * c1 holds the carry bits
	 */
663
	c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));
664 665 666 667 668 669 670 671 672
	if (c1)
		{
		p= &(r[n+n2]);
		lo= *p;
		ln=(lo+c1)&BN_MASK2;
		*p=ln;

		/* The overflow will stop before we over write
		 * words we should not overwrite */
673
		if (ln < (BN_ULONG)c1)
674 675 676 677 678 679 680 681
			{
			do	{
				p++;
				lo= *p;
				ln=(lo+1)&BN_MASK2;
				*p=ln;
				} while (ln == 0);
			}
682 683 684
		}
	}

685 686 687
/* a and b must be the same size, which is n2.
 * r needs to be n2 words and t needs to be n2*2
 */
U
Ulf Möller 已提交
688 689
void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
	     BN_ULONG *t)
690
	{
691 692
	int n=n2/2;

693
	bn_mul_recursive(r,a,b,n,0,0,&(t[0]));
694 695 696 697 698 699 700 701 702 703 704 705 706 707
	if (n >= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL)
		{
		bn_mul_low_recursive(&(t[0]),&(a[0]),&(b[n]),n,&(t[n2]));
		bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
		bn_mul_low_recursive(&(t[0]),&(a[n]),&(b[0]),n,&(t[n2]));
		bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
		}
	else
		{
		bn_mul_low_normal(&(t[0]),&(a[0]),&(b[n]),n);
		bn_mul_low_normal(&(t[n]),&(a[n]),&(b[0]),n);
		bn_add_words(&(r[n]),&(r[n]),&(t[0]),n);
		bn_add_words(&(r[n]),&(r[n]),&(t[n]),n);
		}
708 709
	}

710 711 712 713 714
/* a and b must be the same size, which is n2.
 * r needs to be n2 words and t needs to be n2*2
 * l is the low words of the output.
 * t needs to be n2*3
 */
U
Ulf Möller 已提交
715 716
void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l, int n2,
	     BN_ULONG *t)
717
	{
718 719 720 721 722
	int i,n;
	int c1,c2;
	int neg,oneg,zero;
	BN_ULONG ll,lc,*lp,*mp;

723
	n=n2/2;
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764

	/* Calculate (al-ah)*(bh-bl) */
	neg=zero=0;
	c1=bn_cmp_words(&(a[0]),&(a[n]),n);
	c2=bn_cmp_words(&(b[n]),&(b[0]),n);
	switch (c1*3+c2)
		{
	case -4:
		bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
		bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
		break;
	case -3:
		zero=1;
		break;
	case -2:
		bn_sub_words(&(r[0]),&(a[n]),&(a[0]),n);
		bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
		neg=1;
		break;
	case -1:
	case 0:
	case 1:
		zero=1;
		break;
	case 2:
		bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
		bn_sub_words(&(r[n]),&(b[0]),&(b[n]),n);
		neg=1;
		break;
	case 3:
		zero=1;
		break;
	case 4:
		bn_sub_words(&(r[0]),&(a[0]),&(a[n]),n);
		bn_sub_words(&(r[n]),&(b[n]),&(b[0]),n);
		break;
		}
		
	oneg=neg;
	/* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
	/* r[10] = (a[1]*b[1]) */
765
# ifdef BN_MUL_COMBA
766 767 768 769 770 771
	if (n == 8)
		{
		bn_mul_comba8(&(t[0]),&(r[0]),&(r[n]));
		bn_mul_comba8(r,&(a[n]),&(b[n]));
		}
	else
772
# endif
773
		{
774 775
		bn_mul_recursive(&(t[0]),&(r[0]),&(r[n]),n,0,0,&(t[n2]));
		bn_mul_recursive(r,&(a[n]),&(b[n]),n,0,0,&(t[n2]));
776
		}
777

778 779 780 781 782 783 784
	/* s0 == low(al*bl)
	 * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
	 * We know s0 and s1 so the only unknown is high(al*bl)
	 * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
	 * high(al*bl) == s1 - (r[0]+l[0]+t[0])
	 */
	if (l != NULL)
785
		{
786
		lp= &(t[n2+n]);
787
		c1=(int)(bn_add_words(lp,&(r[0]),&(l[0]),n));
788 789 790 791 792 793 794 795
		}
	else
		{
		c1=0;
		lp= &(r[0]);
		}

	if (neg)
796
		neg=(int)(bn_sub_words(&(t[n2]),lp,&(t[0]),n));
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
	else
		{
		bn_add_words(&(t[n2]),lp,&(t[0]),n);
		neg=0;
		}

	if (l != NULL)
		{
		bn_sub_words(&(t[n2+n]),&(l[n]),&(t[n2]),n);
		}
	else
		{
		lp= &(t[n2+n]);
		mp= &(t[n2]);
		for (i=0; i<n; i++)
			lp[i]=((~mp[i])+1)&BN_MASK2;
		}

	/* s[0] = low(al*bl)
	 * t[3] = high(al*bl)
	 * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
	 * r[10] = (a[1]*b[1])
	 */
	/* R[10] = al*bl
	 * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
	 * R[32] = ah*bh
	 */
	/* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
	 * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
	 * R[3]=r[1]+(carry/borrow)
	 */
	if (l != NULL)
		{
		lp= &(t[n2]);
831
		c1= (int)(bn_add_words(lp,&(t[n2+n]),&(l[0]),n));
832 833 834 835 836 837
		}
	else
		{
		lp= &(t[n2+n]);
		c1=0;
		}
838
	c1+=(int)(bn_add_words(&(t[n2]),lp,  &(r[0]),n));
839
	if (oneg)
840
		c1-=(int)(bn_sub_words(&(t[n2]),&(t[n2]),&(t[0]),n));
841
	else
842
		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),&(t[0]),n));
843

844 845
	c2 =(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n2+n]),n));
	c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(r[n]),n));
846
	if (oneg)
847
		c2-=(int)(bn_sub_words(&(r[0]),&(r[0]),&(t[n]),n));
848
	else
849
		c2+=(int)(bn_add_words(&(r[0]),&(r[0]),&(t[n]),n));
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893
	
	if (c1 != 0) /* Add starting at r[0], could be +ve or -ve */
		{
		i=0;
		if (c1 > 0)
			{
			lc=c1;
			do	{
				ll=(r[i]+lc)&BN_MASK2;
				r[i++]=ll;
				lc=(lc > ll);
				} while (lc);
			}
		else
			{
			lc= -c1;
			do	{
				ll=r[i];
				r[i++]=(ll-lc)&BN_MASK2;
				lc=(lc > ll);
				} while (lc);
			}
		}
	if (c2 != 0) /* Add starting at r[1] */
		{
		i=n;
		if (c2 > 0)
			{
			lc=c2;
			do	{
				ll=(r[i]+lc)&BN_MASK2;
				r[i++]=ll;
				lc=(lc > ll);
				} while (lc);
			}
		else
			{
			lc= -c2;
			do	{
				ll=r[i];
				r[i++]=(ll-lc)&BN_MASK2;
				lc=(lc > ll);
				} while (lc);
			}
894 895
		}
	}
896
#endif /* BN_RECURSION */
897

898
int BN_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
899
	{
900
	int ret=0;
901 902
	int top,al,bl;
	BIGNUM *rr;
903 904 905
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
	int i;
#endif
906
#ifdef BN_RECURSION
907
	BIGNUM *t=NULL;
D
 
Dr. Stephen Henson 已提交
908
	int j=0,k;
909
#endif
910 911 912 913

	bn_check_top(a);
	bn_check_top(b);
	bn_check_top(r);
914

915 916 917 918
	al=a->top;
	bl=b->top;

	if ((al == 0) || (bl == 0))
919
		{
920
		BN_zero(r);
921
		return(1);
922
		}
923
	top=al+bl;
924

925
	BN_CTX_start(ctx);
926
	if ((r == a) || (r == b))
927 928 929
		{
		if ((rr = BN_CTX_get(ctx)) == NULL) goto err;
		}
930
	else
931
		rr = r;
932
	rr->neg=a->neg^b->neg;
933

934
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
935 936 937 938
	i = al-bl;
#endif
#ifdef BN_MUL_COMBA
	if (i == 0)
939
		{
940 941
# if 0
		if (al == 4)
942
			{
943
			if (bn_wexpand(rr,8) == NULL) goto err;
944
			rr->top=8;
945
			bn_mul_comba4(rr->d,a->d,b->d);
946 947
			goto end;
			}
948 949
# endif
		if (al == 8)
950
			{
951
			if (bn_wexpand(rr,16) == NULL) goto err;
952
			rr->top=16;
953
			bn_mul_comba8(rr->d,a->d,b->d);
954 955 956
			goto end;
			}
		}
957
#endif /* BN_MUL_COMBA */
958
#ifdef BN_RECURSION
959
	if ((al >= BN_MULL_SIZE_NORMAL) && (bl >= BN_MULL_SIZE_NORMAL))
960
		{
961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976
		if (i >= -1 && i <= 1)
			{
			/* Find out the power of two lower or equal
			   to the longest of the two numbers */
			if (i >= 0)
				{
				j = BN_num_bits_word((BN_ULONG)al);
				}
			if (i == -1)
				{
				j = BN_num_bits_word((BN_ULONG)bl);
				}
			j = 1<<(j-1);
			assert(j <= al || j <= bl);
			k = j+j;
			t = BN_CTX_get(ctx);
D
Dr. Stephen Henson 已提交
977 978
			if (t == NULL)
				goto err;
979 980
			if (al > j || bl > j)
				{
D
Dr. Stephen Henson 已提交
981 982
				if (bn_wexpand(t,k*4) == NULL) goto err;
				if (bn_wexpand(rr,k*4) == NULL) goto err;
983 984 985 986 987
				bn_mul_part_recursive(rr->d,a->d,b->d,
					j,al-j,bl-j,t->d);
				}
			else	/* al <= j || bl <= j */
				{
D
Dr. Stephen Henson 已提交
988 989
				if (bn_wexpand(t,k*2) == NULL) goto err;
				if (bn_wexpand(rr,k*2) == NULL) goto err;
990 991 992 993 994 995 996
				bn_mul_recursive(rr->d,a->d,b->d,
					j,al-j,bl-j,t->d);
				}
			rr->top=top;
			goto end;
			}
#if 0
997
		if (i == 1 && !BN_get_flags(b,BN_FLG_STATIC_DATA))
998
			{
999
			BIGNUM *tmp_bn = (BIGNUM *)b;
1000
			if (bn_wexpand(tmp_bn,al) == NULL) goto err;
1001
			tmp_bn->d[bl]=0;
1002
			bl++;
1003
			i--;
1004
			}
1005
		else if (i == -1 && !BN_get_flags(a,BN_FLG_STATIC_DATA))
1006
			{
1007
			BIGNUM *tmp_bn = (BIGNUM *)a;
1008
			if (bn_wexpand(tmp_bn,bl) == NULL) goto err;
1009
			tmp_bn->d[al]=0;
1010
			al++;
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
			i++;
			}
		if (i == 0)
			{
			/* symmetric and > 4 */
			/* 16 or larger */
			j=BN_num_bits_word((BN_ULONG)al);
			j=1<<(j-1);
			k=j+j;
			t = BN_CTX_get(ctx);
			if (al == j) /* exact multiple */
				{
1023 1024
				if (bn_wexpand(t,k*2) == NULL) goto err;
				if (bn_wexpand(rr,k*2) == NULL) goto err;
1025 1026 1027 1028
				bn_mul_recursive(rr->d,a->d,b->d,al,t->d);
				}
			else
				{
1029 1030
				if (bn_wexpand(t,k*4) == NULL) goto err;
				if (bn_wexpand(rr,k*4) == NULL) goto err;
1031 1032 1033 1034
				bn_mul_part_recursive(rr->d,a->d,b->d,al-j,j,t->d);
				}
			rr->top=top;
			goto end;
1035
			}
1036
#endif
1037
		}
1038
#endif /* BN_RECURSION */
1039
	if (bn_wexpand(rr,top) == NULL) goto err;
1040 1041
	rr->top=top;
	bn_mul_normal(rr->d,a->d,al,b->d,bl);
1042

1043
#if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
1044
end:
1045
#endif
1046
	bn_correct_top(rr);
1047
	if (r != rr) BN_copy(r,rr);
1048
	ret=1;
1049
err:
1050
	bn_check_top(r);
1051
	BN_CTX_end(ctx);
1052
	return(ret);
1053
	}
1054

U
Ulf Möller 已提交
1055
void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb)
1056 1057
	{
	BN_ULONG *rr;
1058

1059 1060 1061 1062
	if (na < nb)
		{
		int itmp;
		BN_ULONG *ltmp;
1063

1064 1065
		itmp=na; na=nb; nb=itmp;
		ltmp=a;   a=b;   b=ltmp;
1066

1067 1068
		}
	rr= &(r[na]);
1069 1070 1071 1072 1073 1074 1075
	if (nb <= 0)
		{
		(void)bn_mul_words(r,a,na,0);
		return;
		}
	else
		rr[0]=bn_mul_words(r,a,na,b[0]);
1076

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
	for (;;)
		{
		if (--nb <= 0) return;
		rr[1]=bn_mul_add_words(&(r[1]),a,na,b[1]);
		if (--nb <= 0) return;
		rr[2]=bn_mul_add_words(&(r[2]),a,na,b[2]);
		if (--nb <= 0) return;
		rr[3]=bn_mul_add_words(&(r[3]),a,na,b[3]);
		if (--nb <= 0) return;
		rr[4]=bn_mul_add_words(&(r[4]),a,na,b[4]);
		rr+=4;
		r+=4;
		b+=4;
		}
1091
	}
1092

U
Ulf Möller 已提交
1093
void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n)
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110
	{
	bn_mul_words(r,a,n,b[0]);

	for (;;)
		{
		if (--n <= 0) return;
		bn_mul_add_words(&(r[1]),a,n,b[1]);
		if (--n <= 0) return;
		bn_mul_add_words(&(r[2]),a,n,b[2]);
		if (--n <= 0) return;
		bn_mul_add_words(&(r[3]),a,n,b[3]);
		if (--n <= 0) return;
		bn_mul_add_words(&(r[4]),a,n,b[4]);
		r+=4;
		b+=4;
		}
	}