xfs_sync.c 18.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
/*
 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 * All Rights Reserved.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it would be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write the Free Software Foundation,
 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_btree.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_inode.h"
#include "xfs_dinode.h"
#include "xfs_error.h"
#include "xfs_mru_cache.h"
#include "xfs_filestream.h"
#include "xfs_vnodeops.h"
#include "xfs_utils.h"
#include "xfs_buf_item.h"
#include "xfs_inode_item.h"
#include "xfs_rw.h"
C
Christoph Hellwig 已提交
46
#include "xfs_quota.h"
C
Christoph Hellwig 已提交
47
#include "xfs_trace.h"
48

49 50 51
#include <linux/kthread.h>
#include <linux/freezer.h>

52

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
STATIC xfs_inode_t *
xfs_inode_ag_lookup(
	struct xfs_mount	*mp,
	struct xfs_perag	*pag,
	uint32_t		*first_index,
	int			tag)
{
	int			nr_found;
	struct xfs_inode	*ip;

	/*
	 * use a gang lookup to find the next inode in the tree
	 * as the tree is sparse and a gang lookup walks to find
	 * the number of objects requested.
	 */
	read_lock(&pag->pag_ici_lock);
	if (tag == XFS_ICI_NO_TAG) {
		nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
				(void **)&ip, *first_index, 1);
	} else {
		nr_found = radix_tree_gang_lookup_tag(&pag->pag_ici_root,
				(void **)&ip, *first_index, 1, tag);
	}
	if (!nr_found)
		goto unlock;

	/*
	 * Update the index for the next lookup. Catch overflows
	 * into the next AG range which can occur if we have inodes
	 * in the last block of the AG and we are currently
	 * pointing to the last inode.
	 */
	*first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
	if (*first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
		goto unlock;

	return ip;

unlock:
	read_unlock(&pag->pag_ici_lock);
	return NULL;
}

STATIC int
xfs_inode_ag_walk(
	struct xfs_mount	*mp,
	xfs_agnumber_t		ag,
	int			(*execute)(struct xfs_inode *ip,
					   struct xfs_perag *pag, int flags),
	int			flags,
	int			tag)
{
	struct xfs_perag	*pag = &mp->m_perag[ag];
	uint32_t		first_index;
	int			last_error = 0;
	int			skipped;

restart:
	skipped = 0;
	first_index = 0;
	do {
		int		error = 0;
		xfs_inode_t	*ip;

		ip = xfs_inode_ag_lookup(mp, pag, &first_index, tag);
		if (!ip)
			break;

		error = execute(ip, pag, flags);
		if (error == EAGAIN) {
			skipped++;
			continue;
		}
		if (error)
			last_error = error;
		/*
		 * bail out if the filesystem is corrupted.
		 */
		if (error == EFSCORRUPTED)
			break;

	} while (1);

	if (skipped) {
		delay(1);
		goto restart;
	}

	xfs_put_perag(mp, pag);
	return last_error;
}

145
int
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
xfs_inode_ag_iterator(
	struct xfs_mount	*mp,
	int			(*execute)(struct xfs_inode *ip,
					   struct xfs_perag *pag, int flags),
	int			flags,
	int			tag)
{
	int			error = 0;
	int			last_error = 0;
	xfs_agnumber_t		ag;

	for (ag = 0; ag < mp->m_sb.sb_agcount; ag++) {
		if (!mp->m_perag[ag].pag_ici_init)
			continue;
		error = xfs_inode_ag_walk(mp, ag, execute, flags, tag);
		if (error) {
			last_error = error;
			if (error == EFSCORRUPTED)
				break;
		}
	}
	return XFS_ERROR(last_error);
}

170
/* must be called with pag_ici_lock held and releases it */
171
int
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
xfs_sync_inode_valid(
	struct xfs_inode	*ip,
	struct xfs_perag	*pag)
{
	struct inode		*inode = VFS_I(ip);

	/* nothing to sync during shutdown */
	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
		read_unlock(&pag->pag_ici_lock);
		return EFSCORRUPTED;
	}

	/*
	 * If we can't get a reference on the inode, it must be in reclaim.
	 * Leave it for the reclaim code to flush. Also avoid inodes that
	 * haven't been fully initialised.
	 */
	if (!igrab(inode)) {
		read_unlock(&pag->pag_ici_lock);
		return ENOENT;
	}
	read_unlock(&pag->pag_ici_lock);

	if (is_bad_inode(inode) || xfs_iflags_test(ip, XFS_INEW)) {
		IRELE(ip);
		return ENOENT;
	}

	return 0;
}

203 204 205
STATIC int
xfs_sync_inode_data(
	struct xfs_inode	*ip,
206
	struct xfs_perag	*pag,
207 208 209 210 211 212
	int			flags)
{
	struct inode		*inode = VFS_I(ip);
	struct address_space *mapping = inode->i_mapping;
	int			error = 0;

213 214 215 216
	error = xfs_sync_inode_valid(ip, pag);
	if (error)
		return error;

217 218 219 220 221 222 223 224 225 226 227 228 229 230
	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
		goto out_wait;

	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
		if (flags & SYNC_TRYLOCK)
			goto out_wait;
		xfs_ilock(ip, XFS_IOLOCK_SHARED);
	}

	error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
				0 : XFS_B_ASYNC, FI_NONE);
	xfs_iunlock(ip, XFS_IOLOCK_SHARED);

 out_wait:
C
Christoph Hellwig 已提交
231
	if (flags & SYNC_WAIT)
232
		xfs_ioend_wait(ip);
233
	IRELE(ip);
234 235 236
	return error;
}

237 238 239
STATIC int
xfs_sync_inode_attr(
	struct xfs_inode	*ip,
240
	struct xfs_perag	*pag,
241 242 243 244
	int			flags)
{
	int			error = 0;

245 246 247 248
	error = xfs_sync_inode_valid(ip, pag);
	if (error)
		return error;

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
	xfs_ilock(ip, XFS_ILOCK_SHARED);
	if (xfs_inode_clean(ip))
		goto out_unlock;
	if (!xfs_iflock_nowait(ip)) {
		if (!(flags & SYNC_WAIT))
			goto out_unlock;
		xfs_iflock(ip);
	}

	if (xfs_inode_clean(ip)) {
		xfs_ifunlock(ip);
		goto out_unlock;
	}

	error = xfs_iflush(ip, (flags & SYNC_WAIT) ?
			   XFS_IFLUSH_SYNC : XFS_IFLUSH_DELWRI);

 out_unlock:
	xfs_iunlock(ip, XFS_ILOCK_SHARED);
268
	IRELE(ip);
269 270 271
	return error;
}

C
Christoph Hellwig 已提交
272 273 274
/*
 * Write out pagecache data for the whole filesystem.
 */
275
int
C
Christoph Hellwig 已提交
276 277 278
xfs_sync_data(
	struct xfs_mount	*mp,
	int			flags)
279
{
C
Christoph Hellwig 已提交
280
	int			error;
281

C
Christoph Hellwig 已提交
282
	ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
283

C
Christoph Hellwig 已提交
284 285 286 287
	error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags,
				      XFS_ICI_NO_TAG);
	if (error)
		return XFS_ERROR(error);
288

C
Christoph Hellwig 已提交
289 290 291 292 293 294
	xfs_log_force(mp, 0,
		      (flags & SYNC_WAIT) ?
		       XFS_LOG_FORCE | XFS_LOG_SYNC :
		       XFS_LOG_FORCE);
	return 0;
}
295

C
Christoph Hellwig 已提交
296 297 298 299 300 301 302 303 304
/*
 * Write out inode metadata (attributes) for the whole filesystem.
 */
int
xfs_sync_attr(
	struct xfs_mount	*mp,
	int			flags)
{
	ASSERT((flags & ~SYNC_WAIT) == 0);
305

C
Christoph Hellwig 已提交
306 307
	return xfs_inode_ag_iterator(mp, xfs_sync_inode_attr, flags,
				     XFS_ICI_NO_TAG);
308 309
}

310 311 312
STATIC int
xfs_commit_dummy_trans(
	struct xfs_mount	*mp,
313
	uint			flags)
314 315 316 317
{
	struct xfs_inode	*ip = mp->m_rootip;
	struct xfs_trans	*tp;
	int			error;
318 319 320 321
	int			log_flags = XFS_LOG_FORCE;

	if (flags & SYNC_WAIT)
		log_flags |= XFS_LOG_SYNC;
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341

	/*
	 * Put a dummy transaction in the log to tell recovery
	 * that all others are OK.
	 */
	tp = xfs_trans_alloc(mp, XFS_TRANS_DUMMY1);
	error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
	if (error) {
		xfs_trans_cancel(tp, 0);
		return error;
	}

	xfs_ilock(ip, XFS_ILOCK_EXCL);

	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
	xfs_trans_ihold(tp, ip);
	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
	error = xfs_trans_commit(tp, 0);
	xfs_iunlock(ip, XFS_ILOCK_EXCL);

342
	/* the log force ensures this transaction is pushed to disk */
343
	xfs_log_force(mp, 0, log_flags);
344
	return error;
345 346
}

347
int
348 349 350 351 352 353 354 355 356 357 358 359
xfs_sync_fsdata(
	struct xfs_mount	*mp,
	int			flags)
{
	struct xfs_buf		*bp;
	struct xfs_buf_log_item	*bip;
	int			error = 0;

	/*
	 * If this is xfssyncd() then only sync the superblock if we can
	 * lock it without sleeping and it is not pinned.
	 */
C
Christoph Hellwig 已提交
360
	if (flags & SYNC_TRYLOCK) {
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
		ASSERT(!(flags & SYNC_WAIT));

		bp = xfs_getsb(mp, XFS_BUF_TRYLOCK);
		if (!bp)
			goto out;

		bip = XFS_BUF_FSPRIVATE(bp, struct xfs_buf_log_item *);
		if (!bip || !xfs_buf_item_dirty(bip) || XFS_BUF_ISPINNED(bp))
			goto out_brelse;
	} else {
		bp = xfs_getsb(mp, 0);

		/*
		 * If the buffer is pinned then push on the log so we won't
		 * get stuck waiting in the write for someone, maybe
		 * ourselves, to flush the log.
		 *
		 * Even though we just pushed the log above, we did not have
		 * the superblock buffer locked at that point so it can
		 * become pinned in between there and here.
		 */
		if (XFS_BUF_ISPINNED(bp))
			xfs_log_force(mp, 0, XFS_LOG_FORCE);
	}


	if (flags & SYNC_WAIT)
		XFS_BUF_UNASYNC(bp);
	else
		XFS_BUF_ASYNC(bp);

392 393 394 395 396 397 398 399 400 401 402 403 404 405
	error = xfs_bwrite(mp, bp);
	if (error)
		return error;

	/*
	 * If this is a data integrity sync make sure all pending buffers
	 * are flushed out for the log coverage check below.
	 */
	if (flags & SYNC_WAIT)
		xfs_flush_buftarg(mp->m_ddev_targp, 1);

	if (xfs_log_need_covered(mp))
		error = xfs_commit_dummy_trans(mp, flags);
	return error;
406 407 408 409 410

 out_brelse:
	xfs_buf_relse(bp);
 out:
	return error;
411 412 413
}

/*
D
David Chinner 已提交
414 415 416 417 418 419 420 421 422 423 424
 * When remounting a filesystem read-only or freezing the filesystem, we have
 * two phases to execute. This first phase is syncing the data before we
 * quiesce the filesystem, and the second is flushing all the inodes out after
 * we've waited for all the transactions created by the first phase to
 * complete. The second phase ensures that the inodes are written to their
 * location on disk rather than just existing in transactions in the log. This
 * means after a quiesce there is no log replay required to write the inodes to
 * disk (this is the main difference between a sync and a quiesce).
 */
/*
 * First stage of freeze - no writers will make progress now we are here,
425 426
 * so we flush delwri and delalloc buffers here, then wait for all I/O to
 * complete.  Data is frozen at that point. Metadata is not frozen,
D
David Chinner 已提交
427 428
 * transactions can still occur here so don't bother flushing the buftarg
 * because it'll just get dirty again.
429 430 431 432 433 434 435 436
 */
int
xfs_quiesce_data(
	struct xfs_mount	*mp)
{
	int error;

	/* push non-blocking */
C
Christoph Hellwig 已提交
437
	xfs_sync_data(mp, 0);
C
Christoph Hellwig 已提交
438
	xfs_qm_sync(mp, SYNC_TRYLOCK);
439

D
Dave Chinner 已提交
440
	/* push and block till complete */
C
Christoph Hellwig 已提交
441
	xfs_sync_data(mp, SYNC_WAIT);
C
Christoph Hellwig 已提交
442
	xfs_qm_sync(mp, SYNC_WAIT);
443

D
Dave Chinner 已提交
444 445 446
	/* drop inode references pinned by filestreams */
	xfs_filestream_flush(mp);

D
David Chinner 已提交
447
	/* write superblock and hoover up shutdown errors */
D
Dave Chinner 已提交
448
	error = xfs_sync_fsdata(mp, SYNC_WAIT);
449

D
David Chinner 已提交
450
	/* flush data-only devices */
451 452 453 454
	if (mp->m_rtdev_targp)
		XFS_bflush(mp->m_rtdev_targp);

	return error;
455 456
}

D
David Chinner 已提交
457 458 459 460 461 462 463
STATIC void
xfs_quiesce_fs(
	struct xfs_mount	*mp)
{
	int	count = 0, pincount;

	xfs_flush_buftarg(mp->m_ddev_targp, 0);
464
	xfs_reclaim_inodes(mp, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
D
David Chinner 已提交
465 466 467 468 469 470 471 472

	/*
	 * This loop must run at least twice.  The first instance of the loop
	 * will flush most meta data but that will generate more meta data
	 * (typically directory updates).  Which then must be flushed and
	 * logged before we can write the unmount record.
	 */
	do {
C
Christoph Hellwig 已提交
473
		xfs_sync_attr(mp, SYNC_WAIT);
D
David Chinner 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
		pincount = xfs_flush_buftarg(mp->m_ddev_targp, 1);
		if (!pincount) {
			delay(50);
			count++;
		}
	} while (count < 2);
}

/*
 * Second stage of a quiesce. The data is already synced, now we have to take
 * care of the metadata. New transactions are already blocked, so we need to
 * wait for any remaining transactions to drain out before proceding.
 */
void
xfs_quiesce_attr(
	struct xfs_mount	*mp)
{
	int	error = 0;

	/* wait for all modifications to complete */
	while (atomic_read(&mp->m_active_trans) > 0)
		delay(100);

	/* flush inodes and push all remaining buffers out to disk */
	xfs_quiesce_fs(mp);

500 501 502 503 504
	/*
	 * Just warn here till VFS can correctly support
	 * read-only remount without racing.
	 */
	WARN_ON(atomic_read(&mp->m_active_trans) != 0);
D
David Chinner 已提交
505 506 507 508 509 510 511 512 513 514 515

	/* Push the superblock and write an unmount record */
	error = xfs_log_sbcount(mp, 1);
	if (error)
		xfs_fs_cmn_err(CE_WARN, mp,
				"xfs_attr_quiesce: failed to log sb changes. "
				"Frozen image may not be consistent.");
	xfs_log_unmount_write(mp);
	xfs_unmountfs_writesb(mp);
}

516 517 518 519 520 521 522 523 524 525 526
/*
 * Enqueue a work item to be picked up by the vfs xfssyncd thread.
 * Doing this has two advantages:
 * - It saves on stack space, which is tight in certain situations
 * - It can be used (with care) as a mechanism to avoid deadlocks.
 * Flushing while allocating in a full filesystem requires both.
 */
STATIC void
xfs_syncd_queue_work(
	struct xfs_mount *mp,
	void		*data,
527 528
	void		(*syncer)(struct xfs_mount *, void *),
	struct completion *completion)
529
{
530
	struct xfs_sync_work *work;
531

532
	work = kmem_alloc(sizeof(struct xfs_sync_work), KM_SLEEP);
533 534 535 536
	INIT_LIST_HEAD(&work->w_list);
	work->w_syncer = syncer;
	work->w_data = data;
	work->w_mount = mp;
537
	work->w_completion = completion;
538 539 540 541 542 543 544 545 546 547 548 549 550
	spin_lock(&mp->m_sync_lock);
	list_add_tail(&work->w_list, &mp->m_sync_list);
	spin_unlock(&mp->m_sync_lock);
	wake_up_process(mp->m_sync_task);
}

/*
 * Flush delayed allocate data, attempting to free up reserved space
 * from existing allocations.  At this point a new allocation attempt
 * has failed with ENOSPC and we are in the process of scratching our
 * heads, looking about for more room...
 */
STATIC void
551
xfs_flush_inodes_work(
552 553 554 555
	struct xfs_mount *mp,
	void		*arg)
{
	struct inode	*inode = arg;
C
Christoph Hellwig 已提交
556
	xfs_sync_data(mp, SYNC_TRYLOCK);
C
Christoph Hellwig 已提交
557
	xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
558 559 560 561
	iput(inode);
}

void
562
xfs_flush_inodes(
563 564 565
	xfs_inode_t	*ip)
{
	struct inode	*inode = VFS_I(ip);
566
	DECLARE_COMPLETION_ONSTACK(completion);
567 568

	igrab(inode);
569 570
	xfs_syncd_queue_work(ip->i_mount, inode, xfs_flush_inodes_work, &completion);
	wait_for_completion(&completion);
571 572 573
	xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
}

574 575 576 577 578
/*
 * Every sync period we need to unpin all items, reclaim inodes, sync
 * quota and write out the superblock. We might need to cover the log
 * to indicate it is idle.
 */
579 580 581 582 583 584 585
STATIC void
xfs_sync_worker(
	struct xfs_mount *mp,
	void		*unused)
{
	int		error;

586 587
	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
		xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
588
		xfs_reclaim_inodes(mp, XFS_IFLUSH_DELWRI_ELSE_ASYNC);
589
		/* dgc: errors ignored here */
C
Christoph Hellwig 已提交
590 591
		error = xfs_qm_sync(mp, SYNC_TRYLOCK);
		error = xfs_sync_fsdata(mp, SYNC_TRYLOCK);
592
	}
593 594 595 596 597 598 599 600 601 602
	mp->m_sync_seq++;
	wake_up(&mp->m_wait_single_sync_task);
}

STATIC int
xfssyncd(
	void			*arg)
{
	struct xfs_mount	*mp = arg;
	long			timeleft;
603
	xfs_sync_work_t		*work, *n;
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
	LIST_HEAD		(tmp);

	set_freezable();
	timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
	for (;;) {
		timeleft = schedule_timeout_interruptible(timeleft);
		/* swsusp */
		try_to_freeze();
		if (kthread_should_stop() && list_empty(&mp->m_sync_list))
			break;

		spin_lock(&mp->m_sync_lock);
		/*
		 * We can get woken by laptop mode, to do a sync -
		 * that's the (only!) case where the list would be
		 * empty with time remaining.
		 */
		if (!timeleft || list_empty(&mp->m_sync_list)) {
			if (!timeleft)
				timeleft = xfs_syncd_centisecs *
							msecs_to_jiffies(10);
			INIT_LIST_HEAD(&mp->m_sync_work.w_list);
			list_add_tail(&mp->m_sync_work.w_list,
					&mp->m_sync_list);
		}
		list_for_each_entry_safe(work, n, &mp->m_sync_list, w_list)
			list_move(&work->w_list, &tmp);
		spin_unlock(&mp->m_sync_lock);

		list_for_each_entry_safe(work, n, &tmp, w_list) {
			(*work->w_syncer)(mp, work->w_data);
			list_del(&work->w_list);
			if (work == &mp->m_sync_work)
				continue;
638 639
			if (work->w_completion)
				complete(work->w_completion);
640 641 642 643 644 645 646 647 648 649 650 651 652
			kmem_free(work);
		}
	}

	return 0;
}

int
xfs_syncd_init(
	struct xfs_mount	*mp)
{
	mp->m_sync_work.w_syncer = xfs_sync_worker;
	mp->m_sync_work.w_mount = mp;
653
	mp->m_sync_work.w_completion = NULL;
654 655 656 657 658 659 660 661 662 663 664 665 666
	mp->m_sync_task = kthread_run(xfssyncd, mp, "xfssyncd");
	if (IS_ERR(mp->m_sync_task))
		return -PTR_ERR(mp->m_sync_task);
	return 0;
}

void
xfs_syncd_stop(
	struct xfs_mount	*mp)
{
	kthread_stop(mp->m_sync_task);
}

C
Christoph Hellwig 已提交
667
STATIC int
668
xfs_reclaim_inode(
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
	xfs_inode_t	*ip,
	int		sync_mode)
{
	xfs_perag_t	*pag = xfs_get_perag(ip->i_mount, ip->i_ino);

	/* The hash lock here protects a thread in xfs_iget_core from
	 * racing with us on linking the inode back with a vnode.
	 * Once we have the XFS_IRECLAIM flag set it will not touch
	 * us.
	 */
	write_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);
	if (__xfs_iflags_test(ip, XFS_IRECLAIM) ||
	    !__xfs_iflags_test(ip, XFS_IRECLAIMABLE)) {
		spin_unlock(&ip->i_flags_lock);
		write_unlock(&pag->pag_ici_lock);
685
		return -EAGAIN;
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
	}
	__xfs_iflags_set(ip, XFS_IRECLAIM);
	spin_unlock(&ip->i_flags_lock);
	write_unlock(&pag->pag_ici_lock);
	xfs_put_perag(ip->i_mount, pag);

	/*
	 * If the inode is still dirty, then flush it out.  If the inode
	 * is not in the AIL, then it will be OK to flush it delwri as
	 * long as xfs_iflush() does not keep any references to the inode.
	 * We leave that decision up to xfs_iflush() since it has the
	 * knowledge of whether it's OK to simply do a delwri flush of
	 * the inode or whether we need to wait until the inode is
	 * pulled from the AIL.
	 * We get the flush lock regardless, though, just to make sure
	 * we don't free it while it is being flushed.
	 */
C
Christoph Hellwig 已提交
703 704
	xfs_ilock(ip, XFS_ILOCK_EXCL);
	xfs_iflock(ip);
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720

	/*
	 * In the case of a forced shutdown we rely on xfs_iflush() to
	 * wait for the inode to be unpinned before returning an error.
	 */
	if (!is_bad_inode(VFS_I(ip)) && xfs_iflush(ip, sync_mode) == 0) {
		/* synchronize with xfs_iflush_done */
		xfs_iflock(ip);
		xfs_ifunlock(ip);
	}

	xfs_iunlock(ip, XFS_ILOCK_EXCL);
	xfs_ireclaim(ip);
	return 0;
}

721 722 723 724 725 726 727 728 729 730
void
__xfs_inode_set_reclaim_tag(
	struct xfs_perag	*pag,
	struct xfs_inode	*ip)
{
	radix_tree_tag_set(&pag->pag_ici_root,
			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
			   XFS_ICI_RECLAIM_TAG);
}

D
David Chinner 已提交
731 732 733 734 735
/*
 * We set the inode flag atomically with the radix tree tag.
 * Once we get tag lookups on the radix tree, this inode flag
 * can go away.
 */
736 737 738 739 740 741 742 743 744
void
xfs_inode_set_reclaim_tag(
	xfs_inode_t	*ip)
{
	xfs_mount_t	*mp = ip->i_mount;
	xfs_perag_t	*pag = xfs_get_perag(mp, ip->i_ino);

	read_lock(&pag->pag_ici_lock);
	spin_lock(&ip->i_flags_lock);
745
	__xfs_inode_set_reclaim_tag(pag, ip);
D
David Chinner 已提交
746
	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
	spin_unlock(&ip->i_flags_lock);
	read_unlock(&pag->pag_ici_lock);
	xfs_put_perag(mp, pag);
}

void
__xfs_inode_clear_reclaim_tag(
	xfs_mount_t	*mp,
	xfs_perag_t	*pag,
	xfs_inode_t	*ip)
{
	radix_tree_tag_clear(&pag->pag_ici_root,
			XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
}

762 763 764 765 766
STATIC int
xfs_reclaim_inode_now(
	struct xfs_inode	*ip,
	struct xfs_perag	*pag,
	int			flags)
767
{
768 769
	/* ignore if already under reclaim */
	if (xfs_iflags_test(ip, XFS_IRECLAIM)) {
770
		read_unlock(&pag->pag_ici_lock);
771
		return 0;
772
	}
773
	read_unlock(&pag->pag_ici_lock);
774

C
Christoph Hellwig 已提交
775
	return xfs_reclaim_inode(ip, flags);
776 777 778 779 780 781 782
}

int
xfs_reclaim_inodes(
	xfs_mount_t	*mp,
	int		mode)
{
783 784
	return xfs_inode_ag_iterator(mp, xfs_reclaim_inode_now, mode,
					XFS_ICI_RECLAIM_TAG);
785
}