xfs_sync.c 22.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_btree.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_inode.h"
#include "xfs_dinode.h"
#include "xfs_error.h"
#include "xfs_mru_cache.h"
#include "xfs_filestream.h"
#include "xfs_vnodeops.h"
#include "xfs_utils.h"
#include "xfs_buf_item.h"
#include "xfs_inode_item.h"
#include "xfs_rw.h"
C
Christoph Hellwig 已提交
46
#include "xfs_quota.h"
C
Christoph Hellwig 已提交
47
#include "xfs_trace.h"
48

49 50 51
#include <linux/kthread.h>
#include <linux/freezer.h>

52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
STATIC xfs_inode_t *
xfs_inode_ag_lookup(
	struct xfs_mount	*mp,
	struct xfs_perag	*pag,
	uint32_t		*first_index,
	int			tag)
{
	int			nr_found;
	struct xfs_inode	*ip;

	/*
	 * use a gang lookup to find the next inode in the tree
	 * as the tree is sparse and a gang lookup walks to find
	 * the number of objects requested.
	 */
	if (tag == XFS_ICI_NO_TAG) {
		nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
				(void **)&ip, *first_index, 1);
	} else {
		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
				(void **)&ip, *first_index, 1, tag);
	}
	if (!nr_found)
76
		return NULL;
77 78 79 80 81 82 83 84 85

	/*
	 * Update the index for the next lookup. Catch overflows
	 * into the next AG range which can occur if we have inodes
	 * in the last block of the AG and we are currently
	 * pointing to the last inode.
	 */
	*first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
	if (*first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
86
		return NULL;
87 88 89 90 91 92
	return ip;
}

STATIC int
xfs_inode_ag_walk(
	struct xfs_mount	*mp,
D
Dave Chinner 已提交
93
	struct xfs_perag	*pag,
94 95 96
	int			(*execute)(struct xfs_inode *ip,
					   struct xfs_perag *pag, int flags),
	int			flags,
97
	int			tag,
98 99
	int			exclusive,
	int			*nr_to_scan)
100 101 102 103 104 105 106 107 108 109 110 111
{
	uint32_t		first_index;
	int			last_error = 0;
	int			skipped;

restart:
	skipped = 0;
	first_index = 0;
	do {
		int		error = 0;
		xfs_inode_t	*ip;

112 113 114 115
		if (exclusive)
			write_lock(&pag->pag_ici_lock);
		else
			read_lock(&pag->pag_ici_lock);
116
		ip = xfs_inode_ag_lookup(mp, pag, &first_index, tag);
117 118 119 120 121
		if (!ip) {
			if (exclusive)
				write_unlock(&pag->pag_ici_lock);
			else
				read_unlock(&pag->pag_ici_lock);
122
			break;
123
		}
124

125
		/* execute releases pag->pag_ici_lock */
126 127 128 129 130 131 132
		error = execute(ip, pag, flags);
		if (error == EAGAIN) {
			skipped++;
			continue;
		}
		if (error)
			last_error = error;
133 134

		/* bail out if the filesystem is corrupted.  */
135 136 137
		if (error == EFSCORRUPTED)
			break;

138
	} while ((*nr_to_scan)--);
139 140 141 142 143 144 145 146

	if (skipped) {
		delay(1);
		goto restart;
	}
	return last_error;
}

147
int
148 149 150 151 152
xfs_inode_ag_iterator(
	struct xfs_mount	*mp,
	int			(*execute)(struct xfs_inode *ip,
					   struct xfs_perag *pag, int flags),
	int			flags,
153
	int			tag,
154 155
	int			exclusive,
	int			*nr_to_scan)
156 157 158 159
{
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;
160
	int			nr;
161

162
	nr = nr_to_scan ? *nr_to_scan : INT_MAX;
163
	for (ag = 0; ag < mp->m_sb.sb_agcount; ag++) {
D
Dave Chinner 已提交
164 165 166 167
		struct xfs_perag	*pag;

		pag = xfs_perag_get(mp, ag);
		error = xfs_inode_ag_walk(mp, pag, execute, flags, tag,
168
						exclusive, &nr);
D
Dave Chinner 已提交
169
		xfs_perag_put(pag);
170 171 172 173 174
		if (error) {
			last_error = error;
			if (error == EFSCORRUPTED)
				break;
		}
175 176
		if (nr <= 0)
			break;
177
	}
178 179
	if (nr_to_scan)
		*nr_to_scan = nr;
180 181 182
	return XFS_ERROR(last_error);
}

183
/* must be called with pag_ici_lock held and releases it */
184
int
185 186 187 188 189
xfs_sync_inode_valid(
	struct xfs_inode	*ip,
	struct xfs_perag	*pag)
{
	struct inode		*inode = VFS_I(ip);
190
	int			error = EFSCORRUPTED;
191 192

	/* nothing to sync during shutdown */
193 194
	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
		goto out_unlock;
195

196 197 198 199
	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
	error = ENOENT;
	if (xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
		goto out_unlock;
200

201 202 203 204 205
	/* If we can't grab the inode, it must on it's way to reclaim. */
	if (!igrab(inode))
		goto out_unlock;

	if (is_bad_inode(inode)) {
206
		IRELE(ip);
207
		goto out_unlock;
208 209
	}

210 211 212 213 214
	/* inode is valid */
	error = 0;
out_unlock:
	read_unlock(&pag->pag_ici_lock);
	return error;
215 216
}

217 218 219
STATIC int
xfs_sync_inode_data(
	struct xfs_inode	*ip,
220
	struct xfs_perag	*pag,
221 222 223 224 225 226
	int			flags)
{
	struct inode		*inode = VFS_I(ip);
	struct address_space *mapping = inode->i_mapping;
	int			error = 0;

227 228 229 230
	error = xfs_sync_inode_valid(ip, pag);
	if (error)
		return error;

231 232 233 234 235 236 237 238 239 240
	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		goto out_wait;

	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
		if (flags & SYNC_TRYLOCK)
			goto out_wait;
		xfs_ilock(ip, XFS_IOLOCK_SHARED);
	}

	error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
241
				0 : XBF_ASYNC, FI_NONE);
242 243 244
	xfs_iunlock(ip, XFS_IOLOCK_SHARED);

 out_wait:
C
Christoph Hellwig 已提交
245
	if (flags & SYNC_WAIT)
246
		xfs_ioend_wait(ip);
247
	IRELE(ip);
248 249 250
	return error;
}

251 252 253
STATIC int
xfs_sync_inode_attr(
	struct xfs_inode	*ip,
254
	struct xfs_perag	*pag,
255 256 257 258
	int			flags)
{
	int			error = 0;

259 260 261 262
	error = xfs_sync_inode_valid(ip, pag);
	if (error)
		return error;

263 264 265 266 267 268 269 270 271 272 273 274 275 276
	xfs_ilock(ip, XFS_ILOCK_SHARED);
	if (xfs_inode_clean(ip))
		goto out_unlock;
	if (!xfs_iflock_nowait(ip)) {
		if (!(flags & SYNC_WAIT))
			goto out_unlock;
		xfs_iflock(ip);
	}

	if (xfs_inode_clean(ip)) {
		xfs_ifunlock(ip);
		goto out_unlock;
	}

277
	error = xfs_iflush(ip, flags);
278 279 280

 out_unlock:
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
281
	IRELE(ip);
282 283 284
	return error;
}

C
Christoph Hellwig 已提交
285 286 287
/*
 * Write out pagecache data for the whole filesystem.
 */
288
int
C
Christoph Hellwig 已提交
289 290 291
xfs_sync_data(
	struct xfs_mount	*mp,
	int			flags)
292
{
C
Christoph Hellwig 已提交
293
	int			error;
294

C
Christoph Hellwig 已提交
295
	ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
296

C
Christoph Hellwig 已提交
297
	error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags,
298
				      XFS_ICI_NO_TAG, 0, NULL);
C
Christoph Hellwig 已提交
299 300
	if (error)
		return XFS_ERROR(error);
301

302
	xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
C
Christoph Hellwig 已提交
303 304
	return 0;
}
305

C
Christoph Hellwig 已提交
306 307 308 309 310 311 312 313 314
/*
 * Write out inode metadata (attributes) for the whole filesystem.
 */
int
xfs_sync_attr(
	struct xfs_mount	*mp,
	int			flags)
{
	ASSERT((flags & ~SYNC_WAIT) == 0);
315

C
Christoph Hellwig 已提交
316
	return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags,
317
				     XFS_ICI_NO_TAG, 0, NULL);
318 319
}

320 321 322
STATIC int
xfs_commit_dummy_trans(
	struct xfs_mount	*mp,
323
	uint			flags)
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
{
	struct xfs_inode	*ip = mp->m_rootip;
	struct xfs_trans	*tp;
	int			error;

	/*
	 * Put a dummy transaction in the log to tell recovery
	 * that all others are OK.
	 */
	tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
	error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
	if (error) {
		xfs_trans_cancel(tp, 0);
		return error;
	}

	xfs_ilock(ip, XFS_ILOCK_EXCL);

	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
	xfs_trans_ihold(tp, ip);
	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
	error = xfs_trans_commit(tp, 0);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);

348
	/* the log force ensures this transaction is pushed to disk */
349
	xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
350
	return error;
351 352
}

353
STATIC int
354
xfs_sync_fsdata(
355
	struct xfs_mount	*mp)
356 357 358 359
{
	struct xfs_buf		*bp;

	/*
360 361 362 363 364 365
	 * If the buffer is pinned then push on the log so we won't get stuck
	 * waiting in the write for someone, maybe ourselves, to flush the log.
	 *
	 * Even though we just pushed the log above, we did not have the
	 * superblock buffer locked at that point so it can become pinned in
	 * between there and here.
366
	 */
367 368 369
	bp = xfs_getsb(mp, 0);
	if (XFS_BUF_ISPINNED(bp))
		xfs_log_force(mp, 0);
370

371
	return xfs_bwrite(mp, bp);
372 373 374
}

/*
D
David Chinner 已提交
375 376 377 378 379 380 381 382 383 384 385
 * When remounting a filesystem read-only or freezing the filesystem, we have
 * two phases to execute. This first phase is syncing the data before we
 * quiesce the filesystem, and the second is flushing all the inodes out after
 * we've waited for all the transactions created by the first phase to
 * complete. The second phase ensures that the inodes are written to their
 * location on disk rather than just existing in transactions in the log. This
 * means after a quiesce there is no log replay required to write the inodes to
 * disk (this is the main difference between a sync and a quiesce).
 */
/*
 * First stage of freeze - no writers will make progress now we are here,
386 387
 * so we flush delwri and delalloc buffers here, then wait for all I/O to
 * complete.  Data is frozen at that point. Metadata is not frozen,
D
David Chinner 已提交
388 389
 * transactions can still occur here so don't bother flushing the buftarg
 * because it'll just get dirty again.
390 391 392 393 394
 */
int
xfs_quiesce_data(
	struct xfs_mount	*mp)
{
395
	int			error, error2 = 0;
396 397

	/* push non-blocking */
C
Christoph Hellwig 已提交
398
	xfs_sync_data(mp, 0);
C
Christoph Hellwig 已提交
399
	xfs_qm_sync(mp, SYNC_TRYLOCK);
400

D
Dave Chinner 已提交
401
	/* push and block till complete */
C
Christoph Hellwig 已提交
402
	xfs_sync_data(mp, SYNC_WAIT);
C
Christoph Hellwig 已提交
403
	xfs_qm_sync(mp, SYNC_WAIT);
404

D
David Chinner 已提交
405
	/* write superblock and hoover up shutdown errors */
406 407 408 409 410 411 412 413
	error = xfs_sync_fsdata(mp);

	/* make sure all delwri buffers are written out */
	xfs_flush_buftarg(mp->m_ddev_targp, 1);

	/* mark the log as covered if needed */
	if (xfs_log_need_covered(mp))
		error2 = xfs_commit_dummy_trans(mp, SYNC_WAIT);
414

D
David Chinner 已提交
415
	/* flush data-only devices */
416 417 418
	if (mp->m_rtdev_targp)
		XFS_bflush(mp->m_rtdev_targp);

419
	return error ? error : error2;
420 421
}

D
David Chinner 已提交
422 423 424 425 426 427
STATIC void
xfs_quiesce_fs(
	struct xfs_mount	*mp)
{
	int	count = 0, pincount;

428
	xfs_reclaim_inodes(mp, 0);
D
David Chinner 已提交
429 430 431 432 433 434
	xfs_flush_buftarg(mp->m_ddev_targp, 0);

	/*
	 * This loop must run at least twice.  The first instance of the loop
	 * will flush most meta data but that will generate more meta data
	 * (typically directory updates).  Which then must be flushed and
435 436
	 * logged before we can write the unmount record. We also so sync
	 * reclaim of inodes to catch any that the above delwri flush skipped.
D
David Chinner 已提交
437 438
	 */
	do {
439
		xfs_reclaim_inodes(mp, SYNC_WAIT);
C
Christoph Hellwig 已提交
440
		xfs_sync_attr(mp, SYNC_WAIT);
D
David Chinner 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
		pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
		if (!pincount) {
			delay(50);
			count++;
		}
	} while (count < 2);
}

/*
 * Second stage of a quiesce. The data is already synced, now we have to take
 * care of the metadata. New transactions are already blocked, so we need to
 * wait for any remaining transactions to drain out before proceding.
 */
void
xfs_quiesce_attr(
	struct xfs_mount	*mp)
{
	int	error = 0;

	/* wait for all modifications to complete */
	while (atomic_read(&mp->m_active_trans) > 0)
		delay(100);

	/* flush inodes and push all remaining buffers out to disk */
	xfs_quiesce_fs(mp);

467 468 469 470 471
	/*
	 * Just warn here till VFS can correctly support
	 * read-only remount without racing.
	 */
	WARN_ON(atomic_read(&mp->m_active_trans) != 0);
D
David Chinner 已提交
472 473 474 475 476 477 478 479 480 481 482

	/* Push the superblock and write an unmount record */
	error = xfs_log_sbcount(mp, 1);
	if (error)
		xfs_fs_cmn_err(CE_WARN, mp,
				"xfs_attr_quiesce: failed to log sb changes. "
				"Frozen image may not be consistent.");
	xfs_log_unmount_write(mp);
	xfs_unmountfs_writesb(mp);
}

483 484 485 486 487 488 489 490 491 492 493
/*
 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
 * Doing this has two advantages:
 * - It saves on stack space, which is tight in certain situations
 * - It can be used (with care) as a mechanism to avoid deadlocks.
 * Flushing while allocating in a full filesystem requires both.
 */
STATIC void
xfs_syncd_queue_work(
	struct xfs_mount *mp,
	void		*data,
494 495
	void		(*syncer)(struct xfs_mount *, void *),
	struct completion *completion)
496
{
497
	struct xfs_sync_work *work;
498

499
	work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
500 501 502 503
	INIT_LIST_HEAD(&work->w_list);
	work->w_syncer = syncer;
	work->w_data = data;
	work->w_mount = mp;
504
	work->w_completion = completion;
505 506 507 508 509 510 511 512 513 514 515 516 517
	spin_lock(&mp->m_sync_lock);
	list_add_tail(&work->w_list, &mp->m_sync_list);
	spin_unlock(&mp->m_sync_lock);
	wake_up_process(mp->m_sync_task);
}

/*
 * Flush delayed allocate data, attempting to free up reserved space
 * from existing allocations.  At this point a new allocation attempt
 * has failed with ENOSPC and we are in the process of scratching our
 * heads, looking about for more room...
 */
STATIC void
518
xfs_flush_inodes_work(
519 520 521 522
	struct xfs_mount *mp,
	void		*arg)
{
	struct inode	*inode = arg;
C
Christoph Hellwig 已提交
523
	xfs_sync_data(mp, SYNC_TRYLOCK);
C
Christoph Hellwig 已提交
524
	xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
525 526 527 528
	iput(inode);
}

void
529
xfs_flush_inodes(
530 531 532
	xfs_inode_t	*ip)
{
	struct inode	*inode = VFS_I(ip);
533
	DECLARE_COMPLETION_ONSTACK(completion);
534 535

	igrab(inode);
536 537
	xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
	wait_for_completion(&completion);
538
	xfs_log_force(ip->i_mount, XFS_LOG_SYNC);
539 540
}

541
/*
542 543 544
 * Every sync period we need to unpin all items, reclaim inodes and sync
 * disk quotas.  We might need to cover the log to indicate that the
 * filesystem is idle.
545
 */
546 547 548 549 550 551 552
STATIC void
xfs_sync_worker(
	struct xfs_mount *mp,
	void		*unused)
{
	int		error;

553
	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
554
		xfs_log_force(mp, 0);
555
		xfs_reclaim_inodes(mp, 0);
556
		/* dgc: errors ignored here */
C
Christoph Hellwig 已提交
557
		error = xfs_qm_sync(mp, SYNC_TRYLOCK);
558 559
		if (xfs_log_need_covered(mp))
			error = xfs_commit_dummy_trans(mp, 0);
560
	}
561 562 563 564 565 566 567 568 569 570
	mp->m_sync_seq++;
	wake_up(&mp->m_wait_single_sync_task);
}

STATIC int
xfssyncd(
	void			*arg)
{
	struct xfs_mount	*mp = arg;
	long			timeleft;
571
	xfs_sync_work_t		*work, *n;
572 573 574 575 576
	LIST_HEAD		(tmp);

	set_freezable();
	timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
	for (;;) {
577 578
		if (list_empty(&mp->m_sync_list))
			timeleft = schedule_timeout_interruptible(timeleft);
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
		/* swsusp */
		try_to_freeze();
		if (kthread_should_stop() && list_empty(&mp->m_sync_list))
			break;

		spin_lock(&mp->m_sync_lock);
		/*
		 * We can get woken by laptop mode, to do a sync -
		 * that's the (only!) case where the list would be
		 * empty with time remaining.
		 */
		if (!timeleft || list_empty(&mp->m_sync_list)) {
			if (!timeleft)
				timeleft = xfs_syncd_centisecs *
							msecs_to_jiffies(10);
			INIT_LIST_HEAD(&mp->m_sync_work.w_list);
			list_add_tail(&mp->m_sync_work.w_list,
					&mp->m_sync_list);
		}
598
		list_splice_init(&mp->m_sync_list, &tmp);
599 600 601 602 603 604 605
		spin_unlock(&mp->m_sync_lock);

		list_for_each_entry_safe(work, n, &tmp, w_list) {
			(*work->w_syncer)(mp, work->w_data);
			list_del(&work->w_list);
			if (work == &mp->m_sync_work)
				continue;
606 607
			if (work->w_completion)
				complete(work->w_completion);
608 609 610 611 612 613 614 615 616 617 618 619 620
			kmem_free(work);
		}
	}

	return 0;
}

int
xfs_syncd_init(
	struct xfs_mount	*mp)
{
	mp->m_sync_work.w_syncer = xfs_sync_worker;
	mp->m_sync_work.w_mount = mp;
621
	mp->m_sync_work.w_completion = NULL;
622
	mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd/%s", mp->m_fsname);
623 624 625 626 627 628 629 630 631 632 633 634
	if (IS_ERR(mp->m_sync_task))
		return -PTR_ERR(mp->m_sync_task);
	return 0;
}

void
xfs_syncd_stop(
	struct xfs_mount	*mp)
{
	kthread_stop(mp->m_sync_task);
}

635 636 637 638 639 640 641 642
void
__xfs_inode_set_reclaim_tag(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip)
{
	radix_tree_tag_set(&pag->pag_ici_root,
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
			   XFS_ICI_RECLAIM_TAG);
643
	pag->pag_ici_reclaimable++;
644 645
}

D
David Chinner 已提交
646 647 648 649 650
/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
651 652 653 654
void
xfs_inode_set_reclaim_tag(
	xfs_inode_t	*ip)
{
D
Dave Chinner 已提交
655 656
	struct xfs_mount *mp = ip->i_mount;
	struct xfs_perag *pag;
657

D
Dave Chinner 已提交
658
	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
659
	write_lock(&pag->pag_ici_lock);
660
	spin_lock(&ip->i_flags_lock);
661
	__xfs_inode_set_reclaim_tag(pag, ip);
D
David Chinner 已提交
662
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
663
	spin_unlock(&ip->i_flags_lock);
664
	write_unlock(&pag->pag_ici_lock);
D
Dave Chinner 已提交
665
	xfs_perag_put(pag);
666 667 668 669 670 671 672 673 674 675
}

void
__xfs_inode_clear_reclaim_tag(
	xfs_mount_t	*mp,
	xfs_perag_t	*pag,
	xfs_inode_t	*ip)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
676
	pag->pag_ici_reclaimable--;
677 678
}

679 680 681 682 683 684 685 686 687 688 689 690 691
/*
 * Inodes in different states need to be treated differently, and the return
 * value of xfs_iflush is not sufficient to get this right. The following table
 * lists the inode states and the reclaim actions necessary for non-blocking
 * reclaim:
 *
 *
 *	inode state	     iflush ret		required action
 *      ---------------      ----------         ---------------
 *	bad			-		reclaim
 *	shutdown		EIO		unpin and reclaim
 *	clean, unpinned		0		reclaim
 *	stale, unpinned		0		reclaim
692 693 694 695 696
 *	clean, pinned(*)	0		requeue
 *	stale, pinned		EAGAIN		requeue
 *	dirty, delwri ok	0		requeue
 *	dirty, delwri blocked	EAGAIN		requeue
 *	dirty, sync flush	0		reclaim
697 698 699 700
 *
 * (*) dgc: I don't think the clean, pinned state is possible but it gets
 * handled anyway given the order of checks implemented.
 *
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
 * As can be seen from the table, the return value of xfs_iflush() is not
 * sufficient to correctly decide the reclaim action here. The checks in
 * xfs_iflush() might look like duplicates, but they are not.
 *
 * Also, because we get the flush lock first, we know that any inode that has
 * been flushed delwri has had the flush completed by the time we check that
 * the inode is clean. The clean inode check needs to be done before flushing
 * the inode delwri otherwise we would loop forever requeuing clean inodes as
 * we cannot tell apart a successful delwri flush and a clean inode from the
 * return value of xfs_iflush().
 *
 * Note that because the inode is flushed delayed write by background
 * writeback, the flush lock may already be held here and waiting on it can
 * result in very long latencies. Hence for sync reclaims, where we wait on the
 * flush lock, the caller should push out delayed write inodes first before
 * trying to reclaim them to minimise the amount of time spent waiting. For
 * background relaim, we just requeue the inode for the next pass.
 *
719 720 721
 * Hence the order of actions after gaining the locks should be:
 *	bad		=> reclaim
 *	shutdown	=> unpin and reclaim
722 723
 *	pinned, delwri	=> requeue
 *	pinned, sync	=> unpin
724 725
 *	stale		=> reclaim
 *	clean		=> reclaim
726 727
 *	dirty, delwri	=> flush and requeue
 *	dirty, sync	=> flush, wait and reclaim
728
 */
729
STATIC int
730
xfs_reclaim_inode(
731 732
	struct xfs_inode	*ip,
	struct xfs_perag	*pag,
733
	int			sync_mode)
734
{
735
	int	error = 0;
736

737 738 739 740 741 742 743 744 745 746 747
	/*
	 * The radix tree lock here protects a thread in xfs_iget from racing
	 * with us starting reclaim on the inode.  Once we have the
	 * XFS_IRECLAIM flag set it will not touch us.
	 */
	spin_lock(&ip->i_flags_lock);
	ASSERT_ALWAYS(__xfs_iflags_test(ip, XFS_IRECLAIMABLE));
	if (__xfs_iflags_test(ip, XFS_IRECLAIM)) {
		/* ignore as it is already under reclaim */
		spin_unlock(&ip->i_flags_lock);
		write_unlock(&pag->pag_ici_lock);
748
		return 0;
749
	}
750 751 752 753 754
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	write_unlock(&pag->pag_ici_lock);

	xfs_ilock(ip, XFS_ILOCK_EXCL);
755 756 757 758 759
	if (!xfs_iflock_nowait(ip)) {
		if (!(sync_mode & SYNC_WAIT))
			goto out;
		xfs_iflock(ip);
	}
760

761 762 763 764 765 766
	if (is_bad_inode(VFS_I(ip)))
		goto reclaim;
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
		xfs_iunpin_wait(ip);
		goto reclaim;
	}
767 768 769 770 771
	if (xfs_ipincount(ip)) {
		if (!(sync_mode & SYNC_WAIT)) {
			xfs_ifunlock(ip);
			goto out;
		}
772
		xfs_iunpin_wait(ip);
773
	}
774 775 776 777 778 779 780
	if (xfs_iflags_test(ip, XFS_ISTALE))
		goto reclaim;
	if (xfs_inode_clean(ip))
		goto reclaim;

	/* Now we have an inode that needs flushing */
	error = xfs_iflush(ip, sync_mode);
781 782 783
	if (sync_mode & SYNC_WAIT) {
		xfs_iflock(ip);
		goto reclaim;
784 785
	}

786 787 788 789 790 791
	/*
	 * When we have to flush an inode but don't have SYNC_WAIT set, we
	 * flush the inode out using a delwri buffer and wait for the next
	 * call into reclaim to find it in a clean state instead of waiting for
	 * it now. We also don't return errors here - if the error is transient
	 * then the next reclaim pass will flush the inode, and if the error
792
	 * is permanent then the next sync reclaim will reclaim the inode and
793 794
	 * pass on the error.
	 */
795
	if (error && error != EAGAIN && !XFS_FORCED_SHUTDOWN(ip->i_mount)) {
796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811
		xfs_fs_cmn_err(CE_WARN, ip->i_mount,
			"inode 0x%llx background reclaim flush failed with %d",
			(long long)ip->i_ino, error);
	}
out:
	xfs_iflags_clear(ip, XFS_IRECLAIM);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	/*
	 * We could return EAGAIN here to make reclaim rescan the inode tree in
	 * a short while. However, this just burns CPU time scanning the tree
	 * waiting for IO to complete and xfssyncd never goes back to the idle
	 * state. Instead, return 0 to let the next scheduled background reclaim
	 * attempt to reclaim the inode again.
	 */
	return 0;

812 813
reclaim:
	xfs_ifunlock(ip);
814 815
	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	xfs_ireclaim(ip);
816 817
	return error;

818 819 820 821 822 823 824
}

int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		mode)
{
825
	return xfs_inode_ag_iterator(mp, xfs_reclaim_inode, mode,
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
					XFS_ICI_RECLAIM_TAG, 1, NULL);
}

/*
 * Shrinker infrastructure.
 *
 * This is all far more complex than it needs to be. It adds a global list of
 * mounts because the shrinkers can only call a global context. We need to make
 * the shrinkers pass a context to avoid the need for global state.
 */
static LIST_HEAD(xfs_mount_list);
static struct rw_semaphore xfs_mount_list_lock;

static int
xfs_reclaim_inode_shrink(
	int		nr_to_scan,
	gfp_t		gfp_mask)
{
	struct xfs_mount *mp;
	struct xfs_perag *pag;
	xfs_agnumber_t	ag;
	int		reclaimable = 0;

	if (nr_to_scan) {
		if (!(gfp_mask & __GFP_FS))
			return -1;

		down_read(&xfs_mount_list_lock);
		list_for_each_entry(mp, &xfs_mount_list, m_mplist) {
			xfs_inode_ag_iterator(mp, xfs_reclaim_inode, 0,
					XFS_ICI_RECLAIM_TAG, 1, &nr_to_scan);
			if (nr_to_scan <= 0)
				break;
		}
		up_read(&xfs_mount_list_lock);
	}

	down_read(&xfs_mount_list_lock);
	list_for_each_entry(mp, &xfs_mount_list, m_mplist) {
		for (ag = 0; ag < mp->m_sb.sb_agcount; ag++) {
			pag = xfs_perag_get(mp, ag);
			reclaimable += pag->pag_ici_reclaimable;
			xfs_perag_put(pag);
		}
	}
	up_read(&xfs_mount_list_lock);
	return reclaimable;
}

static struct shrinker xfs_inode_shrinker = {
	.shrink = xfs_reclaim_inode_shrink,
	.seeks = DEFAULT_SEEKS,
};

void __init
xfs_inode_shrinker_init(void)
{
	init_rwsem(&xfs_mount_list_lock);
	register_shrinker(&xfs_inode_shrinker);
}

void
xfs_inode_shrinker_destroy(void)
{
	ASSERT(list_empty(&xfs_mount_list));
	unregister_shrinker(&xfs_inode_shrinker);
}

void
xfs_inode_shrinker_register(
	struct xfs_mount	*mp)
{
	down_write(&xfs_mount_list_lock);
	list_add_tail(&mp->m_mplist, &xfs_mount_list);
	up_write(&xfs_mount_list_lock);
}

void
xfs_inode_shrinker_unregister(
	struct xfs_mount	*mp)
{
	down_write(&xfs_mount_list_lock);
	list_del(&mp->m_mplist);
	up_write(&xfs_mount_list_lock);
910
}